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Abstract
The sensor values captured by a digital camera are trans-

formed in a non-linear manner prior to quantization in order to
make the quantization rate approximately proportional to the sen-
sitivity of the human visual system. We propose an image depen-
dent non-linear transformation that can accurately reproduce the
detail and contrast visible in the original scene. The principles
underpinning the transform stem from an understanding of nat-
ural image statistics, as well as recent experimental and neuro-
physiological findings. To optimize the parameters of the model
we collect user-feedback and develop a method that can predict
the user defined parameters. The method we have developed has
an extremely low computational complexity, therefore it operates
almost instantaneously making it suitable for in-camera opera-
tions. The final image looks natural, without any halos, spurious
colors or artifacts. It can also be applied to video sequences, after
imposing temporal coherence on the parameter values by smooth-
ing them over time. The proposed approach is validated through
psychophysical tests that confirm that it outperforms other state
of the art algorithms in terms of users’ preference.

Introduction
The values captured by a digital camera sensor span between

3 and 4 orders of magnitude, and they must be transformed in-
camera in a non-linear manner, prior to quantization, with two
main purposes: to make the quantization rate approximately pro-
portional to the sensitivity of the human visual system, and at the
same time making the transformed signal suitable for the reduced
dynamic range of standard displays.

The non-linearity applied in most digital cameras is well ap-
proximated by a simple power law, and while this may perform
well on average, in general it is suboptimal. The literature pro-
vides a number of image-dependent non-linearities, some based
on models of the human visual system, see [9][6] and references
therein. Additionally, there are more complex, local tone map-
ping algorithms that could, in theory, transform the sensor data,
but these tend to be computationally more expensive, sensitive to
image fluctuations, and thus harder to incorporate in the image-
processing pipeline of a camera. The aim of this work is to intro-
duce a tone-curve non-linearity with the following properties:

• It is automatic (no need for user-selected parameters) and
fast, such that it can work in-camera.

• Accurately reproduces the detail and contrast visible in the
original scene.

• Produces no visible artifacts nor color distortions.
• Works on video sequences and results do not show temporal

artifacts.

In order to fulfill this goal we propose a two stage non-linear
transform that extends the method of Cyriac et al. [7], which is

well suited to the statistics of natural scenes, and is in keeping
with new psychophysical findings and neurophysical data. Our
two main contributions are:

1. The modification of the model, incorporating a novel term
performing adaptive clipping. In the original model one per-
centile of the highest input values are clipped prior to the
transform to improve the global contrast of the image; how-
ever, this simple clipping is not suitable for all situations.
The proposed modification provides a better global contrast
and works reliably in all tested scenarios.

2. Changing the way the model parameters are estimated: the
new functions that automatically select the parameter values
have been designed so as to correlate well with user choices
performed in psychophysical experiments.

The method we have developed has an extremely low
computational complexity, therefore it operates almost instanta-
neously making it suitable for in-camera operations. The final im-
age looks natural, without any halos, spurious colors or artifacts.
It can also be applied to video sequences, after imposing tempo-
ral coherence on the parameter values by smoothing them over
time. The proposed approach is validated through psychophys-
ical tests that confirm that it outperforms other state of the art
algorithms in terms of users’ preference. Aside for in-camera im-
plementation, our proposed method can be used as an off-line tone
mapping method for converting high dynamic range (HDR) im-
ages into low dynamic range (LDR) ones, with applications to
cinema shoots (on-set use of LDR monitors with an HDR cam-
era), cinema post-production (color grading), television broadcast
(making HDR signals compatible with LDR equipment), and ren-
dering in computer graphics (for videogames, 3D animation, the
integration of CGI onto real footage, etc.)

Original approach
In this section we briefly explain the two-stage method pro-

posed by Cyriac et al.[7] for the non-linear transformation step in
the camera image processing pipeline.

The first stage is a global transform based on the psy-
chophysical study [12] demonstrating that subjects tend to prefer
the images with a flat lightness histogram. Complete histogram
equalization achieved by an intensity transform based on the cu-
mulative histogram may produce images with an unnatural ap-
pearance due to sharp changes in contrast. Thus, Cyriac et al. [7]
perform a constrained histogram equalization by modeling the cu-
mulative histogram as a smooth function based on natural image
statistics. Studies in natural image statistics [16, 11] reported that,
on average, natural images have a triangular shaped histogram in
log-log coordinates. Thus, the cumulative histogram (H) can be
modeled as a piecewise linear function with two slopes (γL and
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γH ) in log-log coordinates; therefore, in linear-linear coordinates
H has the form

H(I) = Iγ(I). (1)

where I is the normalized image and γ is a slope function with
γ ' γL for small intensities, γ ' γH for large intensities and a
smooth transition at Mlin with a slope n as follows:

γ(I) = γH +(γL− γH)
(

1− In

In +Mn
lin

)
, (2)

where the parameter values γL, γH and Mlin are computed from
the cumulative histogram of the input intensity image.

So the first stage, that performs constrained histogram equal-
ization based on natural image statistics, is given by:

I1(x) = I(x)γ(I(x)) (3)

The second stage performs contrast normalization based on the
neurophysiological evidence [4, 5] which explains that the visual
system performs normalization of the contrast by a factor depend-
ing on the standard deviation of the light intensity. The second
stage is given by:

O(x) = µ(x)+(I1(x)−µ(x))∗ k/σ , (4)

where x is the pixel position, I1 is the output of the previous stage,
µ and σ are the local mean and global standard deviation of I1
respectively, k is a constant and O(x) is the final output of our
method.

Proposed modification
We propose two modifications to the first stage of Cyriac

et al. [7]: incorporating an adaptive clipping term, and designing
the automated parameter estimation method so as to correlate well
with the results of psychophysical experiments.

We added an adaptive clipping term C to the first stage of [7]
to overcome the limitation of one percentile clipping of highest
input values and to preserve the global contrast of the image. The
new first stage is given by:

I1 = (I(x))γ(I(x))C(I(x)) (5)

where C is also a smooth curve with C ' CL for small in-
tensities, C 'CH for large intensities with a smooth transition at
MLin with a slope m as follows:

C(I) =CL +(CH −CL)
( Im

Im +Mm
lin

)
, (6)

where CLand CH are also computed from the cumulative his-
togram of the input intensity image and the approach is explained
in the implementation section.

The parameter values of the function γ in Eq. 2 are also
computed from the cumulative histogram of the intensity image.
But we modify the automated parameter estimation method such
that the new parameter values match as good as possible with the
users’ choice in the psychophysical experiment one described in
Appendix B. The detailed explained of the approach is in the fol-
lowing section and in Appendix A.
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Figure 1. Example of a cumulative histogram and histogram for a single

natural image (in log-log axes) and our estimated parameters γL, γH and M.

Implementation
In this section we present the implementation details. Our

method consists of two stages, one global operation Eq. 5 and a
local operation Eq. 4, and are applied separately to each of the
red, green and blue color channels of the image. The input im-
age is initially normalized to the [0,1] range and the luminance
component L is computed to estimate the parameters of the first
stage.

The non-linear function γ(I) in Eq. 2 is computed using the
parameter values of γH , γL and Mlin. The parameter values are
estimated from the cumulative histogram (H) in log-log coordi-
nates(see Figure 1). We compute Mlin as the exponential of M
which is the average value of Lm and LM . Where Lm and LM are
the values on the horizontal axis (log luminance) corresponding
to 1 and 90% in the vertical axis (log cumulative histogram).

To compute γH and γL we distinguish 3 cases depending on
the shape of the histogram.

Case 1: The histogram of the input image has roughly
a triangular shape in log-log coordinates(see Figure 1). This
is the general case and the majority of images fall in this
category. The values of γH and γL are estimated with respect
to med = log(median(L)) and x = log(

√
median(L)∗ trm(L))

respectively, where trm(L) is the mean(L) after clipping 1% of
the extreme values.

Case 2: The histogram of the input image has a bi-modal
distribution in log-log coordinates(see Figure 2). Our estimate of
γH and γL are with respect to the log of median of the upper half
of L (denoted by y) and temp = log(mean(L)) respectively.

Case 3: The bin of the histogram near to the median is over-
populated, resulting in a spike in the histogram (see Figure 3). we
estimate γH and γL with respect to v, the intensity value just lower
than those high frequent intensities.

More detailed explanations and an algorithm for the param-
eter estimation are given in the Appendix A. In all the cases, we
set the slope value n equal to γL.
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Figure 2. Example of a cumulative histogram and histogram for a single

natural image (in log-log axes) with bi-modal distribution and our estimated

parameters γL, γH and M.

The clipping term C(I) in Eq. 6 is computed by estimating
its parameters (CL and CH ) as follows:

CL = ea−γLLowx ; a = log
( 1

255

)
CH = eb−γH Highx ; b = log

(
1− 1

255

) (7)

where Lowx and Highx correspond to 0.39 and 99.6 percentile of
L in log domain.

For the second stage, Eq. 4, the parameters are the same as in
Cyriac et al [7]. The local mean µ(x) is computed by the convo-
lution of a kernel W with image I1, where W is generated by the
linear combination of two Gaussian kernels with standard devia-
tions σ = 5 and σ = 25 and the kernels are weighted by 0.9 and
0.1 respectively. The constant k determines the contrast level of
the image, larger k values give images with higher contrast. We
set the value of k = 0.33 that produces final images that have a
natural appearance and good contrast.

The proposed approach can also be applied to video if we in-
corporate temporal coherence in the parameter estimation. Thus,
for the first stage we follow a two pass approach. In the first
pass, parameters are estimated separately for each frame and then
a temporal low pass filter is applied to get new parameters. In the
second pass, we apply Eq. 5 using the new parameters.

Results and Discussion
In this section we first show the potential of the proposed

approach to be used as a method for the in-camera non-linear pro-
cessing and also to be used as a tone mapping operator. Then we
validate our approach through psychophysical tests in 2 experi-
ments, whose setup is detailed in Appendix B.

In Figure 5 we illustrate the advantage of our method over the
conventional non-linearity applied in a camera imaging pipeline.
Three sample images each from a consumer camera, smart phone
and cinema camera, are shown along with the results of apply-
ing the proposed method on the corresponding RAW sensor val-
ues. Our results look natural in appearance, with enhanced overall
contrast and without any visual artifacts.
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Figure 3. Example of a cumulative histogram and histogram with a spike

for a single natural image (in log-log axes) and our estimated parameters γL,

γH and M.

In Figure 6 we show some results to illustrate that the pro-
posed approach can also be used as a tone mapping operator and
applied offline to HDR images. Our method when applied to HDR
video sequences from the ARRI dataset [10] produces results that
are natural looking with no visible flicker and without any sort of
spatiotemporal artifacts.

Now we discuss the results of experiment one, in which sub-
jects adjust the parameter values γL and γH using sliding bars in
order to get a pleasing image. Figure 7 shows that for both param-
eters γH and γL there is a strong correlation, correlation coefficient
R = 0.83 and R = 0.88, between the automatically estimated and
user chosen parameters. This result indicates that the parameters
estimated by the proposed approach match well with the users’
choice.

In Figure 4 we show the result of experiment two, in which
the subjects evaluated three tone mapping operators: Mantiuk et
al. [13], Cyriac et al. [7] and the proposed approach. We choose
these tone mapping operators as they were the ones performing
best in [7]. The experiment shows that the subjects have a prefer-
ence for the results of the proposed approach over the other oper-
ators. This contradict the prediction of the tone mapping metrics
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Figure 4. Result of experiment two. Pairwise comparison of 3 tone mapping

operators: Mantiuk et al. [13], Cyriac et al. [7] and proposed approach.
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(a) (b) (c)

(d) (e) (f)
Figure 5. Top row: original JPEG images as recorded by the camera, with the exception of image (b) which is generated by applying a S-shaped curve to a

LogC image. Bottom row: results of applying our method to the corresponding RAW images. Camera models: left column, Nikon D3100 consumer photography

camera; middle column, ARRI Alexa digital cinema camera [1]; right column, Nexus 5 smartphone camera.

Figure 6. Results of our method applied to HDR images from the Fairchild dataset (top row) [8] and to video frames from the ARRI dataset (bottom row)[10].
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Figure 7. Average subject selected values from 7 observers plotted against model estimated parameter values. Left: plot for parameter γH . Right: plot for

parameter γL.

[2] and [18], and this disparity puts into question the validity of
visibility metrics to estimate subjective image quality.

Conclusion and Future work
We have presented an image dependent tone curve for in-

camera image processing that operates in real time and can ac-
curately reproduce the detail and contrast visible in the original
scene. We optimized the automated parameter estimation method
based on the users’ parameter choice. The proposed approach
can also be used off-line as a tone mapping operator to convert
HDR images and video sequences into LDR ones. The results
look natural, without halos, flicker or spatiotemporal artifacts of
any kind. We validate our method through psychophysical tests
that confirm that proposed approach outperforms other state of the
art algorithms in terms of users’ preference.

In future work we would take into account the effect of sur-
round and viewing conditions and modify the proposed method to
produce reliable results in all scenarios.
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Appendix A
The automated parameter estimation method is given in Al-

gorithm 1 and explained below.
The approach relies on the cumulative histogram (H) of the

normalized luminance channel (L) in log-log coordinates. Ini-
tially, γH and γL are computed by step 1 of the Algorithm 1, as
illustrated in Figure 1. γH is the slope of the line joining the point
in H that corresponds to med = log(median(L)) and the top end
of H and γL is the slope of the line joining the point in H corre-
sponding to x = log((sqrt(median(L)∗ trm(L))) and the point in
H that is 1 unit lower than the above point in vertical axis.

If the condition in step 2 of the Algorithm 1 is satisfied, i.e,
γH is less than the slope of the line joining the point in H corre-

sponding to temp = log(mean(L)) and the top end of H, then γH
and γL are computed as in step 2.1 and 2.2 respectively. This con-
dition is an indication of bi-modal distribution of the luminance
histogram. Then a new median is computed by excluding all the
luminance value below original median and γH is recomputed. γL
is recomputed as the slope of line from point in H corresponding
to log(mean(L)) and 1 unit lower than the above point in vertical
axis.

But if the condition in step 3 of the Algorithm 1 is satis-
fied, i.e, the slope of H is very high in some region around the
median(L) due to high concentration of some luminance values,
then γH and γL are computed as in step 3.1 and 3.2 respectively
and explained in what follows. Select a value v ∈ log(L) that sat-
isfies the condition in step 3 and is within unit distance from med,
then γH is the slope of the line joining the point in H correspond-
ing to v− δ and the top end of H and γL is the slope of the line
joining the same point and the point in H that is 1 unit lower than
the above point in vertical axis. We used Te = 4 and δ = 0.1.

Algorithm 1 Parameter estimation
Input: Image I
Result: γL and γH

L: Luminance channel of I normalized to [0,1].
H(L): Cumulative histogram of L in log-log domain.
S(a,b): Slope of line joining point on H corresponding to a and
b; where a, b ∈ log(L)
trm(L): Mean of L after clipping 1% of extreme values.
1. γH = S

(
med,0

)
; med = log(median(L))

γL = S
(

x,H−1(H(x
)
−1)

)
; x = log(

√
median(L)∗ trm(L))

2. If γH < S
(

temp,0
)

then temp = log(mean(L))

2.1. γH = S
(

y,0
)

; y = log
(

median
(
L > median(L)

))
2.2. γL = S

(
temp,H−1(H(temp)−1

))
3. If dH

d(log(L)) > Te, for some v ∈ log(L) and within unit distance from
med, then

3.1. γH = S
(

v−δ ,0
)

3.2. γL = S
(

v−δ ,H−1(H(v−δ )−1
))
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Appendix B
We explain the details of the psychophysical experiments in

this section.

Subjects
Seven subjects completed both experiments. All had cor-

rected to normal vision. Two are authors of the paper. Ethics was
approved by the Comité Etico de Investigacion Clinica, Parc de
Salut MAR, Barcelona, Spain and all procedures complied with
the declaration of Helsinki.

Apparatus
Both experiments were conducted on an ASUS VS197D

LCD monitor set to ‘sRGB’ mode with a luminance range from
0.1cdm−2 to 106cdm−2, with spatial and temporal resolutions of
1366 by 768 pixels and 50 ∼ 75 Hz. The display was viewed at a
distance of approximately 70 cm so that 40 pixels subtended 1 de-
gree of visual angle. The full display subtended 33 by 18 degrees.
The decoding nonlinearity of the monitor was recorded using a
Konica Minolta LS 100 photometer and was found to be closely
approximated by a gamma function with an exponent of 2.2.
Stimuli were generated under Ubuntu 12.04 LTS running MAT-
LAB (MathWorks) with functions from the Psychtoolbox[3, 15].

The experiment was conducted in an office environment and
the ambient luminance levels was recorded with a Sinometer
LX1010B which could record the incoming light from at 180 de-
gree angle. The results indicated the average ambient illumination
was 147 lux. The surround luminance of the display as measured
by the photometer was 65 cdm−2.

Stimuli
Experiment one: 20 base images were taken from the high

dynamic range survey by Mark Fairchild [8] including indoor
and outdoor scenes, night time images and landscapes. Images
were resized to a quarter of the original areas using Matlabs
imresize and the setting nearest which performs a simple
subsampling of pixel value. Each image then covered approxi-
mately 80% of the viewing area. The remaining area was pre-
sented with a surround luminance of 65 cdm−2 corresponding to
the average luminance of the surrounding area.

Experiment two: 30 base images were taken from the high
dynamic range survey by Mark Fairchild [8], excluding the 20
used in experiment one. Tone mapped versions of the origi-
nal HDR radiance maps were produced according to the original
[7] and the proposed approach and the approach of Mantiuk et
al. [13] created using pfstools [14] using the parameters of
‘lcd office’ display type except for ambient illumination which is
set to 147 lux. The images were viewed side be side and each
image was presented over 14 and 10 degrees.

In both experiments the images were presented without cor-
recting for the decoding nonlinearity of the monitor.

Procedure
Experiment one: Subjects manipulated the parameter γH

and γL of Eq. 2 via two scroll bars. The subject interacted with
the scroll bar via a mouse and a press of the space key initiated
the next image. The range of values corresponding to the scroll
bar location was fixed at 0 to 1 for γH and 0 to 3 for γL. The initial
position of the scroll bar was the midway point and the scaling

was linear. The parameter values dynamically and in real time,
updated the displayed image by applying Eq. 5 to the original
HDR image. The subject was asked to manipulate the scroll bars
until the most pleasing image was achieved. No further instruc-
tion was provided. Aside from the two authors the participants
did not know what the action of the scroll bars was. Subjects had
unlimited time to choose the appropriate values.

Experiment two: Subjects were asked to select which of the
two simultaneously presented images they preferred. Given the 30
base images and 3 tone-mapped versions for each image, the total
number of comparisons was 30*3=90. Subjects had unlimited
time to make the comparison. Thurstone’s law of comparative
judgments [17] was used to obtain the preferred image.

References
[1] Stefano Andriani, Harald Brendel, Tamara Seybold, and

Joseph Goldstone. Beyond the kodak image set: A new ref-
erence set of color image sequences. In ICIP, pages 2289–
2293, 2013.
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