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Abstract 

Multi-camera systems are increasingly gaining popularity for 
various applications and their correct functionality depends on 
precise registration. The complexity of registering the various 
images to each other is reduced significantly by rectifying the 
images. This usually relies on an offline calibration process. In 
reality, components of the camera module respond differently to 
various factors such as temperature variations, field conditions, 
etc. Therefore, changes in geometric camera calibration, unless 
accounted for, can affect the proper registration, which in turn 
leads to severe degradation of the imaging system or can lead to 
artifacts. We present a method that can assess the geometric 
calibration of an array camera and perform an adaptive 
adjustment of geometric calibration by robust feature matching in 
any imaged scene. Assuming a gradual degradation of geometric 
calibration from their previously calibrated values, we exploit the 
redundancy of a camera array system to recover from the variation 
of calibrated parameters. Compared to other online calibration 
methods mostly used for stereo systems, our proposed method is 
efficient and robust, and derives a solution for multi-camera 
systems. We illustrate the usefulness of our geometric calibration 
compensation approach through a super-resolution application 
where we recover significant image details that are lost due to 
errors in calibration. 

Introduction  
In a camera array system such as the monolithic camera array 

system presented in [1], as well as in a general camera array 
architecture such as [10], accurate registration is essential to the 
functionality of the imaging system. We use a 4×4 monolithic 
camera array of low resolution (1000×750 pixels each) with 
monochromatic Red/Green/Blue filters for each individual camera 
in the array. 

 
 
 
 
 
 
 
 
 
 

Figure 1: PiCam 4×4 camera array (viewed towards scene) 
and baseline multipliers 

As detailed in [1], we compute both a high resolution super-
resolved image and a depth map from the reference viewpoint. 
Sub-pixel registration is achieved through two main stages: 1) 
Normalization, which includes photometric and geometric 
correction of cameras using calibration data (captured offline) 
[5][6] and 2) Parallax estimation. The overall accuracy of the 
system further into the pipeline is predicated by precise sub-pixel 
parallax correction. As is the case with general stereo setups, we 

perform parallax search on epipolar lines [2][3][4] by using 
rectified geometry employed at the geometric calibration stage. 
The rectification process achieves two main objectives by reducing 
the search space from 2D (entire image) to 1D (epipolar lines) for 
each non-reference camera. First, it dramatically reduces 
complexity – this is compounded in multi-camera setups because 
of the number of cameras in the array. Second, it severely 
constraints the matches to be on corresponding epipolar lines, 
therefore decreasing the likelihood of false matches. Additionally, 
in multi-baseline stereo, searches are performed simultaneously in 
various non-reference cameras at disparities proportional to the 
camera baselines, improving accuracy [9]. 

The accuracy of our geometric calibration process is a critical 
step in a camera array and it represents the foundation for correct 
registration. In contrast to other methods for auto-calibration in 
stereo setups [4][7][8], we use a nonparametric approach to 
geometric calibration: our geometric calibration consists of a dense 
vector field for every non-reference image which denotes the 
corresponding pixel in the reference image. This smooth, dense 
vector field represents the perturbation that needs to be applied to 
pixels in a non-reference image such that they are aligned onto 
epipolar lines with respect to the reference camera pixels.   

Overview of the method 
Our method is based on exploiting the calibrated-stereo 

constraint: in rectified multi-camera stereo setups, world points are 
imaged in various cameras on  epipolar lines, with the amount of 
disparity encountered on epipolar lines being determined by 
corresponding baselines, focal length, and depth of world points. 

If calibration information was provided and accurate, the 
orthogonal projections ሼ݀௧௢ா௉ூሽ௞

௜  of these imaged points ݅ onto 
epipolar lines should be close to zero for each non-reference 
camera ݇ in the array (subject to accuracy of the geometric 
calibration).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: World pixels imaged on epipolar lines 

Range of positions for 
corresponding pixel in the non-
reference cam k (rectified setup) 

ሼ݀௢௡ா௉ூሽ௞
௜  

ሼ݀௧௢ா௉ூሽ௞
௜  

Pixel ݅ in reference camera 

Corresponding pixel in 
non-reference camera k 
(errors in calibration) 

Corresponding pixel in 
non-reference camera 

k (ideal case) 

G01 B02 G03 R04 
R05 G06 R07 G08 
G09 B10 G11 B12 
B13 G14 R15 G16 

1.41 1 1.41 2.24 

1 0 1 2 

1.41 1 1.41 2.24 

2.24 2 2.24 2.83 
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Our method is described in a few steps: 
 
Step 1: We use robust feature point detectors and matching 

across all cameras in the array. We proceed to detect inaccurate 
calibration by measuring the magnitudes of the orthogonal 
geometric components ሼ݀௧௢ா௉ூሽ௞

௜  referred to above. For scenes 
known to be at infinity, the magnitude of the components on 
epipolar lines ሼ݀௢௡ா௉ூሽ௞

௜ 	 should also be zero, otherwise the 
locations of the projected world points on epipolar lines are 
proportional to the baselines in the camera array.  

 
Step 2: We hypothesize a disparity at each feature point by 

using the redundancy inherent in the array camera, and assuming a 
certain type of perturbation from nominal calibration.  

In our case, we compute the estimated disparity in pixels ݀ప෩  
for each interest point ݅ from all valid correspondence vectors 
using weighted averaging of the measured pixel distances on 
epipolar line ሼ݀௢௡ா௉ூሽ௞

௜  by the known baseline multipliers ܾ௞ as 
shown in Figure 1: 

 

ଙ෪ࢊ ൌ
૚

ࡹ
∑ ሼࡵࡼࡱ࢔࢕ࢊሽ࢑

࢏

࢑࢈
ሻ࢏ሺࢎࢉ࢚ࢇࡹ∋࢑ .           (1) 

 
Here, we denote Match(i) the set of non-reference cameras 
identifying a matching interest point ݅ in the reference camera and 
 as the number of non-reference cameras with an identified ܯ
match. 

This hypothesized disparity minimizes the overall distance in 
pixels between the set of observed disparities scaled by the 
baseline multipliers ሼ݀௢௡ா௉ூሽ௞

௜ /ܾ௞	in a least squared sense. This is 
because   
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The hypothesized disparity in our case is consistent with solving 
for the least perturbation - in the direction from epipolar lines - 
from nominal calibration. 

 
Step 3: At this point, we are in a position to compute a 

correction vector field based on the measured locations of feature 
points, and the hypothesized disparity ݀ప෩ . This is done for each 
non-reference camera in the array, and essentially quantifies the 
amount of residual shift from the nominal calibration. This vector 
field is computed only for the selected feature points. We first 
compute the residual vector field on epipolar direction ሼݎ௢௡ா௉ூሽ௞

௜  
by subtracting ݀ప෩  from ሼ݀௢௡ா௉ூሽ௞

௜  while keeping its orthogonal 
direction ሼݎ௧௢ா௉ூሽ௞

௜ , equal to ሼ݀௧௢ா௉ூሽ௞
௜  component. We project this 

vector field to XY coordinates into ሼݎ௑ሽ௞
௜ , ሼݎ௒ሽ௞

௜ , which is the 
sparse correction vector field that we use. We then use surface 
interpolation to fit a smooth surface to this sparse correction vector 
field. 

 
Step 4: Finally, we use this smooth, dense correction vector 

field as our calibration residual-vector field for each non-reference 
camera in the array, to apply a geometric correction to each such 
camera, with respect to the reference camera.  

 
Our approach finds a solution that corrects the geometric 

calibration by finding a perturbation vector field that is consistent 
to the chosen criterion described above. While this may not 
necessarily be the actual solution, it is a plausible solution that 

produces good results for the type of depth map application needed 
which is super-resolution. For other types of applications, 
hypothesizing for a particular disparity at each pixel may be done 
by choosing a different criterion. 

The above correction technique does not necessarily have to 
be performed for every image that the camera captures. Rather, a 
detector that quantifies a loss of calibration by monitoring the 
magnitudes ሼ݀௧௢ா௉ூሽ௞

௜  can be utilized to trigger the processing for 
calibration recovery described in this paper. This can be done in an 
online monitoring mode of operation. 

 

Results 
We show that using our method we can recover the geometric 

calibration that may be lost due to various external factors. Using 
super-resolution as the main application for registration, we 
illustrate the effectiveness of our algorithm both visually as well as 
objectively using SSIM scores [11]. We demonstrate that once 
calibration is lost due to various external factors, the loss in image 
quality is significant, making recovery of the calibration critical. 

 
We utilize two types of calibration perturbations in this paper. 

The first type comprises using wrong calibration data which may 
correspond to field effects (such as shock), with or without 
additional temperature effects. In general, these perturbations tend 
to be more severe, and less monotonic compared to the second type 
of calibration perturbations used next. This latter situation 
comprises using calibration files that no longer correspond to the 
temperature at which the array camera operates (since camera was 
calibrated at a given, e.g., room temperature). For example in the 
case of using polymer lenses, and plastic holders, temperature will 
have an effect on the geometry of the array camera, which needs to 
be taken into account.  

 
For our first experiment, we show results for the case where a 

large scale perturbation of geometry has occurred from the state at 
which the initial offline calibration was performed. In Figure 3 and 
Figure 5 we show: 

a) The high resolution image quality / corresponding depth 
map quality when using the appropriate offline calibration. These 
are our ‘reference’ results;  

b) The high resolution image quality / depth map quality as 
being significantly affected by artifacts when we use the original 
offline calibration, while a perturbation of it has occurred; 

c) The high resolution image quality / depth map quality as 
being significantly improved compared to b), by performing our 
automatic calibration correction, correcting the original offline 
calibration. 

Overall, results with our automatic geometric calibration 
compare visually very well to the reference results in a). We show 
additional super-resolution results in Figure 8. In Figure 4 we 
illustrate some example vector fields for the uncorrected and 
corrected case. For the uncorrected case, the reason for a residual 
correction vector field is twofold: a) there is always a small, 
residual calibration error and b) estimation errors between the 
computed hypothesized disparity in step 2 and the actual disparity. 

 
For objective evaluation we report the results in Figure 6 for 
various natural scenes. The SSIM measurements are performed on 
image content that has been masked spatially to limit the 
evaluation to textures and its immediate neighborhood. This is 
done so that the results are not perturbed by just noise variations in 
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the smooth (texture-less) areas, and because the loss of geometry 
calibration will manifest itself in the effects observed on texture 
rendering in the output image. For the purpose of spatial masking, 
we used a simple Sobel edge detector tuned to capture fine textures 
in the image while avoiding the detection of random structures in 
the noise present in the images. The resulting mask was then 
slightly dilated spatially using a morphological operator with a 
square structuring element of size 3×3 pixels. The mask detection 
was obtained from the reference (well-calibrated) high resolution 
images. In essence, we would like to measure the perturbations in 
the rendered texture of the incorrectly calibrated, or recovered-
calibration-camera, with respect to their original 
position/appearance in the correctly calibrated camera.  

For our second experiment, we illustrate the effect of 
temperature on geometric calibration for our array camera modules 
manufactured using plastic lenses and the successful recovery of 
geometric calibration using our method. Compared to the previous 
experiment, the calibration loss is more gradual, and increases as 
the temperature deviates from that of the initial offline calibration. 
Note that temperature rise is almost unavoidable due to heat 
generated as the sensor is operated over a period of time (example, 
when capturing video). 

Figure 7 shows SSIM results of using calibration 
corresponding to incorrect operating temperature, for the case 
corresponding to incorrect calibration and recovered calibration 
respectively. The nominal (correct) calibration was performed at 
approximately 35 °C (thermistor reading near camera module) 
which was also the approximate temperature at which the image 
was taken. The first reported result at 40 °C is naturally very close 
even for the incorrect calibration case. 

Conclusion 
We present a method to automatically detect and correct for 

errors in geometric calibration in camera arrays. Our method 
exploits the multiple camera calibrated stereo setup and is fast and 
efficient. We are aware of automatic correction for geometric 
calibration in the literature for stereo (two-camera) setups, but our 
method is significantly simpler and operates in multi-camera 
arrays, by exploiting redundancies in the multi-camera setup. 
Experimentally, we demonstrate that our method provides a 
solution to a critical problem faced by modern camera array 
systems. 
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Calibrated Incorrect calibration Recovered calibration 

 
Figure 3: Super-resolution results as part of the PiCam imaging pipeline 

 
 
 
 
 
 
 
 
 
 

Figure 4: Vector plots of residual vector field for Calibrated vs Incorrect calibration (Array cam 10) 

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Image Quality and System Performance XIII IQSP-009.4

DOI: 10.2352/ISSN.2470-1173.2016.13.IQSP-009



 

 

   
Calibrated Incorrect calibration Recovered calibration 

 
Figure 5: Wireframe depth maps (depth map computed in textured areas) 

 
 

 
R G B 

Incorrect 
calibration 

Recovered 
calibration 

Incorrect 
calibration 

Recovered 
calibration 

Incorrect 
calibration 

Recovered 
calibration 

Image #1 0.79 0.97 0.88 0.97 0.61 0.92 

Image #2 0.70 0.89 0.87 0.96 0.70 0.93 

Image #3 0.72 0.90 0.88 0.96 0.69 0.91 

Image #4 0.60 0.94 0.81 0.95 0.55 0.93 

Image #5 0.77 0.96 0.88 0.97 0.62 0.88 

 
Figure 6: SSIM scores with respect to the calibrated case (various images) 

 

 
Figure 7: SSIM scores with respect to the calibrated case for various temperatures (same image) 

Temperat
ure 

R G B 

Incorrect 
calibration 

Recovered 
calibration 

Incorrect 
calibration 

Recovered 
calibration 

Incorrect 
calibration 

Recovered 
calibration 

40 °C 0.95 0.97 0.97 0.98 0.97 0.98 

49 °C 0.91 0.97 0.95 0.98 0.94 0.97 

59 °C 0.81 0.96 0.91 0.98 0.82 0.97 

69 °C 0.73 0.96 0.89 0.97 0.67 0.96 
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Calibrated image 

Incorrect calibration 

  
Recovered calibration 

Figure 8: Additional super-resolution results 
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