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Abstract 

This study aims at developing an image quality metric for 
exposure quality, with a transform to just noticeable differences 
(JNDs) of quality in pictorial scenes. Such a perceptually calibrated 
exposure metric would allow the prediction of overall image quality 
by combining exposure with other image attributes. Eight pictorial 
images were used in the study, and twenty-one observers 
participated in the subjective evaluation using a softcopy quality 
ruler method defined in ISO 20462 Part 3. The image simulation 
path involved seven levels of exposure manipulation, together with 
two variations in tone mapping algorithms (a global tone mapping 
algorithm and a local tone mapping algorithm). For each pictorial 
scene a second image was captured with an exposure target in the 
scene, allowing the measurement of the scene exposure level. The 
results showed that an objective metric based on the green channel 
intensity of the exposure target could be used to predict the optimal 
exposure level and the quality falloff due to exposure error. 

Introduction  
During the last decade, the proliferation of consumer mobile 

devices, such as smartphones and tablets, has made digital imaging 
ubiquitous. Image quality of digital captures has also been steadily 
improving, thanks to the innovation in both camera hardware 
components and image signal processing (ISP) pipelines. Image 
quality metrics play an important role in digital imaging. They can 
be used to optimize and benchmark algorithms, ISP pipelines and 
imaging systems; dynamically monitor and adjust image quality. 
The use of objective metrics of image quality provides a more 
efficient way of optimizing imaging systems compared to the 
traditional way of conducting psychophysical studies, where human 
observers are involved in image quality evaluation tasks.  

Image quality is a multidimensional problem. There is a long 
list of image attributes that can influence the perceived image 
quality, with one of them being exposure quality. Fig.1 shows an 
example of digital captures at different exposure levels. Over-
exposure (right image) may result in loss of highlight details and 
color saturation, while under-exposure (left image) may result in the 
loss of shadow details and noisier raw image input to the ISP pipe.  

 
Figure 1. Examples of effect of exposure level on image quality. Left – under-
exposed image; Middle – properly exposed image; Right – over-exposed image. 

Exposure quality is critical to imaging systems because there is 
an inherent gap between dynamic range of real world scenes and 
that of a digital camera. Dynamic range in photography is defined 
as the ratio between the maximum and minimum measurable light 

intensities. In real-world scenarios, the luminance dynamic range 
can span up to 14 orders of magnitude between highlights and 
shadows in a scene. On the other hand, the dynamic range of CMOS 
image sensors for mobile applications typically covers only 3 to 4 
orders of magnitude, while that of DSLR cameras can go slightly 
higher (4 to 5 orders of magnitude).  

Because of the gap between dynamic range of a digital camera 
and that in real-world scenes, it is important to appropriately 
regulate the amount of light reaching electronic image sensor 
through exposure control. A good exposure control strategy would 
maximize information preservation of the scene at raw image level, 
which facilitates the ISP pipeline to create images of optimal system 
quality [1]. Exposure level can be achieved through the parameter 
combination among exposure time, lens aperture, and analog/digital 
gains.   

The primary goal of this study is to develop a perceptually 
calibrated objective metric for measuring the exposure quality of 
digital cameras. This study was conducted following the framework 
of IEEE P1858 CPIQ standards [2]. In the CPIQ framework, an 
image quality metric is perceptually calibrated and a quality loss 
function is established to link objective measurement to just 
noticeable differences (JNDs) of quality in pictorial scenes. Such a 
perceptually calibrated exposure metric would allow the prediction 
of overall image quality by combining exposure with other image 
attributes, such as visual noise and color saturation.  

In modern digital cameras exposure quality is jointly 
determined by both front-end camera exposure control and tone 
mapping operations inside the ISP pipeline. Tone mapping 
algorithms today fall into two categories: scene adaptive global tone 
mapping (GTM) algorithms and adaptive local tone mapping (LTM) 
algorithms. GTM algorithms are designed based on the global 
statistics of the image, and they apply identical tone mapping 
strategy to every pixel in the image [3-5]. GTM algorithms are 
computationally efficient, but they have limited capability in 
preserving details in highlights and shadows, and they typically 
reduce mid-tone contrast. LTM algorithms are based on the fact that 
the vision of an active viewer does not usually adapt to the scene as 
a whole, but instead more localized regions, since the eyes tend to 
wander across the scene to search for the points of interest. 
Therefore, it is the surrounding regions of each spatial focal point 
that dominate the visual adaptation state of the viewer [6-9]. A well-
designed LTM algorithm is typically capable of achieving higher 
perceptual image quality than a GTM algorithm, at the cost of 
additional complexity in implementation and reduced speed. 
Because of the importance of tone mapping algorithms in digital 
images, we will include in this study a treatment on tone mapping 
with two levels: a GTM path and a LTM path. 

Methods 
Image processing 

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Image Quality and System Performance XIII IQSP-201.1

DOI: 10.2352/ISSN.2470-1173.2016.13.IQSP-201



 

 

In this study the test stimuli were generated using real-world 
scene captures. A Canon EOS 1DX DSLR camera was used for the 
capture task. The exposure variation was introduced by using a fixed 
aperture (F/5.6), fixed ISO speed (ISO 50), and varying exposure 
time. During the capture, the camera exposure metering system was 
used to estimate a proper exposure level for the particular scene. 
After metering seven images were captured, with the exposure time 
spanning minus 3 stops to plus 3 stops around the metered result. 
Each scene capture was followed by a second capture, in which an 
X-Rite 24-patch ColorChecker test chart was captured with the same 
exposure levels as the real-world scene. A neutral patch on this test 
chart (patch #22) will be used to construct the objective measures 
for exposure. 

 

 

Figure 2. Example images of GTM (left image) and LTM (right image) for scene 
‘Field’, based on the same raw input. The enhanced image quality due to LTM 
is clearly visible in the right image. 

The raw images from the camera were processed using an 
internal image processing pipeline to generate a BMP image for 
display. This pipeline includes processing steps such as 
demosaicing, color correction, and tone mapping. Two tone 
mapping methods were used in the study, a global tone mapping 
method and a local tone mapping method. The global tone mapping 
method used a tone curve that was a combination of a sRGB gamma 
curve and an S-curve for creating an overall pleasing image contrast. 
The local tone mapping method generated images with better 
rendering in the image dark regions compared to the global tone 
mapping method. Fig. 2 shows one raw image being processed in 
GTM as well as in LTM. The image quality enhancement due to the 
LTM operation is clearly visible when comparing the two images 
side-by-side.  

To prepare the test images for the subjective evaluation task, 
the BMP images (5184x3456) were further down-sampled by 4x, 
then center cropped to ~1MP (1253 x 834). The images were 
displayed at 100% magnification on a monitor during image 
evaluation.  

Softcopy quality ruler experiment 
A softcopy quality ruler method, as depicted in ISO 20462 Part 

3, was used in the subjective evaluation task [10-14]. The softcopy 
quality ruler package was developed for the IEEE P1858 CPIQ 
standard, and it has been used in developing objective metrics for 
numerous CPIQ image quality metrics [15-17]. The use of the 
softcopy ruler method allows an objective metric for an image 
attribute to be calibrated in the quality JND space, and hence it can 
be combined with other image quality metrics in predicting the 
overall image quality via multivariate formulism [18].  

In the softcopy quality ruler study, two images were displayed 
on a monitor side-by-side, a ruler image that varied in sharpness, 
and a test image that varied in exposure. The subject was asked to 
adjust the sharpness (and hence quality) of the ruler image to match 
the quality of the test image. The result of the match was recorded 

as a calibrated value of the ruler image in display on the Standard 
Quality Scale (SQS, as defined in ISO 20462 Part 3).  

The display used in this study was a Dell UltraSharp U3014 
30-inch monitor. It has a resolution of 2560 x 1600 pixels, with a 
pixel pitch of 0.250 mm. The monitor was calibrated to sRGB color 
space, and its peak luminance was set at 225 cd/m2. The viewing 
distance was set at 864 mm, and controlled by a headrest. The room 
was dimly lit with an ambient illumination of ~5 lux. 

The treatment for each scene included seven exposure levels 
for the global tone mapping path, and seven exposure levels for the 
local tone mapping path. In addition, one null level was added to the 
test set to allow a sanity check on the observers’ responses. 

Twenty-four observers participated in the subjective evaluation 
study.  All observers had normal color vision and normal or 
corrected-to-normal visual acuity. After examining responses to the 
eight null images, data from three observers were removed from the 
analysis. Two observers had standard deviation of their null 
responses higher than 3 JNDs, and one observer had a null bias 
higher than 2.56 JND, clearly separating them from the rest of the 
group.  

Scene selection 
Eight real-world scenes were selected for the exposure metric 

study (see Fig. 3), four had people in them and seven were outdoor 
captures. The main reason for selecting these test scenes was their 
similarity in scene contents to the softcopy quality ruler images.  In 
the softcopy ruler method, the observer is asked to match the ruler 
image and the test image in overall quality. This task would be 
greatly simplified if the scene contents of the two images are 
identical or similar to each other.  

Figure 3. Test scenes used in the exposure metric study. The scene names 
are (from top left): Field, Grass_people, FarmStand2, Girl, Mountain, 
GeorgeEastmanHouse, Flowers, No_parking.  

Results 
SQS results 

There were seven levels of treatment on exposure variations 
during capture. With the exposure treatment the test images would 
span a range of under-exposure to proper exposure to over-exposure 
(see Fig. 1). The responses from the twenty-one observers were 
recorded on the Standard Quality Scale (SQS), as defined in ISO 
20462 Part 3. Fig. 4 shows the recorded observer responses for one 
scene (‘Field’, as shown in Fig. 2) for both GTM and LTM 
processing methods. Each data point represents the mean SQS value 
from all twenty-one observers.  
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Figure 4. Mean observer responses for scene ‘Field’, for both global tone 
mapping (GTM, solid line) and local tone mapping (LTM, dashed line) 
processing methods.  

The response curves have an inverse U shape, suggesting that 
perceived image quality is poor for both under-exposed and over-
exposed images, and with the highest quality in the middle. 
Furthermore, the LTM method significantly improves the perceived 
quality of the under-exposed images compared to the GTM method. 
Interestingly, LTM does little to change the quality of the already-
optimally-exposed images or the over-exposed images. A possible 
explanation can be that in over-exposed images the highlight regions 
are clipped and details permanently lost. In addition, the results also 
show that while local tone mapping increases image quality on 
average, it does not shift the optimal exposure level in relative 
position in the exposure sequence, as compared to the global tone 
mapping method. This observation would become important when 
we attempt to develop an objective metric for exposure quality that 
can work for both GTM and LTM methods. 

Objective metric of exposure quality 
In order to construct an objective metric for exposure quality, 

the SQS results were converted to JNDs of quality loss by 
subtracting SQS values from the maximum SQS values in the 
dataset. For this dataset the maximum SQS value was found to be 
31.4, indicating that image quality is excellent in the displayed 
images when the exposure level is set to the optimal position.  

The objective metric of exposure quality is based on the 
measured signals from patch #22 on the X-Rite ColorChecker test 
chart. The use of this test patch for exposure measurement has been 
a common practice in industry, with one plausible reason being that 
the nominal reflectance of this patch (~ 20%) is close to the average 
scene reflectance in the real world. Three objective measures were 
considered in this study as the objective metrics for exposure 
quality, the normalized green channel pixel level Gn, luminance Y, 
and CIELAB Lightness L*. Gn is defined as green channel pixel 
level/255. The normalized value was used here rather than the 
original pixel level because bit-depth for future digital images may 
differ from what we use today. Y and L* were calculated from the 
image signals assuming a sRGB display with D65 white point. 

A mathematical model was constructed to fit the experimental 
data, as shown in Eq (1):  

𝑄𝐿 = 𝑑 ∗ (1 − exp(−(𝑏 ∗ |𝑂𝑀 − 𝑎|)𝑐))          (1) 

Where QL stands for quality loss; OM stands for objective metric; 
a, b, c, and d are the fit parameters. Parameter ‘a’ is of particular 
importance because it defines the position for optimal exposure, 
where the quality loss is at its minimum. 

 

Figure 5. RMS errors for 3 candidate objective metrics and for both GTM and 
LTM paths. The three candidate metrics are, normalized green channel pixel 
level Gn, Luminance Y, and CIELAB lightness L*.  

 
Fig. 5 shows the root mean square (RMS) errors for all three 

candidate objective metrics and for two image processing methods 
(GTM and LTM). It can be seen that Gn produces the smallest 
RMS errors for both GTM and LTM methods, suggesting that the 
normalized green channel pixel level should be used as the 
objective metric for exposure quality. The data also shows that 
LTM has smaller RMS errors in general compared to GTM. This is 
in line with the observation illustrated in Fig. 4 that LTM serves to 
equalize image quality across varying exposure levels and across 
scenes.  

 

 
Figure 6. Quality loss as a function of normalized green channel pixel level 
Gn, for all eight test scenes. Blue circles are experimental data for GTM and 
orange triangles are experimental data for LTM, from all twenty-one 
observers. Solid black line represents the mathematical model for quality loss.  

 
Fig. 6 shows the experimental data for both GTM and LTM, using 
Gn as the objective metric of exposure. The blue circle are GTM 
data and the orange triangles are the LTM data. The solid line 
shows the model fitting results for this dataset, using the 
mathematical equation defined in Eq (1). The fit parameters are: a 
= 0.537, b = 0.416, c = 1.739, d = 250. The resulting RMS value is 
1.992. 

Conclusions and Discussions 
In this study, a psychophysical study was conducted using the 

softcopy quality ruler method to determine the aim and the quality 
loss function for exposure quality. Two tone mapping methods were 
used, a global tone mapping method and a local tone mapping 
method. It was found that a single mathematical model would fit 
both sets of experimental data well. The objective metric for 
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exposure was defined using normalized green channel pixel level 
(Gn). The optimal exposure value, as identified by model fitting, is 
Gn = 0.537. For an 8-bit digital image the corresponding sRGB 
green channel pixel level is 0.537 * 255 = 137. In addition, the 
quality loss curve defined in this study is symmetric to the optimal 
point in both the under-exposed and the over-exposed directions. 

In the public literature there have been existing methods for 
determining exposure quality. Imatest [19] uses the reference data 
from X-Rite [20] for the measurement of exposure error. In such a 
measurement a perfect white diffusive surface (R = 100%) is 
rendered to G = 255 in sRGB space, and patch #22 should have a 
green channel value of 122 for correct exposure. Some advanced 
exposure techniques would also ask for a headroom beyond perfect 
white to represent specular highlights in the scene. In such cases the 
patch #22 pixel level should be lower than 122. The results from the 
current study suggest that to achieve optimal image quality the aim 
for exposure quality should be set at 137 on patch #22, higher than 
the values specified in the existing methods.  

The exposure quality metric, as defined in the current study, 
can be used in combination with other perceptually calibrated 
metrics of image quality to predict overall quality. For example, 
under low light conditions, an imaging system would typically need 
to make tradeoffs among color saturation, exposure, noise, and 
texture details. This perceptually calibrated objective metric of 
exposure quality can be used together with the CPIQ set of metrics 
of visual noise, texture blur, and chroma level (to be released in 
2016), in measuring and benchmarking camera performance for low 
light conditions.  
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