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Abstract. Logarithmic CMOS image sensors are easily able, at
video rates, to capture scenes where the dynamic range (DR) is
high. However, tone mapping is required to output resulting images
or videos to standard low-DR displays. This article proposes a new
method, designed especially for logarithmic CMOS image sensors,
which can suffer from temporal, and residual fixed pattern, noise.
The novel tone mapping, a global operator based on histogram
adjustment, uses a model of the camera noise to ensure that
the mapping does not amplify the noise above a display threshold.
Moreover, to reduce the likelihood of flickering, a temporal adaptation
process is incorporated into the histogram calculation. Furthermore,
to reduce complexity for real-time processing, a fixed-point
implementation is designed for the proposed tone mapping. The
novel operator and its fixed-point design are validated through offline
and real-time experiments with a logarithmic CMOS image sensor.
c© 2016 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.2.020404]

INTRODUCTION
With each exposure, a logarithmic complementary metal-
oxide-semiconductor (CMOS) image sensor can capture
over six decades of luminance.1 Such an imager easily
produces videos where the scene dynamic range (DR) is
high, unlike linear CMOS and charge coupled device (CCD)
imagers, which can typically capture three decades.2

After capture, images and videos are often displayed.
The conversion of scene luminance to display intensity is
called tone mapping.3 Unfortunately, the DR of standard
displays is significantly lower than that which may occur in
real scenes. Although limited high-DR (HDR) displays do
exist, standard low-DR (LDR) displays continue to dominate
the market.4 Consequently, tone mapping continues to
be important as a software workaround to the hardware
limitations.

According to the literature,5 tone-mapping operators
(TMOs) may be divided into global and local operators,
also called spatially invariant and spatially variant operators,
respectively. Global TMOs apply to each pixel the same
mapping, a function that usually depends on all pixels. Local
TMOs apply to each pixel a differentmapping, a function that
usually depends on the pixel and its neighborhood.

Recently, Eilertsen et al.6 ‘‘presented the first systematic
survey and evaluation of TMOs for HDR-video content.’’
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Their HDR video was either computer generated or obtained
by compositing multiple exposures taken with one or more
linear image sensors. Their study also did not concern
real-time processing, which would constrain TMOs much
more than offline processing. Nevertheless, Eilertsen et al.
provide insights relevant for the real-time tone mapping of
logarithmic CMOS image sensors, the subject of this article.

Regarding ‘‘temporal artifacts,’’ such as ghosting or
flickering, that were ‘‘unacceptable’’ to human viewers,
Eilertsen et al.6 observe ‘‘that ‘simpler’ TMOs with global
processing are in general significantlymore robust compared
to local operators.’’ While Aydin et al.4 have since reported
a local TMO without such artifacts, their iterative operator,
which employs optical flow, has not been developed for
real-time processing. It is computationally very demanding.

Although recent authors have focussed on local TMOs,
they concede that ‘‘some people have strong aesthetic
preferences’’ for the ‘‘visual style’’ of global TMOs.4 Indeed, in
a pairwise comparison experiment,6 global TMOs weremost
preferred, even over a local TMO that did not suffer from
temporal artifacts. Among the three most-preferred TMOs,
all global, two were based simply on histogram adjustment.

In the literature, TMOs are also differentiated by intent.
Eilertsen et al.6 listed three classes: visual system simulators;
scene reproduction operators; and best subjective quality
operators. Notably absent were TMOs specifically intended
to suppress camera noise. Nonetheless, for logarithmic
CMOS image sensors, temporal noise and residual fixed
pattern noise (FPN), i.e., the spatial noise that remains
after FPN correction, are the limiting factors in images and
videos.2

In contrast to the literature, the real-time TMO in-
troduced in this article is intended for noisy logarithmic
CMOS image sensors. We propose a global TMO that is
similar to the well-known histogram-adjustment TMO of
Ward (Larson) et al.,3 who modified the classic histogram
equalization operator to simulate aspects of the human visual
system (HVS). We show that a similar approach may be used
to suppress camera noise instead, the impact of whichwe also
model.

To prove that the proposed TMO works satisfactorily
in real time, for a noisy logarithmic CMOS image sensor,
we employ a calibrated imaging system that we previously
designed, built, and tested.7 For real-time performance, first
we exploit the inherent efficiency of histogram-adjustment
TMOs. While a global function is employed at video rate to
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(a) (b)

Figure 1. Simple tone mapping of a bathroom image. This image from Ward (Larson),8 where dynamic range (DR) is high, has been processed to
demonstrate (a) underexposure and (b) overexposure issues, when simple tone mapping is used. Features in dark and bright parts cannot be displayed
simultaneously.

map pixel tones, it is also updated using simple histogram
calculations. Second,we incorporate the temporal adaptation
process of Krawczyk et al.5 into the histogram-adjustment
framework. This prevents the TMO from changing too
quickly, reducing the chance of flickering. Third, we produce
a fixed-point design of the TMO, which is even more suited
for real-time processing.

The Tone-Mapping Operator section introduces the
proposed TMO, including a review of histogram equaliza-
tion, the formulation of noise ceilings, and the incorporation
of temporal adaptation. In the Fixed-Point Design section,
a corresponding fixed-point design is provided. The Experi-
mental Results section evaluates the proposed TMO through
experiments.

TONE-MAPPING OPERATOR
The details of the proposed TMO are introduced in this
section. First, histogram equalization is reviewed briefly.
Next, its drawbacks in relation to camera noise are discussed,
and a solution, which involves noise ceilings, is introduced.
Finally, a first-order low-pass filter (LPF), to approximate the
temporal adaption process of the human eye, is incorporated.

Histogram Equalization
We use a LogLuv-encoded TIFF image, taken from Ward
(Larson)8 and processed ourselves, to introduce our TMO.
Scene luminance can be calculated from LogLuv-encoded
TIFF images.9 Figure 1 presents the image, a bathroom
illuminated by a lamp, after ‘‘simple’’ tone mapping. Because
our experimental results concern only a monochromatic
image sensor, we restrict our attention to luminance only.

By ‘‘simple’’ tone mapping, we mean the application of
white-point saturation, gamma correction, and scaling, as
per the sRGB specification (color aside),10 as follows:

w =

{
round(255(x/xmax)

1/2.2) x < xmax,

255 otherwise.
(1)

Here, x is the scene luminance, in cd/m2 for example, and w
is the display intensity, assumed to range from 0 to 255 LSB,
at each pixel. Simple tone mapping of an HDR scene, for an
LDR display, may prove unsatisfactory, as demonstrated in
Fig. 1 for two different white-point luminances, xmax.

Histogram equalization, a classic image processing
operation, may be viewed as a TMO.9 It maps scene
luminances to display intensities so as to achieve a uniform
distribution of the latter. Because scene luminances tend
not to have a uniform histogram, equalization shrinks
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sparsely populated luminance regions, which enables DR
compression. In densely populated luminance regions, DR
expansion may occur.

For histogram equalization, the global TMO is simply:

w = 255 PX (x), (2)

where PX is the cumulative distribution function (CDF) of
the scene luminance, treated as a random variable X , i.e.,

PX (x)= P(X ≤ x). (3)

According to probability theory, the probability density
function (PDF), pX , is related to the CDF as follows:

pX (x)= P ′X (x). (4)

With images, the PDF may be approximated as follows:

pX (x)≈
hX (x)
N1x

, (5)

where hX is a histogram of scene luminances, N is the
number of pixels, and1x is the width of histogram bins.

Figure 2 gives histograms of the bathroom image before
and after histogram equalization. The equalization process
may be divided into two steps. First, a TMO is constructed
based on the histogram of scene luminances. Second, the
TMO is applied to each pixel, yielding the display intensities.

Nominally, the input of a TMO is luminance x . However,
with a logarithmic CMOS image sensor, it may be convenient
to operate on ln x ,5 the logarithm of luminance. For a
different reason, namely to model aspects of the HVS, Ward
(Larson) et al.3 also use ln x , which they call ‘‘brightness,’’ in
their TMO, also based on histogram equalization.

Histogram equalization yields the same display in-
tensities whether presented with scene luminances or
brightnesses. Because ex is monotonic, Eq. (3) may be
rewritten as follows:

PX (x)= P(elnX
≤ eln x), (6)

= P(lnX ≤ ln x), (7)
= P lnX (ln x). (8)

Because our logarithmic imaging systems measure bright-
ness readily,11 our proposed TMO focuses on brightness.

Figure 3(a) shows the bathroom image after his-
togram equalization, and Fig. 3(b) (top part) shows the
corresponding TMO. Compared to simple tone mapping,
more detail is visible at dark, bright, and intermediate
tones. The computational complexity of global TMOs,
in general, and histogram equalization, in particular, is
low. Histogram-based methods are especially suited for
processing video in real time.

Noise Ceilings
Unfortunately, logarithmic imagers may be ten times more
noisy than linear imagers.2 For the purposes of exposition,we
simulated the noise of our previously reported logarithmic
CMOS active pixel sensor (APS) array,7 where root mean

Figure 2. Histograms before/after equalization. (a) Scene luminances
are nonuniformly distributed. (b) Display intensities are distributed more
uniformly. Some nonuniformity remains because the input data is discrete.

square (RMS) noise depends on brightness, and then mixed
the noise with the bathroom image. (The Experimental
Results section gives experimental results using the actual
image sensor, a low-resolution prototype.)

Figure 4(a) presents the noisy bathroom image after
histogram equalization. Clearly, the camera noise is visible.
Fig. 4(b) (top part) gives the corresponding TMO, which is
practically identical to the one, in Fig. 3(b) (top part), for
the clear bathroom image. Therefore, with noisy logarithmic
CMOS image sensors, a problem with the histogram
equalization TMO is evidently its ignorance of camera
noise.

Consequently, we derive a model to estimate the camera
noise in the output, i.e., the display intensity, of a global
TMO, e.g., histogram equalization. Figs. 3(b) and 4(b)
(bottom parts) demonstrate use of this model for the
clear and noisy bathroom images, respectively. With the
model in hand, we then propose how to modify histogram
equalization to suppress the camera noise, as shown in
Figure 5. Our proposed TMO turns out to resemble the
classic histogram-adjustment TMO of Ward (Larson) et al.,3
which is noteworthy because their intention was to mimic
aspects of the HVS. These are novel results, and are the
contributions to imaging science of this multi-disciplinary
(science and technology) work.
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Figure 3. Bathroom image after histogram equalization. (a) Dark to bright features are all visible with this tone mapping. (b) Although the mapping function
(top) may amplify contrast, root mean square (RMS) noise (bottom) stays below the display threshold because camera noise is zero in this simulation.

Wemodel a calibrated logarithmic imager as follows:

`j = ln xj+ εcj , (9)

where j indexes pixels, `j is the measured brightness, xj is
the scene luminance, and εcj is the camera noise, which we
assume follows a zero-meanGaussian distribution. Although
RMS noise may depend on both scene brightness, ln xj, and
pixel index, we assume dependence on the former only.
MedianRMSnoise versus scene brightness, denoted σc(ln x),
can be computed from calibration data. We use σc(ln x) to
represent the RMS noise for all pixels in the image sensor.

With no loss of generality, we model a global TMO,
where `j is the measured brightness, a continuous input, and
wj is the display intensity, a discrete output, as follows:

wj = round(T (`j)). (10)

T is a continuous function made discrete by rounding, an
operation equivalent to the addition of round-off error:

wj = T (`j)+ εdj . (11)

We treat the round-off error εdj , which we call display noise,
as a continuous and independent random variable with a
uniform distribution from −0.5 to 0.5 LSB. Thus, the RMS

display noise, which is independent of `j, is as follows:

σd =
1
√

12
. (12)

Through Eq. (9), measured brightness `j includes
camera noise. Assuming the function T in Eq. (11)
is differentiable, we use a first-order Taylor series to
approximate the impact of the camera noise εcj on the display
intensity wj as follows:

wj = T (ln xj+ εcj )+ ε
d
j , (13)

≈ T (ln xj)+ εCj + ε
d
j , (14)

where

εCj = T ′(ln xj) εcj (15)

is the camera noise after tone mapping. Its RMS value, which
depends on scene brightness ln x , is therefore:

σC(ln x)= |T ′(ln x)| σc(ln x), (16)

where absolute values are dropped for monotonically nonde-
creasing functions T (i.e., nonnegative derivatives T ′).

Thus, by virtue of discreteness, a global TMO always has
some display noise, on the order of Eq. (12). If the camera

J. Imaging Sci. Technol. 020404-4 Mar.-Apr. 2016

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.12.IMSE-263

IS&T International Symposium on Electronic Imaging 2016
Image Sensors and Imaging Systems 2016

IMSE-263.4



Li et al.: Novel real-time tone-mapping operator for noisy logarithmic CMOS image sensors

Figure 4. Histogram equalization with camera noise. (a) Although superior to simple tone mapping, camera noise is visible especially upon uniform
textures. (b) The mapping function (top) is used to compute the RMS noise (bottom), which exceeds the display threshold substantially in this simulation.

noise after tone mapping is at or below this threshold, i.e.,

σC(ln x)≤
1
√

12
, (17)

then it may be considered invisible, i.e., indistinguishable
from the display noise background. Even if the camera noise
after tone mapping is above this threshold, it may still be
invisible because of other factors,12 outside the scope of this
article, that limit the visibility of various display intensities.

For histogram equalization, using Eqs. (2) and (8),
the global TMO is proportional to the CDF of the scene
brightness:

T (ln x)= 255 P lnX (ln x). (18)

Therefore, using Eqs. (4) and (16), the RMS camera noise
after tone mapping is proportional to the corresponding
PDF:

σC(ln x)= 255 P ′lnX (ln x) σc(ln x), (19)
= 255 p lnX (ln x) σc(ln x). (20)

Using Eq. (5), the PDFmay be approximated by a histogram:

σC(ln x)≈ 255
h(ln x)
N1ln x

σc(ln x). (21)

The RMS camera noise after histogram equalization is
computed andplotted in Figs. 3 and 4 for the bathroom image
without and with camera noise, respectively. As shown,
histogram equalization can make camera noise visible.

Using Eqs. (17) and (21), we arrive at the following
constraint on histogrambins for camera noise to be invisible:

h(ln x)≤
N1ln x

255
√

12 σc(ln x)
. (22)

Except with simulated results, such as the bathroom image,
we do not know the scene brightness ln x . Thus, with real
cameras, we use the measured brightness ` instead:

h(`)≤
N1`

255
√

12 σc(`)
. (23)

In Eq. (23), we specify a ceiling for each histogram bin
to keep camera noise from exceeding a display threshold
after tone mapping. Ward (Larson) et al.3 arrived at a similar
equation. However, their constraint uses a human contrast
sensitivity function, instead of a camera noise function.With
logarithmic CMOS image sensors, camera noise may be
the limiting factor, which is why we have taken a different
approach. Nevertheless, we employ Ward (Larson) et al.’s
process to adjust the histogram, as needed, to meet the
constraint.
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Figure 5. Bathroom image after proposed tone mapping. (a) Results coarsely approximate those of histogram equalization, but camera noise stays
invisible. (b) In the mapping function (top), contrast amplification is constrained so that the RMS noise (bottom) stays relatively close to the display threshold.

When the pixel count in a histogram bin exceeds its
ceiling, truncation, i.e., resetting the count to the ceiling,
proves to be simple and reliable.3 Although truncation does
not guarantee that the constraint is met exactly, meeting it
approximately suffices in practice. The truncated histogram,
which represents a PDF, is then used to update the global
TMO, which represents a CDF, by computing a cumulative
sum. Finally, the global TMO is applied to each pixel of the
original image. A flowchart of the process is depicted in
Figure 6.

Fig. 5(a) shows the bathroom image after the proposed
tonemapping. Themapping function and RMS camera noise
are given in Fig. 5(b). Compared to Fig. 4(b), slopes of
the mapping function are changed because the histogram is
changed by truncation. In Fig. 5(b), the RMS camera noise
is much lower but still exceeds the display threshold. It is
difficult to see this low camera noise in Fig. 5(a).

In truth, the total number of pixels N in the histogram
effectively decreases after truncation. According to Eq. (23),
this changes the ceilings in turn. Iteration may be employed
until some condition is satisfied.3 For the bathroom image,
Figure 7 plots the worst-case RMS camera noise, of all pixels,
versus iteration. Performance does not improve much with
iteration. However, employing iteration will seriously affect
efficiency. Therefore, iteration is omitted in the proposed
TMO.

Figure 6. Flowchart of proposed tone mapping. The highlighted block
is added for the case with temporal adaptation. Ceilings are calculated
once beforehand. The mapping function is built from the new histogram.

Temporal Adaptation
A video is composed of a sequence of images. Therefore,
a video TMO may be constructed by applying an image
TMO to each frame. However, such an approach would be
vulnerable to temporal noise, which may be significant with
logarithmic CMOS image sensors.7 To reduce the chance of
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Figure 7. Performance versus number of iterations. Ideally, the RMS noise
should be below the display threshold but this does not happen because of
approximations. However, it proves low enough, even with zero iterations.

flickering, we modify our proposed TMO, incorporating an
LPF.

Humans do not see each image over time independently.
Our eyes take a period of time to adapt to luminance changes.
Krawczyk et al.5 modeled the temporal adaptation process of
the human eye using an exponential decay function:

xp(t)= xp(t −T )+ (xs(t)− xp(t −T ))(1− e
−T
τ ), (24)

where xs is the scene luminance, at time t , and xp is
the perceived luminance. T is a time interval, between
measurements of the perceived luminance, and τ is a time
constant.

For a digital imaging system, whose interval T between
consecutive frames is constant, the above process in discrete
time, using n to represent frame number, becomes:

xp[n] = (1−α) xs[n] +α xp[n− 1], (25)

where
α = e

−T
τ . (26)

Goodnight et al.13 used this model on the logarithm of
luminance, i.e., brightness, as a scale factor for each frame.
They found that this approach gave acceptable results.

Figure 8 depicts the above temporal adaptation process,
for a luminance step change, in two ways, i.e., with Eq. (25)
applied to luminance and brightness, respectively. Initially,
both the scene and perceived luminance are 102 cd/m2. After
the scene luminance changes abruptly to 103 cd/m2, the
perceived luminance adapts to the change. The time constant
τ , in Eq. (26), was set to 0.4 s, the worst-case literature
value.14

As shown in Fig. 8, temporal adaptation is readily
modeled by passing scene luminance or brightness through
a first-order LPF. While there are differences when the LPF
is applied to luminance or brightness, both approaches are

Figure 8. Temporal adaptation to luminance changes. In the ‘‘Perceived
1’’ case, a first-order low-pass filter (LPF) is applied to luminance. In the
‘‘Perceived 2’’ case, the LPF is applied to brightness (log luminance).
Both approaches model temporal adaptation but the latter proves more
convenient.

acceptable. With our proposed TMO, applying the LPF to
brightness is more efficient because it is what the imaging
system provides.

Instead of applying the first-order LPF to the image `j of
scene brightness, we apply it to the histogram hs(`), denoted
h(`) previously, of scene brightness, as follows:

hp(`)[n] = round(β hs(`)[n] +α hp(`)[n− 1]), (27)
β = 1−α, (28)

where hp(`) is the histogram of perceived brightness. In
general, the number of histogram bins is fewer than the
number of image pixels, which simplifies computation. Also,
because an image histogram is meant to represent integer
counts of pixels, a rounding operation is introduced in
Eq. (27). Otherwise, the LPF outputs could have fractional
parts.

Fig. 6 presents the completed process of the proposed
tonemapping, which employs both noise ceilings and an LPF.
The modified histogram hp(`) is compared to the ceilings.
A mapping function for the current frame in the video is
derived from the modified histogram after truncation.

FIXED-POINT DESIGN
The computational complexity of the proposed TMO is low
because of the inherent simplicity of histogram equalization
and (noniterative) enforcement of noise ceilings. These
benefits are shared with Ward (Larson) et al.’s3 TMO, one
reason why it served as an inspiration. However, unlikeWard
(Larson) et al., we offer a fixed-point design for our TMO,
which enables even lower computational complexity.

In the proposed TMO, histogram counting and ceiling
enforcement are intrinsically fixed point. What remains is
to design fixed-point solutions to compute the mapping
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function and to apply the temporal adaptation. This section
provides the solutions, which are validated in the Experimen-
tal Results section.

Mapping Function
Temporal adaptation aside, the proposed TMO includes
the following steps. Initially, using Eq. (23), ceilings are
computed. They are constant functions of camera and display
noise. For each image, a histogram computation counts the
number of pixels in predefined bins of brightnesses. In some
bins, the pixel count is truncated because it exceeds the
corresponding noise ceiling. This leads to a new histogram.

The above steps readily compute in real time with
fixed-point operations whenmeasured brightnesses are fixed
point, which we assume to be the case. Therefore, the only
problem left is how to build amapping function from the new
histogram. The mapping function approximates a CDF and
is built by accumulating the new histogram, as follows:

w(`)= round

(
255

∑`
k=`min

hnew(k)
Nnew

)
. (29)

Therefore, division is needed in this step. In a fixed-point
design, division should be avoided because it is difficult
to implement and/or it suffers from low precision. This
encourages us to consider an alternative formulation.

The total pixel count Nnew is determined from the new
histogram after truncation. It varies from frame to frame
because the new histogram is different each time. However,
the range of the total pixel count depends on the noise
ceilings, in Eq. (23), which are constant. Themaximum value
Nmax occurs when each bin count equals its noise ceiling.
In contrast, the minimum value is difficult to determine.
Therefore, we simply take 1 as the minimum value (it will
be less than the true minimum). Consequently, the range of
Nnew is:

1≤Nnew ≤Nmax. (30)

Revisiting Eq. (29), it may be rewritten as follows:

w(`)= round

a
∑̀

k=`min

hnew(k)

 , (31)

a=
255
Nnew

. (32)

Therefore, parameter a is a function of Nnew. As described
above, the range of Nnew is constant for a specific image
sensor. As a result, we can compute a for all possible Nnew
beforehand. Using Eqs. (30) and (32), the range of a is:

255
Nmax

≤ a≤ 255. (33)

Fixed-point numbers may be stored as integers. Param-
eter a is scaled by a factor 2sa and rounded, as follows:

A= round(2saa). (34)

Therefore, the unscaled round-off error is:

1a=
A− 2saa

2sa
, (35)

where the range is:

−
1

2sa+1 ≤1a≤
1

2sa+1 . (36)

The error range is controlled by the scaling factor, which is
chosen based on precision requirements. Once chosen, all
possible parameters A are stored in a look-up table (LUT),
addressable by Nnew, using a fixed-point format.

To build a mapping function, the A corresponding to
Nnew is read out from the LUT. Afterward, the cumulative
sum of the histogram

∑
k hnew(k) is multiplied with A, bit

shifted using sa, and rounded to get the display intensity w:

w(`)= round

2−saA
∑̀

k=`min

hnew(k)

 . (37)

Using an LUT in this manner is a good approach for the
fixed-point design of the proposed TMObecause fixed-point
division is avoidedwhile sufficient precision can be achieved.

Finally, because ` and w are both fixed point, the
mapping function in Eq. (37) is enumerated and stored in
another LUT, which is used for real-time tone mapping. The
error brought by the round operator in Eq. (37) is the display
noise εd introduced previously. Therefore, it exists with both
the floating-point and fixed-point designs, and has already
been considered.

Temporal Adaptation
In the proposed TMO, a first-order LPF is used to
approximate temporal adaptation of the human eye. This
LPF needs to be realized with fixed-point operations. The
same scalingmethod used in the previous section can be used
here.

The first-order LPF is defined by Eq. (27). The two
coefficients α and β , which are defined in Eqs. (26) and (28),
respectively, are calculated based on a time constant. Both
coefficients range from 0 to 1. First, they are scaled and
rounded:

α′ = round(2shα), (38)
β ′ = round(2shβ). (39)

Therefore, the unscaled round-off error for α is:

1α =
α′− 2shα

2sh
. (40)

And the range is:

−
1

2sh+1 ≤1α ≤
1

2sh+1 . (41)

The case for β is similar.
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Figure 9. Fixed-point design of temporal adaptation. Coefficients of the
LPF, applied to the histogram of scene brightness hs(`) at time n, are scaled
and rounded, yielding α′ and β ′. Bit shifting and further rounding are used,
in real time, to compute the histogram of perceived brightness hp (`).

To implement the LPF, a left shift of the binary point is
needed to scale the result back to the original magnitude:

hp(`)[n] = round(2−sh{β ′ hs(`)[n] +α′ hp(`)[n− 1]}).
(42)

The round operation removes the fractional part. As with
Eq. (37), the error caused by the round operation is ignored;
it exists with both the floating-point and fixed-point designs.
The design of the fixed-point LPF is summarized in Figure 9.

EXPERIMENTAL RESULTS
The proposed TMO was programmed in MATLAB and
C/C++. Experiments were done with a prototype imaging
system, employing a logarithmic CMOS image sensor.

Notwithstanding temporal adaptation, it suffices to
test the proposed TMO using still images. On the other
hand, the proposed TMO with temporal adaptation needs
to be tested using videos. MATLAB was first used to
process captured images offline. Afterward, the proposed
TMO was programmed in C and embedded in a Visual
C++ framework. The C/C++ tests focussed on real-time
performance evaluation.

The Imaging System section summarizes the imaging
system used for experiments. The Offline Experiments sec-
tion discusses the MATLAB experiments. C/C++ experiments
are discussed in the Real-Time Experiments section.

Imaging System
The logarithmic CMOS APS array used in the experiments
was fabricated in a 0.35 µm CMOS process. This image
sensor, reported previously,7 has 90 × 120 pixels with a
10 µm pitch. The schematic of a single pixel is shown in
Figure 10. The figure also shows the path a signal travels,
from pixel to column to array level, until it arrives at an
analog-to-digital converter (ADC) line, connected to an
off-chip ADC.

The photodiode current, IPD, is composed of the
dark current, Idk, and the photocurrent, Iph, which is
proportional to scene luminance. Transistors N1 and N2 are
‘‘diode-connected’’ transistors. Therefore, they can operate
either in sub-threshold or in saturation. Photocurrents of
at least 1 µA are needed for these transistors to operate in
saturation, a level that is not likely to be reached with natural
scenes.

Logarithmic sensors are nonintegrating ones. Therefore,
in general, they do not require a reset signal. Nonetheless,
a reset transistor, P1, is included in the pixel in order to

Figure 10. Logarithmic active pixel sensor (APS). Each pixel in the APS
array includes a logarithmic sensor, switches, and a source follower (SF).
When a pixel is selected, the sensor output VPD is copied to a board-level
(off-chip) analog-to-digital converter (ADC) through pixel and column-level
SFs.

shorten transient response times. Logarithmic pixels may
suffer from long transition times when the scene brightness
drops abruptly because a small photocurrent needs to charge
the photodiode capacitance, CPD. To overcome this scenario,
at the end of every frame, P1 is activated through a reset
signal, which quickly charges CPD to a voltage close to VDD.

Transistor N3 is a source follower (SF) and transistor N4
is a switch that is controlled by a row-select signal. Transistor
N5 is placed at column level and determines the current
of the SF stage. Its current is controlled by the bias voltage
Vbn. Similarly, transistor P2 is an SF and transistor P3 is
a switch activated by a column-select signal, while P4 is a
voltage-controlled current source, biased by Vbp. The drain
of P4 is the output line; it is connected to the input of an
off-chip ADC.

The imaging system includes a custom-made camera
body, a lens (Fujinon CF25HA-1), a custom-designed board
that accommodates the image sensor, and aQuickUSB board
with an Altera Cyclone II field-programmable gate array
(FPGA). The two boards are powered through two USB
ports of a PC (Intel Pentium D with a 2.80GHz CPU and
2GB of DDR2 memory), where the port connected to the
QuickUSB board is also used for data transfer. An ADC
(Texas Instruments ADS8411) is included on the same board
with the image sensor. Control signals are sent from the
FPGA to activate the image sensor and the ADC. After
conversion, the FPGA reads the data generated by the ADC
and sends it to the PC for data processing and display.

Offline Experiments
Before the experiments, the image sensor was calibrated,
meaning that Eq. (9) can be used to model captured images.
Moreover, the RMS noise of each pixel in the image sensor
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Figure 11. Images after various tone mappings. Low (top two) and high (bottom two) DR examples after (a) simple tone mapping, (b) histogram equalization
(no ceilings), and (c) the proposed tone mapping (floating point), respectively. (d) Scene histograms, computed from the original images, are also shown.

was computed. Themedian RMSnoise, a characteristic of the
image sensor, was used for the proposed tone mapping.

Images captured by the prototype imaging system were
processed in MATLAB using the proposed TMO. Because
these tests focus on offline performance for still images,
temporal adaptation is ignored. Figure 11 compares four
images captured by our logarithmic image sensor after simple
tone mapping, histogram equalization, and the proposed
tone mapping, respectively. The top two examples involve
LDR scenes while the bottom two examples involve HDR
scenes.

Compared to simple tone mapping, histogram equal-
ization provides a wider subjective DR. However, magnified
noise degrades the quality of images while the bright parts
may be overexposed. The proposed tone mapping performs
better for both LDR and HDR images. For the LDR images
(mug and apple), contrast is enhanced but not too much. For
the HDR image of a car, a headlight that was overexposed
with simple tone mapping becomes visible. In the last

example, a separator stands in the middle. At left, a bulb
shines while a ‘‘10’’ printed on cardboard is on the right.
The cardboard is underexposed with simple tone mapping.
It becomes visible with the proposed tone mapping while the
ring of the bulb can still be seen. Contrast in the dark part
is kept low because camera noise is relatively worse in dim
lighting.

Testing of the proposed fixed-point tone mapping was
also done. Four captured images are mapped, which include
two LDR images and two HDR images. The performance
is evaluated through a comparison between the fixed-point
and floating-point designs. For the proposed tone mapping
without temporal adaptation, this comparison only depends
on the wordlength of parameter A in the CDF computation.

Multiple images were mapped by the fixed-point design
adopting different wordlengths. RMS differences of images
mapped by the floating-point and fixed-point designs were
computed. These differences, versus image and wordlength,
are shown in Figure 12. As shown, RMS differences are lower
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Figure 12. Tone-mapping implementations compared. Output images for (a) floating-point and (b) fixed-point versions of the proposed tone mapping are
virtually identical, given sufficient wordlength of a key parameter (A). (c) RMS differences of images, versus wordlength, show that 16 bits suffices.

than or close to 1 LSB with a 15-bit wordlength. Considering
storage efficiency and C/C++ data types, a 16-bit wordlength
is a good choice and offers a little extra precision.

For temporal adaptation, an LPF is also employed.
Several 200-frame videos were recorded and processed
using floating and fixed-point implementations of the
proposed TMO. Examples are shown in Figure 13. Using
offline processing, implementations were compared. RMS
differences of all video pixels, versus wordlength of LPF
coefficients, are shown in Figure 14 for a video that involved
an abrupt DR change.

As shown in Fig. 14, RMS differences are lower than
1 LSB with a 7-bit wordlength. Since there are only two
coefficients in the LPF, storage efficiency is not as important

a factor here as with the 16-bit LUT adopted for parameter
A. This means wordlength in terms of an integer number
of bytes is not critical for the LPF parameters. Nevertheless,
considering readily available data types in C/C++, an 8-bit
wordlength is convenient, and is adopted for the fixed-point
LPF.

MATLAB tests helped us to determine wordlengths of the
fixed-point design for our prototype image sensor. The final
designs were programmed in C and implemented in a Visual
C++ framework to test performance in real time.

Real-time Experiments
Fig. 13 depicts selected frames of the same video processed
separately using floating-point and fixed-point implemen-
tations. The fixed-point design (C/C++) was computed
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Figure 13. Proposed tone mapping on video frames. Selected frames from processed videos exhibiting (a) motion and (b) a DR step change. While
there were 200 frames over a 4 s period, every 10th frame is shown over a 1 s period. For each example, top and bottom frames use floating-point
and fixed-point implementations, respectively, computed offline using MATLAB and in real time using C/C++, respectively. Results are virtually
indistinguishable.

Figure 14. Fixed-point LPF parameter wordlength. The RMS difference
between all pixels of a 200-frame video, processed using floating-point
and fixed-point implementations of the proposed tone mapping, is
small when the wordlength of the LPF coefficients (α′ and β ′) is sufficiently
large.

in real time, while the floating-point design (MATLAB)
was computed offline using logged data. By comparing
the corresponding frames in Fig. 13, any differences that
exist are essentially imperceptible. The result demonstrates
that the fixed-point design works in real time with good
performance.

After implementing the fixed-point design, the proto-
type imaging system was able to operate 11% faster, i.e., at
50 fps instead of 45 fps. Although the floating-point perfor-
mance of the desktop PC prevented greater improvement
in frame rate, the value of the fixed-point design cannot
be underrated. Its low computational complexity makes it
feasible for an FPGA implementation, and even on-chip
integration with the image sensor. In addition, a fixed-point
design enables real-time tone mapping with lower power
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consumption, which is especially important for portable
(battery-powered) devices.

CONCLUSION
Logarithmic CMOS image sensors capture HDR images
readily at video rates, but can suffer from significant noise.
Although HDR displays exist, and are a direct approach for
viewingHDR images and videos, they are unlikely to displace
standard LDR displays in the near future. Therefore, TMOs
are required to compress the DR of source images.

Literature TMOs mainly divide into two categories:
global and local. For global operators, each pixel in
an image is mapped through a common function. The
mapping functions for local operators can vary with the
pixel neighborhood. Although local operators can have
better visual performance, global operators tend to be
computationally more efficient, while also having good
performance. Literature TMOs, in addition, mostly focus
on still images and are not designed specifically to suppress
camera noise. Finally, although video TMOs exist, real-time
considerations are often ignored.

Although applying an image TMO to each frame results
in a video TMO, this approach is simplistic because video
is not perceived as an independent sequence of images.
To minimize the chance of flickering due to time-varying
camera noise, a TMO should adapt smoothly to luminance
changes over time. Such temporal adaptation would also
smooth a DR step change. For real-time applications,
it is important for the computational complexity of the
adaptation to be low.

This article introduced a new global TMO, especially
suited for real-time processing and noisy logarithmic CMOS
image sensors. The TMO enforces ceilings on contrast
enhancement, based on histogram equalization, using simple
models of camera and display noise. For video applications, a
first-order LPF is applied to brightness histograms, resulting
in smooth changes to the TMO over time. Although
intrinsically efficient, the proposed TMO is made even more
efficient via a fixed-point design. Finally, the proposed TMO
was validated through experiments with a prototype imaging
system.
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