
Software Environment for Holistic Vision-System-on-Chip
Programming
Peter Reichel, Jens Döge, Nico Peter, Christoph Hoppe, Andreas Reichel and Peter Schneider
Fraunhofer Institute for Integrated Circuits IIS, Germany
E-mail: peter.reichel@eas.iis.fraunhofer.de

Abstract
Image sensors with integrated signal processing – so called

“Vision Chips” – allow for execution of computationally intensive
processing steps directly after image acquisition. Programmable
systems, whose functional units may be utilized in a flexible man-
ner for various image processing tasks, require a flexible, modu-
lar toolchain. A programming environment, consisting of an as-
sembler supporting ASIP-based (Application Specific Instruction
Set Processor) control units and a Python translator supporting
a subset of the Python programming language, will be presented.
Library elements are used to further abstract the behavior of the
underlying Vision-System-on-Chip (VSoC). For a concrete task,
both VSoC-internal and conventional processing steps can be im-
plemented within the same project. When combined with estab-
lished libraries such as OpenCV, VSoC-internal processing close
to the sensor becomes a powerful tool for holistic vision task de-
sign.

Introduction
Image sensors with integrated signal processing [28, 10] – so

called “Vision Chips” – allow for execution of computationally
intensive processing steps directly after image acquisition. Ide-
ally, output data can be reduced to relevant features, thus avoid-
ing the bottleneck of data transfer between image sensor and post-
processing systems. This is of increased relevance in cases where
conventional systems reach their limits, such as very fast pro-
cesses requiring minimal latency or high image refresh rates.

Programmable Vision Chips are image processors whose
functional units can be flexibly adjusted to different applications.
They demand concrete vision tasks to be mapped on and be parti-
tioned between the image processor and additional, possibly con-
ventional, digital image processing. However, most architectures
described in the literature do not have an integrated control unit
and instead require extensive external control. Thus, both access-
ing the programmable Vision Chip’s functional units as data path
elements and the actual control flow is implemented externally.

A novel Vision-System-on-Chip (VSoC) presented by Döge
et al. [5] allows for both digital and analog computations directly
on the chip. An integrated, programmable control unit makes it
possible to directly interact with external sensors and actuators
and include them in the image processing algorithm [19]. The
partially parallel functional units are controlled by independent
ASIPs (Application Specific Instruction-set Processor). Not least
because of the platform’s heterogeneous nature and the require-
ment of having to partition concrete tasks into both the analog,
digital and post-processing domain, a suitable software compo-
nent abstraction is of particular importance to the design of image

Python environment

bytecode
translator

VSoC control and
post-processing

adjustable assembler

VSoC

ASIP 1
...PMem

ASIP N
PMem

I/O
dependencies

{ASIP 1} {ASIP N}
dep

generated.asm

(c) VSoC
domain

(b) assembler
domain

(a) Python
domain

convert()

ASIP instr. set
definitions

Open
CV

VSoC
sections

host
sections

vision_task.py

basic elements
skeletons

Figure 1. Coherent depiction of the design flow.

processing algorithms.
Fig. 1 depicts an overview of the design flow incorporating

three different domains. In the lowest domain (fig. 1 (c)) there is
the VSoC itself. Its control system is made up of multiple ASIPs
with possibly interdependent control flows. The second one, a
newly developed assembler system (b), is easily adjustable to the
specific needs of a control unit based on multiple ASIPs. The indi-
vidual control flows are described within a single assembler file in
order to account for both possible interdependencies and potential
future optimizations across several ASIPs. Last but not least, the
highest domain (a) contains a programming environment based on
the high-level language Python [18, 17]. To allow for VSoC pro-
gramming using a subset of Python, individual program segments
can be assigned to a specific ASIP. The corresponding bytecode
is transformed by a special module into the ASIP’s respective as-
sembler language. Additionally, the behavior of the underlying
VSoC is further abstracted using a set of provided library ele-
ments. This encompasses different readout modes which are laid
on configurable skeletons as well as basic image processing oper-
ations both in the analog and digital domain. Any segment of the
input program that has not been assigned to an ASIP is called a
host section and, therefore, executed regularly within the Python
environment. They can be used to setup the process of bytecode
translation, for VSoC control, parametrization and configuration
as well as for post-processing the readout data. The latter can
be accomplished in combination with arbitrary image processing
libraries such as OpenCV. Thus, the proposed programming en-
vironment allows for combining VSoC-internal operations featur-
ing image acquisition and image processing with established vi-
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sion libraries, making it a powerful tool for holistic vision task
design.

The rest of this paper is structured as follows: Firstly, the
state of the art of development platforms and programming of var-
ious Vision Chips is summarized and after that, a short overview
on the VSoC is given. Later on, the adjustable assembler system
is introduced, followed by the description of the Python-based
programming environment. After addressing the design of vision
tasks, the proposed development environment is discussed. Fi-
nally, a brief summary is given.

State of the art
In case of Vision Chips with programmable signal process-

ing, a control system which simplifies algorithm implementation
by abstracting the supplied hardware components is of prime im-
portance. The CNN Chip Prototyping System (CCPS) [22] has
been developed for controlling of various CNN-based (Cellular
Neural Network) imagers, encompassing both hardware and soft-
ware components. While the actual CNN chip interfaces are each
adjusted to the system by a special platform module, abstract op-
erations are provided by the special assembler language AMC.
Execution of AMC instructions and, as a consequence thereof,
control of the CNN chip is performed by an interpreter running
on a platform integrated DSP. Operations not supported by the
CNN chip may instead be executed by the DSP. The high-level
language ALPHA, which is translated into AMC by a separate
compiler, abstracts even further by hiding the complexity of the
CNNs. ALADDIN [27, 29], the successor to CCPS, is described
as a “High Performance Visual Computer”. It is structured sim-
ilarly to CCPS, but partially relies on standard components and
allows for integration in desktop or industrial PCs. Apart from
ALPHA/AMC, programming can also be done in C. A library
providing basic image processing functions and hiding the details
of CNN-based image processing [24, 29] may be used in both AL-
PHA and C programs. Carranza et al. [4] proposed a development
board for the CNN chip Ace16k [21] which is capable of operat-
ing autonomously. Programming of an FPGA-based control unit
is done solely using a special assembler language.

The development and simulation environment APRON [1, 2]
has been developed specifically for SCAMP Vision Chips [7].
Programming is done in a specially defined assembler language,
which is translated into the respective SCAMP control words.
An 8 bit micro-controller, which may be emulated on the devel-
opment board, is used for implementing the control flow. The
supplied Integrated Development Environment (IDE) incorporates
not only the simulator and an editor, but also the test hardware,
thereby significantly simplifying algorithm development and de-
bugging. However, APRON neither supports the use of high-level
programming languages, nor is it designed for being integrated
into post-processing systems.

Vision Chips with bit-serial processor elements (PE) have
been developed by Komuro et al. [12]. They have implemented
the vision platform VCS-IV [14], which is controlled by its
own FPGA-based processor [13] with separate integer and SIMD
pipelines. For programming purposes, the compiler VCC [16] has
been developed. It extends the C programming language by paral-
lel data types for SIMD processing and mapping onto the Vision
Chip and performs the transformation to bit-serial PE process-
ing. However, it does not support to further analyzing extracted
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Figure 2. Structural overview of the image sensor SoC, taken from [5].

features using a post-processing system. A similar compiler has
also been proposed by Zhang et al. [30] for their digital vision
system with multiple layers of parallel processors. The Vision
Chip PARIS-1 [8] acts as a micro controller’s peripheral com-
ponent and is thus directly incorporated into its address space.
Software development is performed in C/C++ with the help of
supplied macros for several basic operations.

VSoC
The programmable VSoC presented in more detail in [5]

prevents some of the disadvantages [9] of previous Vision Chip
concepts, such as low spatial resolution or lacking sensitivity. It
is based on 1024 × 1024 charge-based [6] pixel cells and inte-
grates analog as well as digital, highly parallel signal processing.
Three ASIPs serve as basis for the control unit which is directly
integrated into the chip [19]. Thus, they enable multiple paral-
lel control flows as well as necessary synchronization and data
exchange between them. Each ASIP incorporates a similar stack-
based processor with individual extensions for controlling its re-
spective functional units, as well as its own local program and
data memory and an adjustable clock generator.

The VSoC’s architecture is depicted in fig. 2. Each pixel
contains both a photo-FET as its light-sensitive element [15, 6]
and a current memory (SI) cell in order to save gray values.
Apart from pulse-based output of the residual current of photo-
FET and SI-cell onto the column wire’s capacity, ASIP 1 is ca-
pable of controlling additional operations such as RESET, EX-
POSURE or MEM line by line. By simultaneously or consecu-
tively reading out multiple cells with varying pulse widths, one-
dimensional convolution of digital coefficients with analog im-
age contents is achieved. Mixed-signal processor elements (PE),
which are thought of as SIMD processors controlled by ASIP 2,
process the corresponding charge column-parallel. Analog-digital
conversion is being done by compensational charges using current
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pulses with opposite sign. These charges are added to the column
capacities and the resulting voltage is compared to a reference
value. The ADC algorithm is thereby described in program form
and executed by ASIP 2. Each PE features its own, dedicated 8-
bit ALU (ADD, SUB, logic, shift) as well as 24 8-bit registers. In
order to ensure local autonomy, individual PEs may be turned off
depending on their internal state. The calculation results of each
PE may be accessed via a common bus, thereby reaching ASIP 3.
Aside from a 16 bit wide general-purpose IO port (GPIO) and
a configurable, SPI-based interface (EGI), it also features a par-
allel, 16 bit wide double-data-rate (DDR) data bus (PARDOUT)
for the purpose of communicating with the outside world. The
EGI-interface is used to access the various global control regis-
ters as well as each individual ASIP’s program memory from the
outside. For software and application development, a simulation
framework [20] based on VSoC’s architecture has been designed.

Assembler
Overview

The assembler system was developed specifically with the
VSoC’s ASIP-based control unit in mind. The most important
feature is its ability to concurrently support multiple control flows
of a heterogeneous multi-ASIP architecture with differing instruc-
tion sets. Thereby, the individual processors’ instruction set archi-
tecture is not fixed – instead, it can easily be modified to meet spe-
cific requirements. Furthermore, it allows for embedding Python
code into the assembler files for creating macros as well as for
assembler adjustment.

The assembler’s architecture is depicted in figure 3. First,
the parser fragments input data into individual blocks and ex-
tracts structured sequences of single operations. Those opera-
tions are mapped onto registered functions, causing the input pro-
gram to be interpreted as a sequence of processor-specific func-
tion calls. Each processor of the target platform is assigned to its
own namespace containing all its respective symbols.

At first, types encapsulating integer or string constants are
registered at the T-Pool (type-pool). The F-Pool (function-pool)
on the other hand contains callable functions with parameters cor-
responding to types registered at the T-Pool. Furthermore, each
function possesses a short identifier, making it accessible as an
operation in assembler code further down the line. Operations are
assigned the respective functions from the F-Pool by matching
the given parameters’ types. Code segments which have already
been processed are internally stored in the form of control flow
graphs (CFG) [25] within the C-Pool (CFG-pool). Both source
files and CFGs, as well as functions, types and constants may be
loaded from external libraries and can thus be included in the cur-
rent environment. Finally, apart from generating machine code
for the individual processors in different formats (bin, hex, . . . ),
the output generator also allows for directly outputting a graphical
representation of the CFGs.

Parser and general language definition
Programs are structured by blocks and sub blocks of arbi-

trary depth, with curved brackets being used for marking purposes
similar to the C programming language. Highest-level blocks,
which structure a program into sections, are attached to a names-
pace and therefore to a processor. In addition, for every such
block, a CFG is created in the C-Pool and assigned the block’s
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  add A,B
  print A
}

library
import/export

Parser

Python
evaluation

add:   f_add(reg,reg)
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namespace: "asip1"

output generator

out.bin cfg.dot

Group "reg":
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ungrouped:
  string foo="bar"

T-Pool

F-Pool
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Figure 3. Depiction of the assembler system’s architecture.

operations. In order to being able to label and reference arbitrary
blocks, labels in the format [label:namespace] are used. The
namespace is omitted in case of sub block labels, because they are
only visible in the current program section.

An example of a single assembler file containing code seg-
ments for two ASIPs is depicted in 4. In general, statements take
the form “func par1, par2, ...”. They are treated as inde-
pendent blocks, thus allowing for label assignment. The parser re-
solves function names by querying the F-Pool for functions with
the respective identifier “func”. Then, the T-Pool is used to match
the parameters to the types given in the function declaration. For
example, the statement “add A, B” is interpreted as a call to the
function “add(reg, reg)”. Thus, multiple overloaded functions
with the same name, but differing by their parameters’ types, may
exist. The found function is then finally called with its given pa-
rameters. Possible parameters can also be labels as well as Python
expressions, where the latter can e.g. be used for declaring tables
of values. The expression is thereby evaluated even before func-
tion and parameter lookup.

Assembler adjustment
In order to adapt the assembler to a given processor archi-

tecture, a corresponding namespace has to be created and types
and functions in the T- and F-Pools have to be declared. This is
achieved by directly including Python code segments within the
input file (see fig. 5). This approach allows for using one and the
same input language for utilization as well as adaptation of the
assembler.

New assembler operations are added by first declaring a
new function expecting the corresponding amount of arguments.
Then, when registering the function as an operation, both its name
in assembler code and the parameters’ expected types have to be
indicated. In general, any assembler file can contain code seg-
ments which can be used to define new operations as well as to

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.12.IMSE-275

IS&T International Symposium on Electronic Imaging 2016
Image Sensors and Imaging Systems 2016 IMSE-275.3



1  .import "asip1"
2  .import "asip2"
3
4  [main1:asip1] {
5    ...
6    add A,B
7    print A
8    sync_notify "asip2"
9    ...
10  }
11
12  [main2:asip2] {
13    ...
14    sync_wait "asip1"
15    ...
16  }
17
18  [tab1:asip1]
19  table <? math.sqrt(25) ?>

library imports

code segment
for asip1

code segment
for asip2

table for
asip1

Figure 4. Example of an assembler file containing code for two ASIPs.

1  #import library into namespace "asip1"
2  [:asip1] .import "asip_base"
3
4  [cmd_def:asip1] {
5    <?python
6      def f_add(r1, r2):
7        n=cdfg.insert_node("add")
8        n.sem.opc("1001 10%d%d" % (r1, r2))
9        ...
10
11      #register new function with 2 parameters
12      regmn("add", "reg, reg", f_add)
13    ?>
14  }

Figure 5. Example of adjusting the assembler by registering a new function

for namespace “asip1”.

create macros.
Due to the library concept, the actual architecture description

does not have to be processed during each assembler run. Besides
a significant speed-up, which is especially important for systems
with limited computing power such as micro-controllers, data is
also being compressed by conversion into intermediate code. Fur-
thermore, it provides a simple protection of intellectual property.
Objects deposited within the T-, F- and C-Pools are exported to
database files along with dependencies to other libraries and can
thus be imported as libraries within other programs. Thereby, im-
porting a library into a specific namespace is exceptional in that all
its symbols are integrated into the current namespace, no matter
what namespace they actually reside in. This allows for defining a
common instruction set which serves as the basis for the VSoC’s
individual ASIPs.

CFGs
When executing the function belonging to a specific opera-

tion, instead of directly generating machine code, the current CFG
is expanded with new nodes and interconnections. Using CFGs as
an intermediate format allows for special operations, such as re-
peating blocks, embedding other CFGs or annotating sub-graphs
with attributes, e.g. labeling loops. The attribution of CFGs is the
basis for future optimizations, particularly between control flows.
Additionally, unreachable code segments can be easily identified.

While for most operations only a single node, directly con-
nected to its predecessor, is attached to the current CFG, a link
to the destination is added in case of jump operations. Because

branch destination resolution depends on the order in which the
CFGs were created, they are only resolved once all the input data
have been processed. Referring to nodes of the same CFG is just
as possible as doing so to nodes within other graphs. Thus, be-
cause the assembler description contains code for multiple pro-
cessors, a block’s address is available within the program memory
of another processor. This may be used for purposes of inter-
processor-communication, e.g. by instructing another ASIP to
call a specific sub program.

Python integration
Overview

Using a high-level programming language for control flow
implementation marks a significant simplification for the user.
The Python programming language [18, 17] was chosen due to
platform independence and the availability of a wide range of
libraries. The resulting software environment’s most important
feature is the usage of Python for programming heterogeneous
multi-ASIP architectures. For this purpose, program sections in
the form of individual functions are each assigned to an ASIP of
the VSoC control unit. While [11] makes use of a lightweight
VM in order to run Python on a micro-controller, the target ar-
chitecture is supposed to refrain from doing so. Both the ASIPs’
common processor core [19] and the virtual machine (VM) of the
Python reference implementation CPython [18] are stack-based.
Hence, it is easily possible to transform a subset of the generated
Python bytecode into assembler code as described above. This en-
compasses function calls and loops (while) as well as conditions
(if/elif/else). All calculations and comparisons as well as
parameters and function return types are restricted to pure integer
processing.

Figure 6 depicts an architectural overview of the Python
translation. Similarly to the concept used for the assembler sys-
tem, each processor is first assigned its own namespace contain-
ing lists of all the functions and macros within. Functions hold
transformable and thus VSoC-executable code, made up of only a
subset of the Python programming language. On the other hand,
macros are not bound by any such restrictions and may rely on
arbitrary Python libraries. They can be called from functions as
well as from within other macros and are used for code genera-
tion during translation, incorporating in-line assembler sections.
A global convertor translates each registered function separately,
whereby a processor-specific convertor, which is attached to the
respective namespace, is used for the actual translation of individ-
ual bytecodes into the target machine’s instructions. The result is
a common assembler description holding for each translated func-
tion a block associated with the respective namespace.

Associating functions and macros
Associating functions and macros to a concrete namespace

is done by assigning a decorator [23] using Python’s commonly
used @-notation (see fig. 6). If the surrounding Python module
is executed, the associated decorator is called after creating the
function object with a reference to the newly created object. The
decorator @assign() creates a corresponding FunctionEntry
within the respective namespace containing, apart from the name
and number of parameters, the defining module as well as the
function’s bytecode. Accordingly, for macros, @macro() defines
a MacroEntry. Including the bytecode, however, is not necessary
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generated.asm
.import "asip1"

[main:asip1] {
 ld 6
 call [func:asip1]
}
...

input.py FunctionEntry

MacroEntry

FunctionEntry

processor
specific convertor

Functions

namespace: "asip1"

Macros

Python environment
from cores import asip1

@asip1.assign()
def func(cnt):
  while cnt > 0:
    out(cnt)
    cnt -= 1

@asip1.macro()
def macro(a): 
  x = int(math.sqrt(a))
  iasm("ld %d" % x)
  return x

@asip1.assign()
def main():
  func(macro(42))

convert([main])

name   = "func"
parcnt = 1
mod    = input
code   = Bytecode(func)
...

name   = "macro"
parcnt = 1
mod    = input
...

name   = "main"
parcnt = 0
mod    = input
code   = Bytecode(main)
...

global convertor
convert()

Figure 6. Depiction of the Python translator’s architecture.

in this case. Methods, i.e. functions that are bound to a Python
class object, can be associated as functions or macros to the indi-
vidual ASIPs, as well. Naturally, they can only be registered after
an object of the respective class has been created. Functions and
macros within modules and/or classes can be assigned to any pro-
cessor. Program code that has neither been assigned by @assign
nor @macro, on the other hand, defines so called host sections
and is executed regularly. Host sections are necessary to control
the translation process, to parametrize and configure the VSoC as
well as for further processing data received from the VSoC.

Translation process
Calling the function convert(entry_list) within regular

program code initiates the actual translation process by sequen-
tially converting all existing namespaces. The functions registered
in each namespace are thereby considered individually. For each
processor, one function used as entry point for program execution
is passed to convert().

A function’s stack layout, i.e. the position of arguments and
variables, can be assumed as being invariant before and after ex-
ecution of arbitrary Python statements. During statement execu-
tion, variables, constants and/or symbols are being pushed onto
the stack and may be arbitrarily modified. Afterwards, the origi-
nal stack layout is inherently restored. However, a special macro
iasm() allows for inserting in-line assembler expressions at arbi-
trary locations inside a function. Within such an in-line assembler
section, elements can be pushed onto the stack. They can remain
there even beyond the end of the statement for use in a subsequent
assembler section. However, because of its possibly non-linear
nature due to branches and loops, an analysis of all possible paths
within the function’s control flow is mandatory. Therefore, a func-
tion’s given bytecode is structured into linear segments, with each
segment being closed by a control statement such as a (condi-
tional) jump operation or a return statement. Additionally, two
representations of the current function’s operand stack are held
in order to perform the transformation: on the one hand, the rep-
resentation on the target architecture tstack, on the other hand,
the internal representation istack. Both are initialized with the
parameters passed to the function and the utilized variables be-
fore the actual conversion can take place. Stack representations
are updated both for transformed bytecodes and operations within
in-line assembler sections. Once conversion reaches the end of
the current linear segment, snapshots of the current tstack and

istack are taken and attached to the addresses of all following
linear segments. The translation process follows all possible con-
trol flow paths and, upon entering a linear segment, restores the
already known snapshot of both stacks. If a follow-up linear seg-
ment is reached via multiple paths, the stack snapshots have to
match wrt. their depth and deposited types. While this assertion
is always met in case of regular Python expressions, it may be vi-
olated by stack modifications within an in-line assembler section.

Individual bytecodes are translated using the processor-
specific convertor associated with the current namespace. Inte-
ger constants and variables are always loaded and processed, e.g.
with calculations, on both stack representations in parallel. Be-
cause concrete variable values and intermediate results are only
known at run-time, however, the stacks only hold the respective
type. Based on that, in order to load and save local variables, or to
delete the current function’s stack-frame on RETURN, it is neces-
sary to calculate the current offset to the concrete position relative
to the stack pointer. Loaded symbols, i.e. references to mod-
ules, objects, functions or macros, are stored solely on the istack
and can be resolved using the module or object stored within the
FunctionEntry or MacroEntry. In case of a CALL_FUNCTION
Python bytecode, the type stored on the istack is used to distin-
guish macro from actual function calls. In case of a function, the
code necessary to pass the parameters and to execute the function,
is generated. Macros on the other hand are thereby directly called
by the convertor during translation.

Vision task design
Library concept

VSoC programming is abstracted by a library supplying pre-
defined basic elements for essential tasks in the form of func-
tions or macros. This involves e.g. algorithms for controlling
analog-digital-conversion (ADC, e.g. single-slope or successive
approximation with parametrizable precision), various pixel ma-
trix readout modes (e.g. global shutter or global reset), selected
digital post-processing within the SIMD array (e.g. finding inter-
est points) or varying output data formats. The individual routines
are generally implemented directly in assembler and optimized
for maximal throughput and minimal latency respectively.

Apart from basic elements, parametrizable skeletons are pro-
vided as foundation for concrete image acquisition and processing
operations. A skeleton thereby determines the global communica-
tion and synchronization scheme of the VSoC’s individual ASIPs,
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Figure 7. Depiction of a skeleton’s synchronization for image acquisition.

both among each other and with their environment, thus acting as
a macro-based code generator. Each skeleton is represented by
a sub class of BaseSkeleton and allows for the registration of
functions to be executed at certain points of the synchronization
scheme. In the following, these points are called slots. Besides
the methods for slot registration, the skeleton’s interface to the
host sections of the Python program may also provide methods
for parametrization wrt. code generation or for communication
with the VSoC at run-time. These methods may then set options
defined by the skeleton (e.g. filter coefficients, region of interest)
as well as readout and further process image and/or feature data.

In fig. 7 the simplified sequence of image acquisition using
global reset readout is depicted. For each ASIP, BaseSkeleton
defines a dedicated main function as a method executing a code
generation macro based on the skeleton object’s state and the
functions registered at the slots – which are drawn in light blue in
fig. 7. Currently, besides different readout modes such as global
or rolling shutter, some application-specific skeletons are defined.
In order to use a skeleton, the respective object is created and the
functions are registered at the individual slots. While register-
ing a function is mandatory for some slots (e.g. “ADC” in fig.
7), others do not require that (e.g. “PROC” (SIMD-based digital
post-processing)). Apart from the basic elements provided by the
library itself, own functions can be defined and hence integrated
into the task. Substituting individual processing steps is therefore
possible at any time.

Holistic design

The proposed environment enables programming a concrete
vision task consisting of VSoC-based image acquisition and pre-
processing, possibly initial feature extraction as well as corre-
sponding post-processing, all within a common program. In fig.
8, such an example program is given. Communication with the
VSoC is realized using the respective library (fig. 8 (a)). At first,
a suitable skeleton is chosen (c) and basic elements supplied by
the library or own functions (b) are registered at the slots. This
is followed by converting, assembling as well as programming of
the VSoC (d). Using the methods defined by the skeleton object, it
is possible to communicate with the VSoC e.g. by setting options
(e) or reading out data. For further processing (f) of the readout
data, any desired library, such as OpenCV [3], can be used.

(a)

(b)

(c)

(d)

(e)

(f)

1 #instance of the vsoc connection
2 vsoc = VSoC(...)
3
4 #own processing function
5 @simd.assign()
6 def my_proc():
7   ...
8
9 #skeleton instance
10 skel = skeletons.SimpleImgRead(vsoc)
11 skel.reg_slot("ADC", adc.single_slope)
12 skel.reg_slot("PROC", my_proc)
13 ...
14
15 #conversion and programing
16 vsoc.program(convert_and_asm(...))
17
18 #set region-of-interest
19 skel.set("roi", (0,0),(1024,1024))
20
21 #image acquisition and processing
22 import cv2 as cv
23 import numpy as np
24 krnl = np.ones((5,5),np.uint8)
25
26 while True:
27   img=skel.acquire_img()
28   erosion = cv.erode(img,krnl)
29   cv.imshow("Image", erosion)
30   ...

Figure 8. Example of a vision task with OpenCV-based post-processing.

Discussion of development status
Programming the VSoC in a high-level language signifi-

cantly alleviates the burden of vision task implementation, es-
pecially when compared to APRON [1, 2] for the Vision Chip
SCAMP-3 [7], which only allows for pure assembler descrip-
tions. In contrast to developing a separate one as in [22], con-
sistent use of Python – an established and widespread high-level
programming language – makes the proposed system easily ex-
tensible. At first, a skeleton outlining the process of image ac-
quisition and processing, is chosen. At specific points, both basic
elements extracted from the library and separate functions may be
integrated into the process. The use of established libraries such
as OpenCV for post-processing readout data allows for complex
tasks to be holistically viewed as well as both quickly and eas-
ily implemented. This concept has been successfully applied to a
texture-based 2d presence detection system for LED light control
[26].

However, the individual Python bytecodes are translated
one-to-one with only a few optimizations regarding its length
or achievable performance. At the moment, the only ones
performed during transformation are Constant-Propagation,
Constant-Folding and, if possible, Variable-Elimination. Never-
theless, important and especially time-critical functions – just like
the basic elements of the described library – can be implemented
in assembler.

The actual translation into assembler is still restricted to fun-
damental constructs (functions, loops and conditions as well as
calculations with integer variables). Special ASIP instructions can
only be executed using in-line assembler or the respective macros.
Similar to the compilers described in [16] and [30], automatically
creating code for the VSoC’s SIMD array is a future possibility.
This could be achieved using a special data type which is treated
separately by the convertor if used within expressions.

ASIP interdependencies can be accounted for due to a sin-
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gle input file holding the complete description. CFGs, which are
thereby created by the assembler as an intermediate format, are
right now only visualized and subsequently transferred into their
respective machine code representation. Because of the clock ra-
tios of the individual ASIPs, the time it takes to execute specific
code segments as well as the position of synchronization points
are known, generated code may be relocated by taking data flow
into account, thereby optimizing execution time.

Conclusion
A programming environment allowing for the design of

vision tasks using VSoC-based image acquisition and pre-
processing combined with established libraries has been pro-
posed. Describing the program flow within the VSoC, parametriz-
ing and configuring it as well as post-processing readout data is
being done using the Python programming language. Individual
program segments are assigned to the control unit’s ASIPs and
transformed into the respective assembler language. A library
provides basic functionalities such as analog-digital-conversion.
A parametrizable skeleton which is extensible by library elements
or separate processing functions at defined locations, outlines the
process of image acquisition and actual processing. A flexible as-
sembler system allows for considering multiple, interdependent
ASIP control flows simultaneously.

Due to a library concept as well as embedding complex code
segments in the Python programming language, the proposed sys-
tem can be easily adjusted for use with specific processors.
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