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Abstract
Aiming at designing a CMOS image sensor that combines

high fill factor and focal-plane implementation of instrumental
image processing steps, we propose a simple modification in a
standard pixel architecture in order to allow for charge redistri-
bution among neighboring pixels. As a result, averaging opera-
tions may be performed at the focal plane, and image smoothing
based on Gaussian filtering may thus be implemented. By av-
eraging neighboring pixel values, it is also possible to generate
intermediate data structures that are required for the computa-
tion of Haar-like features. To show that the proposed hardware
is suitable for computer vision applications, we present a system-
level comparison in which the scale-invariant feature transform
(SIFT) algorithm is executed twice: first, on data obtained with
a classical Gaussian filtering approach, and then on data gen-
erated from the proposed approach. Preliminary schematic and
extracted layout pixel simulations are also presented.

Introduction
Per-pixel pre-processing on spatial image sensor samples

discards redundant data, thus decreasing the demands posed on
the readout circuitry and enhancing SWaP (size, weight, and
power) factors of camera systems based on these smart sensors.
Image sensor architectures with embedded per-pixel processing
have been proposed for a large variety of tasks [1], and their indus-
trial exploitation is ramping up [2]. However, all these architec-
tures share common drawbacks, namely increased pixel pitches,
reduced fill factors, and lack of compatibility with advanced CIS
technologies. All-in-all these drawbacks result in image quality
degradation.

Based on our previous results on image sensors with per-
pixel calculation of Gaussian filters, this paper presents a six-
transistor image pixel that is aimed at overcoming previous draw-
backs, while performing Gaussian filtering and allowing the sub-
sequent calculation of image key-points from the filter outputs
[3]. As compared to previous sensors with embedded per-pixel
Gaussian filtering [4][5], this 6T pixel, which occupies 6.28 ×
6.28 µm2 in a 110 nm CIS technology, yields 78% pitch reduction
and 253% fill factor enlargement. With a two-transistor-per-pixel
overhead with respect to conventional 4T pixels, the proposed im-
age sensor architecture implements the following functions:

• image capture, which is performed in the same way as in the
4T conventional architecture;

• neighbor pixel value averaging, realized by charge redistri-
bution;

• image smoothing, by combining pixel values inside 2 × 2
pixel blocks and reconfiguring the array so that a Gaussian

filter approximation is performed on an image having one
quarter the resolution of the original image [6];

• scale-space [7] generation, by repeatedly applying the Gaus-
sian filter.

The proposed architecture performs simple parallel opera-
tions for the entire pixel matrix while images are captured. The
processing capability of the proposed hardware can be used to
optimize, in terms of processing time and power consumption,
early vision tasks of image processing algorithms. The scale in-
variant feature transform (SIFT) [7], used for object recognition,
and the Viola-Jones [8] object detector are examples of two algo-
rithms that benefit from the presented pixel; in the first case with
the scale-space generation and in the second by helping Haar-like
feature computation. This paper addresses the SIFT algorithm
and contextualizes the hardware-based solution in the algorithm
processing flow.

The pixel architecture is explained in the next section. Then,
we show how it is possible to generate the scale-space for the
SIFT with the proposed hardware. By the end of the paper, sys-
tem level simulations are shown, as well as schematic and layout
Spectre simulations.

Proposed Pixel Architecture
In the classical 4T architecture a pinned photodiode is con-

nected to a floating diffusion through a transfer gate transistor.
When the transfer gate is activated, all the charge stored by the
photodiode, which is proportional to the incident light, is sent to
the floating diffusion node where it is read and sent to the output
by a source follower. We propose a minor change in this archi-
tecture, as shown in Figure 1 (top). Two transistors, acting as
switches, are added to the 4T architecture in order to connect the
floating diffusion nodes of neighboring pixels and to create a re-
configurable array in which every pixel is connected to four of
its neighbors. The sensor matrix interconnection pattern can be
seen in Figure 1 (bottom). As the switches are closed, pixel aver-
ages are computed within every neighborhood in the array. As a
first application of the proposed hardware, when all switches are
closed an average operation is computed from the entire image,
allowing an instant measure of the global luminance of the ma-
trix, which can be used to adjust the dynamic range of the image
with algorithms such as the tone mapping.

The proposed scheme permits to compute the average of pix-
els grouped in squares or rectangles with the size defined by the
user. This simple operation allows the acceleration of Haar-like
features computation, in which the mean value of neighboring
rectangles within the image are compared with the goal of detect-
ing a region where there is a high probability of finding a desired
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Figure 1. Proposed 6T pixel schematic (top) and pixel matrix interconnec-
tion (bottom).

object [8].
Filtering is achieved through charge-redistribution diffusive

processes with a constant diffusion length, as explained in [6].
The pixels interconnections allow the implementation of the con-
volution between the 2 × 2 binominal kernel, shown in Equation
(1), and the subsampled captured image. The central limit the-
orem shows that the binomial kernel can be considered a good
approximation of the Gaussian filter with an equivalent standard
deviation [6]. In the case of the kernel from Equation (1), it is a
good approximation of the Gaussian filter with 0.5 standard devia-
tion. The following section explains in detail the filtering process.

H= 1
4

[
1 1
1 1

]
(1)

An important aspect to consider is the floating diffusion ca-
pacitance. The charge redistribution is performed using the par-
asitic node capacitance, which is expected to be small (in the or-
der of magnitude of femtofarads). Increasing the floating diffu-
sion capacitance leads to smaller conversion gain of the pixel and
larger read noise, which is undesirable [9]. On the other hand, a
small capacitance will be more vulnerable to charge injection and
clock feedthrough errors when the charge redistribution is per-
formed. Also, the leakage currents will have more influence if the
capacitance is small. This tradeoff must be considered during the
pixel design.

Focal-plane Filtering
The first step to perform the desired operation is to reduce the

image resolution by computing the average values of pixels in 2×
2 groups. In order to do that, odd column and row switches, as the
ones presented in Figure 1, are closed (ENC(2n−1) and ENR(2m−1)
are set to high logical values, with n and m integers, (2n− 1)
varying from 1 to (N−1) and (2m− 1) varying from 1 to (M−1)
for an M × N array). Once the averaging operation is performed,
only one pixel needs to be sampled from each block, hence the
output image has half the number of rows and half the number of
columns of the original matrix.

Following this action, all switches are opened and a change
of grid is set: the even column and row switches are closed
(ENC2n and ENR2n, shown in Figure 1, are set to high logical
values, with n and m integers, (2n) varying from 2 to (N−2) and
(2m) varying from 2 to (M−2) for an M × N array). Another
averaging operation is thus performed. By sampling the pixels in
the same positions as the previous sample, the resulting image is
equivalent to the output of the convolution between the binomial
kernel of Equation (1) and the down-scaled image generated by
the previous step discarding the first column and row. The result
is a good approximation of the convolution between the Gaussian
filter with standard deviation equal to 0.5 and the down-scaled
image.

To generate the scale-space data structure, the image must
be repeatedly filtered. The scale space can thus be interpreted as a
pile of blurred images with an associated standard deviation each,
relative to the amount of blur in the image. An additional filter-
ing step is performed each time the configuration pattern grid is
changed, always alternating the even/odd column-and-row switch
patterns. The scale space must have constant distance between
the images, where the distance (k) is defined as the ratio between
the current image standard deviation (σcurrent ) and the previous
image standard deviation at the present scale (σprev) [7]. In other
words, k= σ current/σprev must be constant. The current standard
deviation can be computed as:

σ2
current = σ2

prev+σ2
f ilter (2)

In the case of the proposed focal-plane implementation we
have a fixed kernel, shown in Equation (1), with standard devia-
tion equal to 0.5, as explained in the beginning of the section. If
we sample every image after applying the kernel once between
one image and the next, the σ f ilter in this case is always equal to
0.5. Consequently, the values in the standard deviation sequence,
calculated with Equation (2), would be σ1 = 0.500, σ2 = 0.707, σ3
= 0.866, σ4 = 1, and so on, considering that the first σprev is zero,
for the sake of simplicity, since the presented reasoning can be ap-
plied for any initial σprev. Thus, from the definition, the resulting
distances in these three cases (0.707/0.500 = 1.414, 0.866/0.707 =
1.225, 1/0.866 = 1.155) are different. Nevertheless, a sequence of
images with constant distance in the scale space can be obtained if
we sample only the images with distance equal to 1.414 between
themselves: by the definition of distance, σcurrent = kσprev, and
plugging this into Equation (2), we find k depending on σprev and
σ f ilter;

k2σ2
prev = σ2

prev+σ2
f ilter, (3)

k=
√

σ2
f ilter/σ2

prev+1. (4)
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If σ f ilter =σprev, we have k=
√
2= 1.414. For the sequence

of standard deviations shown above, we already have this distance
for the first and second image, since σ1 = 0.500 and σ2 = 0.707.
The necessary σ f ilter to pass from 1 to 2 is equal to σ1 = 0.5,
resulting in k= 1.414 . The next image from the sequence has
to be generated after filtering the second image with a kernel
with 0.707 standard deviation. That can be done by applying our
fixed kernel twice, which leads to an equivalent σ f ilter equal to
σ f ilter =

√
0.52+0.52 = 0.707. The fourth image, with σ4 = 1,

is thus sampled. Consequently, the next filtering must have an
equivalent σ f ilter equal to 1, which is obtained by applying the
kernel four times: σ f ilter =

√
0.52+0.52+0.52+0.52 = 1. The

eighth image, with σ8 = 1.414, is sampled. By continuing this
reasoning we conclude that the images that must be sampled are
the ones from the geometrical sequence 1, 2, 4, 8, 16, and so on.
With these images, the equivalent σ f ilter necessary to pass from
one image to the next one in the sequence is equal to σprev. The
sequence of standard deviations for these five selected images, for
example, would be 0.500, 0.707, 1, 1.414 and 2, always yielding
k= 1.414. The calculation of key-points is performed by com-
puting the differences pixelwise between two successive sampled
images (difference of Gaussians) and looking for extreme points
across the available scales. In the presented results, the first image
from the scale space is the original subsampled image.

Pixel Design and Layout
The pixel was designed using a 110 nm CIS technology. This

technology, targeted for image sensors applications, although
more costly than standard technologies, has the advantage of al-
lowing color filter and lenses implementation, features higher sen-
sitivity, low leakage current and the possibility of implementing
pinned photodiodes, characteristics that improve the image qual-
ity.

Pinned photodiodes, in particular, have been widely used in
the digital camera market due to their low noise, high quantum ef-
ficiency and low dark current [9]. The pinned photodiode is being
used with the goal of improving the image quality and leverag-
ing the technology full potential. The simulations presented in
the next sections aim at representing the pixel behavior after the
charge transfer between the pinned photodiode and the floating
diffusion.

The main aspects considered during design were the floating
diffusion capacitance and the minimum desired fill factor. The
three switches in the pixel (the select switch and the two new
switches) have minimum size allowed by the technology: width
equal to 180 nm and length equal to 340 nm. Consequently, they
have small capacitance, thereby reducing the charge injection.
The reset transistor has 1 µm width and 340 nm length so that
the voltage drop across the transistor is low when the reset is set
on. The transfer gate transistor also has 1 µm width in order to
reduce the bottleneck effect during the charge transfer, and length
equal to 450 nm, which is the minimum length defined by the
technology for transfer gate transistors. The source follower is
the largest transistor, featuring 4 µm width and 340 nm length.
These values have the goal of increasing the floating diffusion ca-
pacitance, since this transistor is the one with highest influence in
this capacitance.

The pixel layout is shown in Figure 2. The technology allows

the use of four metal layers. The pixel has a 3 µm× 3 µm sensing
area, and a 6.28 µm × 6.28 µm full area, resulting in a fill-factor
of 22.8%. The reset source voltage was included in the layout
in a separate line aiming at assuring flexibility in a future experi-
mental test. Since we found no available information on models
for the pinned photodiode, it is also in our interest to investigate
its behavior. A technique for measuring pinned photodiode and
transfer gate parameters that involves reducing the reset voltage
during the integration period is presented in [10]. This type of
measure may help the design of future chips and the better un-
derstanding of this chip. For the electrical simulations the reset
voltage was connected to the source voltage VDD equal to 3.3 V.

Figure 2. Proposed pixel layout

In order to evaluate the additional hardware influence on
the output signal, Silvaco process and simulation softwares
(ATHENA and ATLAS frameworks) are being considered for
studying the photodiode physical properties [11]. It might also
help improving the pixel design.

Image Processing Algorithms
Gaussian filtering is extensively used in image processing al-

gorithms. It has the property of smoothing the image, which can
be used to reduce noise. Another application of this operation is to
generate the scale space of an image, created through successive
Gaussian filtering steps [7]. The scale space guarantees the scal-
ability of object recognition algorithms, so that a desired object
can be recognized across different scales.

SIFT (scale invariant feature transform algorithm) has been
widely used and explored lately for object recognition. The scale
space is used to find stable key-points from a given image through
different scales. These key-points are considered to be unique
and may be used to describe the image, assuring the algorithms
reliability and scale invariance. This algorithm presents very good
results in the object recognition field, but it also requires a huge
amount of computational load [12].
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For object detection, the Viola-Jones algorithm is a very
good alternative because it has a simple flow and a high accuracy
rate. The Viola-Jones is a fast algorithm, but it is still interesting
to reduce its processing time and power for embedded systems.
For applications in which only the object region is desired, time
and bandwidth savings can be achieved by encoding only the part
of the image where the object was found. Focal plane processing
can help by reducing the amount of hardware outside the pixel
matrix, and consequently reducing the power consumption neces-
sary to identify a object.

The proposed architecture may help both algorithms by sav-
ing time and power processing. In the following sections, both the
SIFT and the Viola-Jones steps are explained in more details.

Scale Invariant Feature Transform
This algorithm [7] uses image descriptors to recognize ob-

jects and compare scenes. It may be used for object recognition,
tracking, panoramic assembling and 3D modeling, among others.
It searches the image for characteristic points, represents them
using vectors and compares these vectors with vectors from other
image in order to find correspondences.

The first step of the SIFT is the scale space generation: Gaus-
sian kernels with different standard deviations, carefully chosen
with the goal of generating a linear scale space (constant distance
between images), are used to filter the image. After filtering the
image a certain number of times (depending on the standard de-
viation of the filter) the image must be subsampled and the filter-
ing process is repeated [7]. Each time the image is subsampled
a new octave is formed. Thus, the scale space is divided by oc-
taves, which are a set of images with same resolution and increas-
ing smoothing. The following step is the Difference of Gaussian
(DoG) computation, which is a good approximation of the Lapla-
cian of Gaussian (LoG). It produces stable points of interest. For
each point of interest an orientation is calculated according to its
gradient. The points of interest are then described by histograms
of angles calculated using the main orientation as a reference.

Although the scale space generated by the chip is different
from the one proposed by Lowe [7] in terms of kernel size, image
distance across scales and initial standard deviation, the bench-
mark results and the proposed hardware results are comparable, as
it will be shown in the Results section. System-level simulations
are being performed in C based on the OpenCV SIFT implemen-
tation. The algorithm scale space computation under investigation
is fully compatible with the proposed hardware.

Viola-Jones Object Detection Algorithm
The Viola-Jones algorithm was first introduced with the goal

of being a simple and efficient algorithm for face detection. Fur-
thermore, it also presents high efficiency when trained for other
objects, such as car and pedestrian [8]. Lately, it has been largely
used worldwide. A cascade of increasingly complex classifiers
that use Haar-like features is employed to find regions with a high
probability of detecting the desired object. Each classifier has a
low false negative rate but also a high false positive rate, which
means that when a classifier discards a window it has high prob-
ability of not having the object, but when it accepts one it does
not mean that it is necessarily the targeted object. When the clas-
sifiers are put together in a cascade the overall false positive rate
decreases, resulting in a high accuracy rate for the cascade [8].

A window that slides through the image is used to perform
the analysis by searching for the targeted objects with the size of
the window. For the sake of scale invariance, after each search
through the entire image the window and feature sizes increases,
so that objects can be found at different scales. That means that
the same algorithm is performed repeatedly until the search is held
at all the desired scales.

Luminance sensitivity is controlled by normalizing the pixels
inside the search window. The features are calculated and com-
pared to a threshold that considers this normalization. In the cas-
cade of classifiers, if the features from the first classifier satisfy
the requirement, new features, from the subsequent classifier are
computed and compared to another threshold. The first classi-
fier needs very little processing and is responsible for eliminating
a large number of windows not containing the targeted object.
The last, and more complex classifier, is only computed for a few
windows, the ones that have higher probability of containing the
object. In order to make the computation of the features faster,
the integral image concept is introduced. In an integral image,
each pixel is defined as the sum of the pixels from above and to
the left of its position and, from the integral image, the sum of
each rectangle from the Haar-like features can be computed with
a maximum of four operations.

Although the Viola-Jones algorithm is very simple and the
computation of the integral image helps to speed it up, it still de-
mands significant computational resources, specially for embed-
ded circuits applications. The pixel architecture proposed, which
is able to compute mean values, may help by computing the mean
of rectangles from the first features in an analog way, resulting in
a reduction on the amount of windows going through the entire al-
gorithm [13]. To generate a classifier cascade that takes hardware
limitations into account, further study on Viola-Jones training is
required.

Results
The proposed hardware is able to generate a scale space with

parameters that are different from the one initially proposed for
the SIFT algorithm. This section shows, by means of repeata-
bility comparisons, that the scale space generated by the chip is
suitable for SIFT applications. System level simulation results are
presented.

Spectre simulations from Cadence are also presented for
both the schematic and extracted layout. These simulations aim
at identifying the error magnitude after the charge redistribution,
by describing how the voltage in the floating diffusion changes
during the operation.

System Level Simulations
Repeatability is an important parameter that is used to eval-

uate the key-points stability. It compares the key-points that are
found in two images describing the same scene, but transformed
in basic aspects such as blur, viewpoint and rotation, among oth-
ers. Most of the key-points must be found in both images. By
comparing the repeatability of the key-points found in the scale
space generated by the proposed method with the repeatability of
the key-points found in the scale space proposed by Lowe, we are
able to evaluate the proposed method quantitatively.

Given two images I1 and I2 representing the same planar
same scene, the key-points (x1) found in I1 can be related to
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the key-points (x2) found in I2 by the homography matrix H1to2,
where x2=H1to2x1. Depending on the image change, some points
might be occluded and not appear in both images. These points
cannot be considered in the repeatability measure [14]. The key-
points that are present in both images can be defined as:

x̃1 = {x1|H1to2x1 ∈ I2}; x̃2 = {x2|H2to1x2 ∈ I1}. (5)

To compute repeatability, it is also considered that there is
an uncertainty regarding where the key-point can be found after
applying the homorgaphy. A neighborhood ǫ is thus defined and
the set of matching key-points (x̃1, x̃2) is composed by points sep-
arated by a distance not larger than ǫ after being multiplied by the
corresponding homography:

R2(ǫ) = {(x̃1, x̃2)|dist(H1to2x̃1, x̃2)< ǫ}. (6)

Considering the above described aspects, the repeatability
rate (r(ǫ)) for image I2 is defined in [14] as:

r(ǫ) =
|R2(ǫ)|

min(|{x̃1}|, |{x̃2}|)
, (7)

which is the ratio between the number of corresponding key-
points found considering a neighborhood (ǫ) and the minimum
number of key-points that can be found.

OpenCV provides a set of SIFT functions [15][16] that are
reliable for generating the key-points as Lowe proposed and for
performing the comparison by computing the repeatability. The
database has eight different images with five transformations each
(H1to2 until H1to6), including blur, viewpoint, zoom, rotation, il-
lumination change and JPEG compression [17][18]. Pairs of im-
ages with their respective homography matrix and key-points are
used in the repeatability computation.

Lowe’s scale space has initial standard deviation equal to 1.6,
three scales per octave and the number of octaves computed ac-
cording to the images resolution. The following steps are the com-
putation of the difference of Gaussians and key-points search. All
these steps were performed with OpenCV functions. Although an
image upscale is also proposed in [7], it was not implemented in
order to guarantee a fair comparison between Lowe’s and the chip
scale space. A method for performing the resolution increase after
the generation of the scale space pyramid is proposed in [19].

The chip scale space method described in the ‘Focal-plane
Filtering’ section was implemented in C. The resulting images
with constant scale distance equal to 1.414 were used for the dif-
ference of Gaussians. The search for key-points was also per-
formed by an OpenCV function. Repeatability results are pre-
sented in the table ‘System Level Simulation Results’. The re-
peatability associated with the scale space computation as origi-
nally proposed by Lowe (but without increasing image resolution)
is shown in column ‘Original Method’, and the repeatability asso-
ciated with our method is shown in column ‘Proposed Method’.
The table also presents results when a random noise is added in
the chip method, which will be analyzed in the next section.

The transformation matrix is different for each image: im-
ages ‘bikes’ and ‘trees’ have blur transformations; ‘graf’ and
‘wall’ have viewpoint transformations; ‘bark’ and ‘boat’ have
zoom and rotation transformations; ‘leuven’ has illumination
change; and ‘ucb’ has JPEG compression. As can be seen in the

table, in most cases the repeatability values of Lowe’s method and
the (proposed) chip method are very similar. The chip presents a
low repeatability, though, when zoom transformations are applied
(images ‘bark’ and ‘boat’) because only three octaves where im-
plemented for the chip method. Further study on the number of
scales is important because current leakage may limit the number
of charge redistributions. The results nevertheless show that the
method proposed is a valid alternative for the scale space genera-
tion, since the average repeatability considering all images is only
3% lower than Lowe’s.

OpenCV SIFT implementation uses two thresholds to filter
weak features, namely contrast threshold and edge threshold. The
first one filters key-points found in low-contrast regions and the
second filters edge-like key-points. These are undesirable key-
points characteristics because features generated under these con-
ditions may be unstable and, as a consequence, it becomes diffi-
cult to find correspondence when a transformation is applied to
the image [20]. These thresholds where not optimized for the
hardware scale space method, so it is expected that the results can
be improved by tuning these values to the desired scale space.

Schematic and Layout Simulations
In order to understand the error in the averaging operation

that is due to the charge redistribution process, simulations were
performed for one row and for one column of four pixels each.
The charge redistribution, in both cases, is performed between
two neighboring pixels. The pixels from the borders were added
to guarantee that the floating diffusions have the same number of
transistors connected and, consequently, have the same equivalent
capacitance.

For these simulations an ideal charge transfer between the
photodiode and the floating diffusion was considered. Figure 3
shows the model used for the pinned photodiode and transfer gate.
The idea is to transfer all the charge stored in the capacitor to the
floating diffusion when the transfer gate switch is closed. A buffer
is used to assure that the capacitor will have the same voltage at
both terminals when the switches close, and that all the current
generated when that happens will go to the floating diffusion.

TX

TX

FD

1
C

q(t=0)

Figure 3. Pinned photodiode and transfer gate ideal model used for simu-
lations.

The control signals necessary to perform the simulations are
presented in dotted lines in Figures 4 and 5. For both the line
and column simulations we show the RST, whish is responsible
for setting the floating diffusion voltage, and the TX, which trans-
fers the photodiode accumulated charge to the floating diffusion,
thus reducing its voltage. The next signal is the charge redistri-
bution enable. When two pixels are in the same column (Figures
4 and 5 top) two rows are connected together, so the ENR signal
is activated. When the pixels belong to the same row (Figures 4
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System Level Simulations Results
Image Repeatability
Bark Original

Method
Proposed
Method

Proposed Method
with Noise

H1to2 58.55% 61.01% 57.14%
H1to3 62.02% 27.30% 26.49%
H1to4 63.93% 23.01% 30.43%
H1to5 54.29% 1.27% 0.00%
H1to6 56.25% 10.42% 9.23%
Bikes Original Proposed With Noise
H1to2 63.10% 64.84% 61.76%
H1to3 60.48% 64.23% 60.00%
H1to4 53.06% 61.21% 58.39%
H1to5 47.06% 59.85% 58.45%
H1to6 35.81% 54.01% 56.23%
Boat Original Proposed With Noise
H1to2 55.88% 59.79% 62.20%
H1to3 60.80% 4.01% 4.40%
H1to4 54.48% 24.20% 39.07%
H1to5 50.00% 39.64% 53.74%
H1to6 19.44% 2.77% 14.14%
Graf Original Proposed With Noise
H1to2 56.20% 50.65% 60.25%
H1to3 47.46% 18.16% 23.77%
H1to4 20.14% 5.86% 11.21%
H1to5 0.00% 0.00% 0.00%
H1to6 0.00% 0.00% 0.00%
Leuven Original Proposed With Noise
H1to2 62.60% 65.14% 67.47%
H1to3 56.05% 65.74% 65.00%
H1to4 57.07% 65.91% 69.28%
H1to5 58.06% 65.95% 68.16%
H1to6 47.83% 62.06% 65.77%
Trees Original Proposed With Noise
H1to2 42.32% 54.40% 57.62%
H1to3 39.16% 55.11% 56.33%
H1to4 42.68% 52.25% 56.18%
H1to5 47.30% 52.48% 60.19%
H1to6 42.46% 53.29% 59.90%
UBC Original Proposed With Noise
H1to2 78.81% 78.55% 65.96%
H1to3 63.36% 69.84% 64.13%
H1to4 59.10% 61.16% 60.63%
H1to5 45.21% 52.73% 57.05%
H1to6 38.36% 47.67% 49.27%
Wall Original Proposed With Noise
H1to2 47.78% 60.22% 60.68%
H1to3 39.39% 59.03% 57.78%
H1to4 35.14% 42.00% 42.92%
H1to5 22.14% 33.13% 31.52%
H1to6 4.76% 16.88% 14.58%
Average 46.23% 43.64% 45.43%

and 5 bottom) two columns are connected together, so the ENC
signal is activated. After the charge redistribution is performed,

the floating diffusion voltage has to be sampled, which is done
by activating the row select signal, SEL. In the case of the pixels
connected in the same column, two select signals are necessary to
read each floating diffusion. For the pixels connected in the same
row, only one select is necessary.

The floating diffusion voltages are represented with the solid
and dashed lines. Since we consider an ideal switch for the trans-
fer gate, there is no error introduced when TX is turned on or off.
When the EN signal is activated the floating diffusion voltages
converge to the same value, ideally equal to 1.5 V. The maxi-
mum voltage error when the row select signal is activated in the
schematic simulation is of 2%. In the layout simulation, since par-
asitic elements that where not considered before are being added,
the error increases to 5%. As an example, branch resistances
and node capacitances depend on metal parameters that where
not considered before. Capacitances between metal lines, also
not considered in the schematic, can generate clock feedthrough,
which will influence the charge sharing result whenever a switch
opens or closes.
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Figure 4. Schematic simulation results for two pixels from the same column
(top) and from the same row (bottom). The floating diffusion voltages are
shown in solid and dashed lines, and the control signals are shown in dotted
lines.

Uniform random error was also included in system level sim-
ulations with the goal of understanding the impact that the error
introduced by the hardware causes on key-point search. This error
was added for every iteration of the algorithm after each average
computation. After charge redistribution, when the switch EN
opens and the operation is complete, the pixels used for the oper-
ation should, ideally, have the same value. From Figure 5 (top),
it can be observed that there is an undesirable difference between
the two pixels from different rows the switch ENR opens. In order
to take that difference into account in simulations at the system
level, two error ranges where considered for a same 2 × 2 pixel
block after the average has been computed: from 0 to 2% for two
pixels in the same row inside the block and from 2% to 8% for the
other two pixels. The simulations consider an error that is higher
than it was observed in the simulations as a pessimistic approxi-
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Figure 5. Extracted layout simulation results for two pixels from the same
column (top) and from the same row (bottom). The floating diffusion voltages
are shown in solid and dashed lines, and the control signals are shown in
dotted lines.

mation to our problem.

As can be seen in the ‘System Level Simulation Results’ ta-
ble, in the column ‘Proposed Method with Noise’ the repeatabil-
ity is similar to the repeatability without noise. In some cases, the
noise benefits the repeatability, bringing to evidence singularities
that where not considered before, which results in a little increase
in the average repeatability. On the other hand, it also increases
the number of key-points found. By changing the threshold volt-
age, it is possible to control this increase.

Conclusion
A six-transistor pixel architecture was presented and con-

textualized for the generation of a scale-space data structure for
the SIFT algorithm. With this architecture it is possible to per-
form charge redistribution among neighboring pixels, which al-
lows the computation of an instrumental image processing task,
namely the Gaussian filtering, without significantly affecting the
pixel fill-factor. The new architecture helps saving computational
and power resources demanded by the Gaussian filtering oper-
ation. Studies are being made with the goal of quantifying the
savings provided by the proposed method.
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“FLIP-Q: AQCIF Resolution Focal-Plane Array for Low-Power Im-
age Processing”, IEEE J. of Solid-State Circuits, vol. 46, No. 3, pp.
669-680, 2011.

[5] R. Carmona-Galán, J. Fernández-Berni and Á. Rodrı́guez-Vázquez,
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