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Abstract
Multi- and Hyperspectral Imaging (HSI) are characterized

by the discrepancy between the dimensionality of hyperspectral
image and video data and the dimensionality of the spectral de-
tectors. This issue has been addressed by various schemes, in-
cluding the Snapshot Mosaic Multispectral Imaging architecture,
where each pixel (or group of pixels) is associated with a sin-
gle spectral band. An unavoidable side effect of this design is
the hard trade-off between spatial and spectral resolution. In this
work, we propose a formal approach for overcoming this trade-
off by formulating the problem of full resolution recovery as a
low rank Matrix Completion problem. Furthermore, we extend
the traditional formulation of Matrix Completion by introducing
non-negativity constraints during the recovery process, thus sig-
nificantly enhancing the reconstruction quality. Experimental re-
sults suggest that the Non-Negative Matrix Completion (NN-MC)
framework is capable of estimating a high spatial and spectral
resolution hypercube from a single exposure, surpassing state-of-
the-art schemes like the nearest-neighbors as well as the uncon-
strained Matrix Completion techniques.

Introduction
A fundamental issue that hyperspectral imaging sensors have

to address is how to efficiently collect the three dimensional HSI
data, two spatial and one spectral, using a single detector, an 1D
array, or 2D plane detectors. The discrepancy between the re-
quested and the available dimensionality of detectors has sparked
different philosophies in hyperspectral image acquisition designs,
leading to spatial and frame scanning architectures [1]. A short-
coming shared by these approaches concerns the scanning re-
quirements for constructing the complete 3D hyperspectral dat-
acube. In the case of spatial scanning, multiple lines/pixels have
to be scanned, while for frame scanning systems, multiple frames
have to be acquired in order to obtain the complete spectral profile
of the scene [2].

These limitations are responsible for a number of issues that
hinder HSI performance, including slow acquisition time and mo-
tion artifacts. Furthermore, the need for miniaturization of the
imaging systems implies that novel designs should strive to be
free of mechanical parts, such as moving mirrors, since they limit
the temporal resolution and increase system complexity. Recent
approaches address these limitations by employing novel hard-
ware and sophisticated signal processing techniques to achieve
improved performance and imaging capabilities. Snapshot (or Si-
multaneous) Spectral Imaging (SSI) systems acquire the complete
spatio-spectral cube from a single or a few captured frames, i.e.,

during a single or a few integration periods, without the need for
successive frame acquisition [3]. While earlier approaches relied
on additional hardware, such as coherent fiber bundles and mirror
slicers to satisfy the requirements for SSI, more recent paradigms
employ novel light manipulation components and state-of-the-art
signal processing to achieve this task.

One such prominent case is the family of Snapshot Mosaic
Multispectral Imaging architectures, also known as hyper/multi-
spectral Color Filter Arrays. This paradigm relies on the use of
Spectrally Resolved Detector Arrays (SRDA) where each pixel
is associated with a specific spectral region, thus allowing the
acquisition of a full hyperspectral cube from a single expo-
sure [4, 5]. Unfortunately, to achieve high temporal resolu-
tion imaging, SRDA architectures must sacrifice spatial resolu-
tion since only a small subset of pixels acquire images from a
specific spectral band. In practice, pixel binning is performed
where groups of spectral-specific pixels are grouped together in
full spectral resolution super-pixels. The process is depicted in
Figure 1.

Figure 1: SRDA architecture (left), a snapshot mosaic raw frame
(center), a full spectral resolution ”super-pixel” as part of the re-
construction hypercube(right). Notice that the process of produc-
ing the ”super-pixels” leads to dramatically smaller spatial reso-
lution.

Objectives and state-of-the-art
The objective of this work is to provide a formal method for

addressing the challenging spatio-spectral trade-off that charac-
terizes the Snapshot Mosaic Multispectral Imaging architecture
relying on SRDA detectors. More specifically, SRDA detectors
perform spatial subsampling of each spectral band by produc-
ing a two-dimensional array of “super-pixels” where each such
“super-pixel” corresponds to a binned group of physical pixels,
containing measurements from multiple spectral bands. As a con-
sequence, the effective spatial resolution for each spectral band
is given by the total number of pixels divided by the number of
binned pixels in each super-pixel, as seen in Figure 1.

According to our approach, to address this issue we exploit
the inherent redundancies that exist in high dimensional hyper-
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spectral data in order to accurately estimate the missing spectral
bands from binned groups of pixels. Formally, the end goal is to
generate a full spatial resolution hypercube M ∈ Rm×n×b

+ from
a single exposure image M ∈ Rm×n

+ , thus allowing imaging of
highly dynamic scenes or imaging taking place in moving plat-
forms such as UAVs and satellites. The objective is visually de-
picted in Figure 2 where a raw snapshot, the corresponding lifted
hypercube and the completed hypercube are illustrated.

Figure 2: Illustration of the recovery process. A raw snapshot
(left) corresponds to a undersampled lifted hypercube (center)
which must be completed to obtain the complete spectral profile
of the scene (right).

During the last decade, the concept of signal compressibil-
ity and sparsity has raised a lot of attention in the mathematics
and signal processing communities which have treated novel con-
cepts, including Compressed Sensing (CS) and Matrix Comple-
tion (MC), as part of a disruptive new framework which has rev-
olutionized the way we efficiently sense, compress, and process
visual information, e.g., [6, 7, 8, 9]. In a nutshell, according to
the CS framework, a signal can be perfectly recovered from a
severely under-sampled set of measurements provided the signal
is sparse in some basis, and the basis on which the signal is sam-
pled is incoherent with the basis on which the signal is sparse [10].
A prominent example of a CS-based imaging architecture is the
Single Pixel Camera, employing a Digital Micromirror Device to
acquire scene information using a single detector element [11].

A Hyperspectral Single Pixel Camera (SRC) corresponds to
an extension of the typical SPC where the single detector element
is replaced by a spectrometer [12]. The Compressive HS Imaging
by Separable Spatial and Spectral operators (CHISSS) is an alter-
native spatial scanning architecture which employs a DMD placed
in front of a grating which itself is modulated by a Coded Aper-
ture before acquiring a two-dimensional measurement [13]. Sim-
ilarly, the Coded Aperture Snapshot Spectral Imaging (CASSI) is
a snapshot spectral imaging architecture which employs a DMD
for spatially modulating the incoming light before it is dispersed
by a grating and imaged by a 2D detector array [14].

More recently, a novel SSI architecture termed Spatial-
Spectral Encoded Compressive HS Imager (SSCSI) was proposed
combining a spectral dispenser with a random shearing mask, ex-
tending the single wavelength computational light field acquisi-
tion architecture [15]. The CS framework has also been consid-
ered for the compression of multi and hyperspectral imaging with-
out resorting to any modification in hardware, thus maintaining
the limitations of current hyperspectral imagers [16]. Recently,
the authors in [17] formulated a recovery method for SRDA HSI
architectures based on a generalized inpainting approach, while a
spatio-spectral Compressed Sensing based acquisition and recov-
ery approach was proposed for HSI data acquisition [18].

Low Rank Matrix Completion
Our approach is based on the recently proposed framework

of Matrix Completion (MC) [19, 20] which has emerged as a dis-

ciplined way of addressing the recovery of high-dimensional data
from what appears to be incomplete, and perhaps even corrupted
information. Low rank MC has been utilized in a variety of image
acquisition and processing tasks including the acquisition of High
Dynamic Range Imaging [21] and video denoising [22], among
others. More specifically, given a m× n measurement matrix M,
recovering the (mn) entries of the matrix from a smaller number
of k << mn entries is not possible, in general. However, it was
recently shown that the recovery of the complete set of entries
in a matrix is possible, provided that both the number of missing
entries and the rank of the matrix are appropriately bounded.

Formally, let A be a linear map from Rm×n → Rk, that se-
lects a subset of the entries in matrix M. The linear map A , is
defined as a random sampling operator that records a small num-
ber of entries from matrix M, that is A (mi j) = {1 if (i j) ∈ S |
0 otherwise}, where S is the sampling set. According to the low
rank MC paradigm, we can estimate X from the undersampled
matrix M, by solving:

minimize
X

rank(X)

subject to A (X) = A (M) . (1)

Unfortunately, rank minimization is an NP-hard problem and
therefore cannot be applied in practice. Recently, a relaxation of
the above problem was shown to produce accurate approxima-
tions, by replacing the rank constraint with the more computa-
tionally tractable nuclear norm, which represents the convex en-
velope of the rank. The relationship is manifested by the Singular
Value Decomposition (SVD) of the m× n measurements matrix,
into a product of an orthonormal matrix U, a diagonal matrix S
and another orthonormal matrix V, such that M = USVT .

According to the spectral theorem associated with the SVD,
the number of singular values, i.e. the diagonal entries of S, re-
veals the rank of the matrix. Low rank matrices, such as the ones
produced by spatio-temporally correlated processes, are therefore
characterized by a small number of singular values. Furthermore,
the rank of a measurement matrix might be artificially increased,
due to noise that typically follows an independent distribution.
Hence, considering a lower-rank approximation of the matrix re-
sults in an implicit denoising of the sampled data. One can exploit
such prior knowledge to restrict the number of singular values to
a small set that accounts for most of the signal’s energy by in-
troducing a thresholding operator T which when applied to the
SVD produces the best rank-k estimation: Mk = UT (S)VT .

Based on the SVD analysis of a matrix, the minimization in
Eq. (1) can be reformulated as:

minimize
X

‖X‖∗

subject to A (X) = A (M), (2)

where the nuclear norm is defined as ‖M‖∗ = ∑ |σi|, i.e. the sum
of absolute values of the singular values. Recovery of the matrix
is possible, provided that the matrix M satisfies an incoherence
property. The solution of (2) will converge to the solution of (1)
with high probability once k ≥ Cq6/5rlog(q) random matrix en-
tries are obtained, where q = max(m,n).

For the noisy case, an approximate version can be solved
[23], by replacing the equality constraint with an inequality con-
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straint given by ‖A (X)−A (M)‖2
F ≤ ε , where ‖X‖2

F = ∑λ 2
i de-

notes the Frobenius norm and ε is the approximation error. The
optimization is therefore formulated as:

minimize
X

‖X‖∗

subject to ‖A (X)−A (M)‖ ≤ ε. (3)

To solve the nuclear norm minimization problem of Eq. (3), vari-
ous approaches have been proposed. In this work, we employ the
Augmented Lagrange Multipliers (ALM) [24, 25] approach, due
to its performance with respect to both computationally complex-
ity and recovery capabilities.

We further extent the ALM approach to MC by considering
the situation where the measurements are non-negative, a case that
is very common among signal recovery scenarios including the
recovery of hyperspectral cubes from SRDA data. To achieve this,
the formulation in Eq. (3) is enhanced with an additional non-
negativity constraint, leading to the NN-MC formulation:

minimize
X

‖X‖∗

subject to ‖A (X)−A (M)‖ ≤ ε

X≥ 0. (4)

To solve this minimization problem, we employ the augmented
Lagrangian form:

L (X,Y1,µ) = ‖X‖∗+ tr(YT
1 (A (X)−A (M)))

+
µ

2
(‖A (X−M)‖2

F) (5)

This Lagrangian form encodes all the constraints into a single un-
constrained equation which we can solve iteratively by minimiz-
ing L with respect to one variable at each step. The resulting
algorithmic steps are described in Algorithm 1.

Ensemble Recovery of SRDA data
In order to apply the NN-MC recovery, pixel responses must

be reformulated into appropriate matrices. We consider the patch
selection operator S (x,y,s) which collects measurements corre-
sponding to a window of size s centered at location (x,y) from the
acquired frame. Concatenating these measurements into a vector
mx,y, we repeat this process for a range of p spatial locations x,y
generating the undersampled spectral matrix M ∈Rs×b

+ , where b
is the total number of spectral bands which is completed accord-
ing to Eq. (4).

In addition to the non-negativity constraint introduced in this
work, we also investigate the benefits of an ensemble recovery
paradigm. We assume that a particular spatial pixel at location
(x,y) may belong in up to r different matrices M∗i , i ∈ [1,r]. To
obtain the final spectral estimation of each pixel, we consider av-
eraging the different estimations such that M̂(x,y)= 1

r ∑M∗i (x,y).
The process is shown in Figure 3 where one can observe that mul-
tiple completed spatial locations are considered during the final-
ization of the estimation.

Experimental Results
To validate the merits of the proposed approach, we ex-

plored the enhancement of images acquired using a Ximea cam-
era, equipped with the IMEC Snapshot Mosaic sensor capturing

Algorithm 1: Non-Negative MC via the ALM method.

Input: The subsampled matrix X0 = A (M), the penalty
update parameter α , the error tolerance threshold and/or
maximum number of iterations limit.
Output: The estimated matrix X̂.

1: initialization e0 = 0 , k = 0,
2: while error ≥ threshold or k ≤ limit do
3: Minimize with respect to L

(U,S,V) = SVD(X0 +Y1/µ)

L(k+1) = max(0,(UT (S)VT))

4: Minimize with respect to X
X(k+1) = M+ ˜A (Lk+1− I−Y1/µ)

5: Update Lagrangian multipliers

Y(k+1)
1 = Y(k)

1 +µ
(k)(M(k+1)−L(k+1))

6: Update penalty term

µ
(k+1)←− αµ

(k)

7: Estimate error

e(k+1) = ‖A (M0−Mk+1)‖2

set k←− k+1
8: end while

Figure 3: Ensemble SRDA recovery process. Patches are ex-
tracted from different locations of the raw mosaic frame before
being concatenated into undersampled matrices. The proposed
method produces fully populated matrices where the spectral con-
tent of each pixel in encoded into multiple locations. The different
spectral estimations are averaged in order to estimate the full hy-
percube.

images in the 600− 875 nm range, according to a 5× 5 spec-
tral pattern structure. We consider three recovery algorithms,
namely, the k-nearest neighbor imputation (KNN) method, the
vanila ALM based MC approach, and the proposed Non-Negative
Matrix Completion (NN-MC) scheme. The error is measured per
band by the Peak Signal to Noise Ratio (PSNR) metric, in dB.
Figure 4 presents the raw input mosaic and the resulting spectral
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bands where a subset of pixels in the raw input associated with a
specific band is selected.

Figure 4: Raw input image (top), the 1st (608 nm), 8th (790 nm)
and 16th (644 nm) spectral bands (bottom). The images scaled to
demonstrate the different spatial resolutions.

Based on our problem formulation, the two key parameters
that control the recovery performance are the window size s, and
the number of spatial locations p that are considered during the
generation of the undersampled matrix M. The window size pa-
rameter directly controls the ”super-pixel” grouping and ranges
from 0, where a single pixel is considered, to the extreme case
of 5 where a 5× 5 region is considered providing the full spec-
tral content. The parameter of the number of spatial locations is
directly related to the size of the undersampled matrix that is pro-
cessed and it can affect the recovery performance, as it will be
seen later.

Effect of super-pixel grouping
A natural way of solving the problem of SRDA spatial res-

olution enhancement via MC is to consider the unfolding of the
hypercube into groups of spatial “super-pixels” encoded in ma-
trix forms. The question we seek to answer is whether a sequen-
tial selection of the super-pixels is preferred over a random se-
lection. On the one hand, a sequential selection suggests that the
rows of the matrices that will be completed will be composed of
spatially neighboring locations thus offering the potential of ex-
ploiting inherent spatial correlations. On the other hand, such a
sampling scheme violates the requirements for incoherent sam-
pling imposed by the theoretically justification of MC recovery.
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Figure 5: Recovery using sequential mapping and 1× 1 “super-
pixels”.

We first consider the effects of the window size, and thus the
“super-pixel” construction, on the recovery performance. Figure
5 presents the case of no grouping (s = 0) while Figure 6 presents
the s = 3 case where 9 spectral measurements are available for
each “super-pixel”. In this subsection, we assume that 25 spatial
locations are considered leading to 25×25 undersampled spectral
matrices, where the undersampling rate is controlled by s.
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Figure 6: Recovery using sequential mapping and 3× 3 “super-
pixels”.

Considering the results, two key observations can be made.
First, increasing the “super-pixel” size has a positive impact on the
recovery performance of all methods. This behaviour is expected
since in the second case more measurements are assumed to be
available, which facilitates the recovery process. The second ob-
servation is that this has a considerably more positive impact on
the MC based architectures, both typical MC and the proposed
NN-MC. Based on these results, we selected a 3× 3 window for
the following experiments.
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Figure 7: Recovery using random mapping and 3× 3 “super-
pixels”.

In addition to the effects of the “super-pixel” size, we also
investigated if selecting sequential versus random regions dur-
ing the construction of the spectral matrix also affects the recov-
ery performance. Figure 7 presents the recovery performance for
each band that is achieved through a random selection of patches
for the generation of the spectral matrix. These results suggest
that this zero computational cost step of randomization can have
a dramatically positive impact on the behavior of the MC-based
recovery methods.

Spectral matrix generation
In this subsection, we explore the effects of super-pixel

grouping which is introduced in order to transform the hypercube
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data into matrices. One dimension of these matrices is fixed and
is equal to the requested number of spectral bands b, 25 in our
case. The other dimension however is controlled by the number
of spatial “super-pixels” that will be considered during the gen-
eration of the spectral matrices. In general, the grouping number
is lower bounded by 25 which leads to 25×25 spectral matrices,
while we consider up to 400×25 spectral matrices.

Grouping size
0 50 100 150 200 250 300 350 400

PS
N

R
 (d

B
)

14

16

18

20

22

24

26

28

30

MC
NN-MC
KNN-Impute

Figure 8: Average recovery performance as a function of grouping
size, i.e. dimensions of spectral matrices.

Figure 8 presents the mean recovery performance with re-
spect to the group size, while Figure 9 provides information re-
garding the processing time required for different group sizes.
The results suggest that increasing the group size does not have
any noticeable effect as far as the KNN approach is concerned.
On the other hand, the MC-based methods seem particularly af-
fected by this value. More specifically, the results suggest that
increasing the grouping size to 50, i.e. a spatial to spectral ratio
of 2 : 1, introduces more correlated data, leading to a lower recon-
struction error. The performance of NN-MC remains relatively
stable above 50, however, the typical MC approach experiences
a reduction in performance at higher grouping sizes. Consider-
ing the processing requirements encoded in the processing time
shown in Figure 9, one can observe that increasing the grouping
size leads to lower processing times, since for a particular sen-
sor spatial resolution, a smaller number of undersampled spectral
matrices have to be processed.
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Figure 9: Processing time for full hypercube recovery as a func-
tion of grouping size.

Effect of ensemble recovery
In the previous subsection of experimental results, we ob-

served that generating 50× 25 spectral matrices with 9 spectral
measurements per location, due to the 3×3 “super-pixel” group-

ings, leads to the best performance especially when the locations
that are considered during the generation of the spectral matri-
ces are selected randomly instead of sequentially. This subsection
goes a step further by exploring the experimental evidence asso-
ciated to the benefits of randomized ensemble recovery.

We explore various degrees of randomized re-sampling rates,
starting from 0, which encodes the case where no-resampling and
a sequential ordering is consider during the spectral matrix gen-
eration, to 20 where the same pixel is evaluated over 20 different
spectral matrices and the final value corresponds to the average.
Figure 10 presents the performance for 25-dimensional spectral
matrices, while Figure 11 presents the 50-dimensional spectral
matrix recovery case.

Observing these results, one can easily notice that there is
no gain in terms of performance for the KNN-impute method, as
expected. On the contrary, there is a significant performance gain
when the typical MC and the proposed NN-MC are considered.
More specifically, we observe that increasing the randomization
rate offers a dramatic gain in improvement, especially when going
from 0, i.e. no randomization, to moderate randomization rates.
Furthermore, the results also indicate that the introduction of the
non-negativity constrain can play a dramatic role in the recovery,
especially when large resampling rates are considered.
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Figure 10: Average recovery performance as a function of resam-
pling rate for 25-dimensional spectral matrices.
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Figure 11: Average recovery performance as a function of resam-
pling rate for 50-dimensional spectral matrices.

Figure 12 provides a visual illustration of the reconstruc-
tion using the KNN-imputation method and the proposed Non-
Negative MC. The results clearly demostrate the superiority of
the proposed approach in high quality recovery.
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200Figure 12: Reconstruction of 8th (790 nm) band using the KNN-
inpute (top) and the proposed Non-Negative MC (bottom).

Conclusions
The novelty of this work is twofold. On the one hand, we

provide a mathematically sound approach for the estimation of
missing spectral measurements, thus enhancing the high tempo-
ral resolution imaging capabilities that characterize SRDA-based
Snapshot Mosaic Multispectral Imaging architectures. As a con-
sequence, high quality imaging of dynamic phenomena can be
achieved from extremely low volume and weight hyperspectral
imagers. On the other hand, this work proposes a novel approach
in low rank matrix estimation through the development of the
Non-Negative Matrix Completion and ensemble recovery frame-
works. Experimental results suggest that NN-MC can indeed be
utilized for the estimation of full hypercubes, while ensemble re-
covery can have a dramatic impact in performance.
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