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Abstract
We propose a deep regression-based neural network to ana-

lyze gait of individuals in low resolution video for real-time de-
tection of abnormal activity/threats in surveillance applications.
In todays commercial setting, extracting such gait patterns re-
quire motion capture devices such as Kinect or VICON, and is
restricted to indoor and controlled scenarios such as in gaming
applications or clinical studies. The network is trained by incor-
porating an inverse kinematic Groebner-based model to estimate
the body joint angles from the pose. These angle trajectories of
the upper and lower extremities of the body serve as gait signa-
tures for identifying threat patterns. The first few layers model the
relationship between motion and image features of the individual
using a deep belief network. The next few layers model the re-
lationship between the latent features generated from deep belief
nets and the inverse kinematic model using a regression-based
deep network. This network characterizes the relationship be-
tween the low-level image/motion features and the kinematics as-
sociated with the movement of an individual. The estimated joint
angle trajectories are then classified as threats (person wearing a
loaded vest) and non-threats (person without any load on body)
using a K-Nearest Neighbor classifier. Experimental results on
the INSPIRE dataset released by Air force institute of technology
and its analysis show the effectiveness of deep learning concepts
for gait analysis.

Introduction
Gait biometrics have attained wide recognition in research

as suitable ways of evaluating motion of individuals for person
identification [29]. Furthermore, gait is the one of the key bio-
metrics capable of executing such assessments at a long distance,
especially in behavioral analysis for homeland security applica-
tions [17]. To contribute to national security efforts in identifying
threats, this research work is aimed at analyzing gait patterns for
low resolution video surveillance. This work is focused on the
computation and evaluation of specific body joint angles as signa-
tures for real-time detection of abnormal gait patterns. Our work
is based on a previous research study on the influences of load
such as an improvised explosive device on the gait of the individ-
ual to determine threats [26].

The aim of this project is to analyze the gait of individu-
als in low resolution video surveillance footage by evaluating the
change of his/her pose as a result of added load on the body. A
sample of the video scene and the set of body joints to be tracked
is illustrated in Figure 1. Our earlier work proposed an inverse
kinematic model using Groebner basis theory to analyze an in-
dividual arm/leg swing movements [16, 15]. This work was ex-
tended for developing mathematical models to extract gait signa-

Figure 1: Illustration of specific joints to be tracked and evaluated
for gait analysis

tures from motion capture data for analyzing the effect of load on
gait cycles of an individual [1]. However, this gait analysis re-
quired very accurate body joint locations of the individual (pose)
and therefore, constrained it to indoor and controlled scenarios
such as in gaming applications or clinical studies. Such accurate
pose can be estimated on high resolution images and video using
methods such as Deep Pose [27],[10] and articulated parts model
[28]. However, most low-cost surveillance video feeds are of low
resolution. The pose estimates using these methods are noisy and
not suitable for the application of mathematical models for gait
signature extraction.

In our previously published work [22, 24, 23], we developed
methodologies where we can obtain close approximation to the
continuous body joint trajectories by using the discrete pose es-
timates as a prior. Optical flow, along with HOG [6] and LBP
[25] descriptors were used to track the body joints and evaluate
its position at each frame [22]. In our other work, we developed
the Improved Region-based Kalman filter to obtain precise esti-
mates of the body joint locations or pose on low resolution video
[24, 23]. This work considered the displacements in the joint po-
sition trajectories as a signature for threat classification. We also
investigated the effect of a tracking scheme in obtaining contin-
uous position trajectories and compared these with discrete pose
estimates to determine threat classification accuracy. But, these
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Figure 2: Deep network for analyzing gait patterns.

methods depended on the accuracy and representational power of
the various region descriptors. So, an automated feature extrac-
tion mechanism tuned towards gait-based threat identification is
required.

Our investigation into the gait-based threat identification
problem leads to the development of a deep neural network
(shown in Figure 2) which can extract motion/shape latent fea-
tures and model its relationship to an inverse kinematic model for
estimating gait signatures. Our novelty lies in the development
and usage of a deep network to represent human pose by incorpo-
rating an inverse kinematic model of true human locomotion.

Deep architecture for gait analysis
We propose a deep belief network [14] for latent feature ex-

traction and a deep regression-based neural network which can
model the relationship between the latent features and the inverse
kinematic model. We also propose the idea of a temporal learn-
ing mechanism such as conditional restricted Boltzmann machine
(CRBM) to investigate the possibility of tracking gait patterns.
The use of CRBM is to be considered as part of the future work
and will not be investigated in this manuscript. The complete deep
neural network is shown in Figure 2.

Feature extraction using deep belief nets
The first module in our proposed network is the feature ex-

traction from motion and image features using Deep Belief nets
[14]. Since we are dealing with low resolution, we directly use
the optical flow field and the image gradient at a particular in-
stant. Motion components are obtained by computing the optical
flow in the x and y directions using the warping technique by Brox
et al. [4] between two consecutive frames. This technique is more
suited for extracting motion components, as it provides much
more smoother motion flow field with few mismatches compared
to other optical flow methods such as Lucas-Kanade [21, 3] and
Farneback [9]. Image components are computed from the im-
age gradients in x and y directions. As shown in Figure 2, the

motion components are represented by flow velocities (Vx,Vy)
and image components are represented by gradients (Gx,Gy).
We convert these components into vectors v = (Vx(:)Vy(:)) and
g = (Gx(:)Gy(:)) and perform PCA-based whitening to decor-
relate the pixels. Then, for the motion vectors v and image vec-
tors g, we train a separate deep belief network. In other words,
we train a pair of deep belief networks, one for computing motion
latent features and the other for computing image latent features.
These two deep belief nets are independent of each other where
each deep belief network is a set of stacked RBMs. To understand
how latent features are computed, we first give an overview of the
RBM.

RBM overview
Restricted Boltzmann Machines (RBM) are generative neu-

ral networks which model the relationship between the set of fea-
tures and its latent representations. The basic RBM network con-
tains two layers, the visible layer V = v ∈ RNV and the hidden
layer H = h ∈ RNH , each containing a set of binary units with
only inter-layer connections through weights W ∈ RNH×NV and
no intra-layer connections. The energy of the RBM E(V,H) can
be defined as given in Equation 1.

Energy; E(V,H) = (vTW T h+vT bv+hT bh) (1)

The probability of a setting the state of a single hidden unit
state to 1 when the states of the visible units are set can be defined
as P(h j = 1|V = v). Similarly, the probability of setting the state
of a single visible unit state to 1 when the states of the hidden
units are set can be defined as P(vi = 1|H = h). These are given
in Equations 3 and 2 where they can be derived from the joint dis-
tribution given in Equation 1. The training of the RBM is then to
attain the states having minimum energy and this corresponds to
optimizing the weights W using the Contrastive Divergence (CD)
technique proposed by Hinton [13]. It follows the Gibbs sam-
pling [5] or Markov Chain Monte Carlo sampling (MCMC) [7]
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for obtaining the hidden and visible states in an iterative manner.

P(h j = 1|V = v) =
1

(1+ exp(−(bh j +W j,: ·v)))
(2)

P(vi = 1|H = h) =
1

(1+ exp(−(bvi +(W:,i)T ·h)))
(3)

Use of RBM in deep belief nets
Since the RBM models the joint distribution and obtains

optimal weights between any pair of layers (visible and hidden
layer), it has been widely used in deep multi-layer neural net-
works with more than one hidden layer. Such networks are very
difficult to train using the traditional back-propagation algorithm.
The RBMs provide a way to obtain optimized weights between
a pair of consecutive layers, one pair at a time, in a deep neu-
ral network [2]. Once these pre-trained weights for a pair of
layers are obtained, these can be fine-tuned using the error-back
propagation algorithm to get the final optimized weights of the
network [12, 18]. This particular property of the RBM now en-
ables us to build a deep neural network which can model layers
of hidden/latent feature representations. Some examples of such
neural networks are convolutional networks [19, 2], Stacked au-
toencoders [12] and deep belief nets [14, 20]. Therefore, in this
approach, we construct a deep belief net by stacking RBMs for
the motion features and image features independently. After pre-
training of the layers, the motion and image vectors are passed
through the respective deep belief networks to obtain motion and
image latent features.

Kinematic model representation
The kinematic model employed in this network is a

Groebner-based inverse kinematic model [16] which has been
evaluated for gait analysis in clinical studies [1]. A 2D joint angle
configuration using this kinematic model in the saggital plane is
shown in Figure 3. According to this configuration, the inverse
kinematic model can be divided into two portions: the upper ex-
tremity and the lower extremity. The upper extremity is related to
the lengths of the upper/fore arms and the body joint angles of the
wrist/elbow with respect to the shoulder joint. The lower extrem-
ity is related to the lengths of the thigh/legs and the body joint
angles of the knee and ankle with respect to the hip joint. In our
earlier work [23], we developed a tracking mechanism to obtain
precise body joint position trajectories (given as x,y coordinates)
from the pose. From these set of joint position trajectories, we can
estimate the relative joint angles by solving the inverse kinematic
problem. The solution to the inverse kinematic problem in human
motion analysis can be stated as finding relative angles between
the joints given the length of segments and the reference joint po-
sition. The trajectory formed by these relative body joint angles
across time contains the necessary gait signatures which can be
classified for gait-based threat identification.

The wrist is considered as the end-effector in the upper ex-
tremity model. Solving the forward kinematic problem corre-
sponds to finding the location of the wrist (x̂w, ŷw) given the seg-
ment lengths (LSE ,LEW ) and joint angles (θS,θE). Therefore, the
inverse kinematic problem is defined as finding the estimate of the
joint angles θ̂S, θ̂E at instant t, given the segments lengths and the
wrist position (xw,yw). Similarly, for the lower extremity model,

Figure 3: 2D Joint Angle configuration for a walk action at an
instant t

the inverse kinematic problem is defined as finding the estimate
of the joint angles θ̂H , θ̂K at instant t, given the segments lengths
(LHK ,LKA) and the ankle position (xa,ya). By considering the
human pose as a kinematic chain with the wrist and the foot as
the end-effectors, a set of non-zero polynomial equations can be
derived from the resulting joint geometry at instant t. The system
of equations characterizing the upper and lower extermity models
are given in Equation 4 and Equation 5. Here, we use the nota-
tions as cl v cos(θl), sl v sin(θl) where l ∈ {S,E,H,K} which
refers to the shouder, elbow, hip and knee respectively.

f1 : = L̃SE cE + L̃EW cScE + L̃EW sSsE − x̃W

f2 : = L̃SE sE + L̃EW sScE − L̃EW cSsE − ỹW

f3 : = c2
E + s2

E −1

f4 : = c2
S + s2

S−1 (4)

f1 : = L̃HKcH + L̃KAcHcK − L̃KAsHsK − x̃A

f2 : = L̃HKsH + L̃KAsHcK + L̃KAcHsK − ỹA

f3 : = c2
H + s2

H −1

f4 : = c2
K + s2

K −1 (5)

Equation 4 is a set of 4 polynomial equations with unknown
variables cE ,sE ,cS,sS and coefficients L̃SE , L̃EW , x̃W , ỹW . By con-
verting this set to a grobner basis, this set of equations can be
solved easily for the unknowns at instant t. The groebner basis
theory is an algorithm which has been used widely for solving
the inverse kinematic problems for robotic manipulators where
by knowing the position and orientation of the end-effector, the
various joint parameters can be computed. Similarly in the case
of the lower extremity model, the system of equations (Equation 5
can be converted to a Grobner basis and the following unknowns
can be solved easily. Thus, we get joint angle trajectory at ev-
ery frame t given as θ̃l(t) where l ∈ {S,E,H,K}. In this analysis,
we only consider the upper extremity model where the parameters
are given by (xw,yw,LSE ,LEW ,ΘS,ΘE). By apply groebner basis
on the above system of equation, the solution to the inverse kine-
matic model obtained is given by the Equations 6 - 9. Then the
joint angles ΘS and ΘE can easily be computed and the inverse
kinematic vector can be obtained.

cos(ΘS) =
x2

w + y2
w−L2

SE −L2
EW

2 ·LSE ·LEW
(6)
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sin(ΘS)=
−(L4

SE +L4
EW + x4

w + y4
w +2 · (x2

w · y2
w−L2

SE ·L2
EW )

4 ·L2
SE ·L2

EW

+
(L2

SE +L2
EW ) · (y2

W + .x2
W ))

4 ·L2
SE ·L2

EW
(7)

cos(ΘE) =
LSE · xw

x2
w + y2

w
±

yw(L2
EW −L2

SE − (x2
w + y2

w))

2 ·LSE · (x2
w + y2

w)
(8)

sin(ΘE) =
LSE · yw

x2
w + y2

w
±

xw(L2
EW −L2

SE − (x2
w + y2

w))

2 ·LSE · (x2
w + y2

w)
(9)

Inverse kinematics-based deep neural network
As mentioned earlier, the usage of inverse kinematics in es-

timating pose and extracting gait patterns is restricted to indoor
scenarios. Application of any inverse kinematic model would re-
quire accurate pose estimation and this is not possible in a low
resolution surveillance footage. It is essential to model the re-
lationship between the motion/image features from video to the
inverse kinematic model so that efficient gait signatures can be
computed.

We train a deep regression-based neural network to model
the relationship between the latent features computed from the
deep belief network and the inverse kinematic model parame-
ters. Since the kinematic parameters are of continuous nature,
the modeling of the relationship corresponds to a regression prob-
lem. Therefore, we use the mean squared error as the objective
function to be minimized in the error-back propagation learning
algorithm. We also use rectified linear units [11] for faster learn-
ing and guaranteed convergence. The algorithm to train the pro-
posed deep neural network is given in Algorithm 1. Similarly, the
algorithm to infer the kinematic model vector, to compute the gait
patterns and classify them as threat is given in Algorithm 2.

Analysis
The proposed tracking scheme was tested on a private dataset

by the Air Force Institute of Technology (AFIT) at Wright Patter-
son Air Force Base, OH. It consisted of the walking activity of 12
individuals on an outdoor circular track that included flat grass,
a staircase attached to a raised platform, and a down ramp. The
subjects walked clockwise and counterclockwise around the track
to collect a total of 100 video sequences in each direction. Sub-
jects wore civilian clothes and shoes during the experiment. The
video sequences were captured using two Canon GL cameras that
faced the track at a distance of 50 ft. Each sequence was divided
into 5 phases A, B, C, D, and E, a sequence of each phase was
selected from either the left camera or right camera depending
on what part of the track the walking activity was taking place.
For the purposes of our analysis, we don’t consider which cam-
era the sequence was shot from. There are two variations of the
sequences; one which contains an individual wearing a weighted
vest of around 3-5 Kg and the other the same individual not wear-
ing this heavy weighted vest. We perform our analysis on Phase
A,C, and E of the sequence which simulates different walking
conditions. We exclude the phases B and D since the available
data are erroneous for analysis. The frames of interest are of the
subject walking on the cross over platform.

Algorithm 1 Learning

1: Compute optical flow field and gradient at frame t
2: Apply person detector to obtain local region of interest.
3: Obtain motion/image vectors from optical flow/gradient

within local region.
4: Using algorithm proposed in [23], compute the pose.
5: Solve the inverse kinematic model to get the kinematic vector.
6: Normalize the motion and image vectors.
7: for l = 1 : L do
8: Train RBM layer l of motion deep belief net.
9: Forward data to next layer l +1

10: end for
11: for l = 1 : L do
12: Train RBM layer l of image deep belief net.
13: Forward data to next layer l +1
14: end for
15: Compute the latent features using trained deep belief nets.
16: Set latent features as regressors.
17: Set kinematic model vector as response variables.
18: Train a deep regression neural network.
19: Estimate kinematic model parameters from training data us-

ing the deep network.
20: Compute and store the trajectory descriptor [23] from the es-

timated kinematic model parameters.

Algorithm 2 Inference

1: Compute optical flow field and gradient at frame t
2: Apply person detector to obtain local region of interest.
3: Obtain motion/image test vectors from optical flow/gradient

within local region.
4: Normalize the motion and image test vectors.
5: for l = 1 : L do
6: Apply RBM layer l of motion deep belief net.
7: Forward data to next layer l +1
8: end for
9: for l = 1 : L do

10: Apply RBM layer l of image deep belief net.
11: Forward data to next layer l +1
12: end for
13: Concatenate the motion and image latent features.
14: Estimate the kinematic model vector from the trained deep

regression neural network.
15: Compute the trajectory descriptor on the kinematic model pa-

rameters.
16: Using K-Nearest Neighbor, classify the trajectory descriptors

as threat or no threat.

Validation of inverse kinematic model
We validate the use of the inverse kinematic model based

on Groebner basis for computing gait features from surveillance
video. Using the improved region-based Kalman filter (IRKF)
[23, 24] developed by us, we can obtain body joint position tra-
jectories or pose at each frame. The tracking scheme employed
different types of descriptors in the analysis such as Histogram of
Oriented Gradients (HOG), Local Binary Patterns (LBP), SIFT,
SURF, BRIEF, BRISK and ORB. The IRKF estimates a set of
body joint location coordinates which varies with the type of de-
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Θ (Joint Angle) PLS HOG LBP SIFT SURF BRIEF BRISK ORB
ΘS 54.95 52.25 52.25 51.35 64.86 59.45 52.25 54.95
Θ
+
E 64.86 53.15 62.16 60.36 58.10 68.46 60.36 54.95

Θ
−
E 53.15 53.15 60.36 57.65 55.85 53.15 58.10 64.86

ΘS Θ
+
E 54.95 54.05 60.36 56.75 69.36 66.66 60.36 54.50

ΘS Θ
−
E 54.95 53.15 54.95 54.05 55.85 55.85 53.15 55.85

ΘS Θ
+
E Θ

−
E 54.95 56.30 63.06 53.15 58.55 59.45 60.36 52.25

(a) Phase A

Θ (Joint Angle) PLS HOG LBP SIFT SURF BRIEF BRISK ORB
ΘS 53.57 50 71.42 64.28 53.57 50 50 50
Θ
+
E 57.14 57.14 64.28 53.57 57.14 46.42 62.50 50

Θ
−
E 60.71 50 53.57 53.57 57.14 53.57 62.5 60.71

ΘS Θ
+
E 53.57 60.71 67.85 53.57 60.71 53.57 60.71 53.57

ΘS Θ
−
E 50 46.42 57.14 57.14 50 53.57 57.14 57.14

ΘS Θ
+
E Θ

−
E 50 57.14 57.14 53.57 60.71 60.71 60.71 53.57

(b) Phase C

Θ (Joint Angle) PLS HOG LBP SIFT SURF BRIEF BRISK ORB
ΘS 61.53 61.53 66.82 61.53 61.53 70.19 61.53 61.53
Θ
+
E 61.53 61.53 66.34 64.42 68.26 65.38 64.42 68.26

Θ
−
E 64.42 61.53 63.46 62.5 60.57 61.53 61.53 61.53

ΘS Θ
+
E 61.53 59.61 64.42 64.42 67.30 64.42 64.42 69.23

ΘS Θ
−
E 61.53 61.53 68.26 61.53 60.57 67.30 67.30 61.53

ΘS Θ
+
E Θ

−
E 61.53 60.57 67.30 65.38 68.26 65.38 64.42 68.26

(c) Phase E
Table 1: Classification results obtained using different combinations of joint angle trajectories for the three phases A, C and E. Phase B
and D is not included as the discrete pose estimates provided by PLS are errorneous.

scriptor used in the tracking scheme. Therefore, for each descrip-
tor, the estimated kinematic model parameters computed using the
inverse kinematic Groebner-based model also varies. Trajectory
descriptors are computed from the body joint angles and classified
as a threat/non-threat using a kernal SVM. In Table 1, we provide
the accuracies in distinguishing threats for a specific combination
of the joint angles and a single descriptor.

In phase A, the positive solution of the elbow joint angle Θ
+
E

gives little better accuracy of 64% using the discrete body joint
positions as provided by the Point Light Software (PLS). Selec-
tion of other combinations of the joint angles computed from PLS
provide no better than 55%. When using the region-based track-
ing with other descriptor combinations, we find that the SURF and
BRIEF descriptors give much better accuracy of 69% and 68%.
However, only the ΘS and Θ

+
E seem to have any significant ef-

fect on the accuracy. The negative solution Θ
−
E seems to have no

effect except for when using the ORB feature descriptor which
gets an accuracy of 64.86%. We can visually evaluate the body
joint angle trajectories for some subjects in Phase A to determine
the correlation between the tracked and the discrete trajectories.
An illustration of the body joint angle trajectories computed from
SURF descriptor-based IRKF and the discrete pose is shown in
Figure 4. From this analysis, we found that the accuracy can be
related to the smoothness of the joint angle curve, the amplitude
of the curve and the closeness to the true sinusoidal trajectory.

We also see that the LBP obtains a high accuracy of 71.42%
using only the joint angle ΘS in phase C. This is a big improve-
ment with 18% more than the accuracy obtained with the discrete

pose. We see the same improvement with Θ
+
E joint angle. How-

ever, the negative solution Θ
−
E gives poor accuracy and no im-

provement. Thus, with the LBP descriptor and using the configu-
rations ΘS and (ΘS,Θ

+
E ) has better accuracy and bigger improve-

ment over the PLS method. To summarize, it is shown that the
joint angle configuration (ΘS,Θ

+
E ) is more effective that the oth-

ers. The other configurations obtain accuracies of 68%−69% but
this depends on the scenerio and the descriptor. From this analy-
sis, we can assume that some sort of weighting factor or function
should be used in the selection of the appropriate descriptor and
the joint angle configuration. This weighting factor should re-
flect the scenario through contextual descriptors in the scene or
using pre-trained models to detect a specific scenario based on
the persons movement. The deep neural network proposed by us
in this manuscript helps in obtaining specific weighting functions
(weights of the network) which can extract optimal latent features
and correlate it with the inverse kinematic model parameters.

Validation of the deep neural network for inverse
kinematic modeling

In the proposed deep learning neural network, we use a 2
layered architecture for the deep belief net based feature extrac-
tion and a 3-layered architecture for the deep regression neural
network. The sizes of the deep belief nets for both motion and
image is [2048 512] with the input size being 4096. Since the
inputs to the deep regression neural network is the concatenated
motion and image latent features, we set the sizes as [2048 256 6]
with the input size being 1024 and the output being 6. For the
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(a) Subject 11 with loaded vest. (b) Subject 11 with no load.

(c) Subject 3 with loaded vest. (d) Subject 3 with no load.
Figure 4: Comparison of body joint angle trajectories computed from SURF-based IRKF [23] method and the PLS method for Phase A
sequences

entire network, we set the learning rate at 0.01. We train the net-
work on a randomly selected 9

10 of the total number of samples
and test on the remaining 1

10 . We repeat this sampling 20 times
and average the accuracies obtained. After estimating the inverse
kinematic model parameters, we use the trajectory descriptor to
describe each body joint angle trajectory. By using a k- nearest
neighbor classifier from the YAEL library [8], we classify the tra-
jectory descriptors of a video sequence as a threat or non threat.

To train the deep regression neural network, we used differ-
ent sets of joint angle trajectories, each set computed using a par-
ticular method (different descriptor in the improved region-based
Kalman filter). We also used the median (or average) value of the
body joint angles across the different methods for every frame of
every video sequence. In addition, we accumulate all of the video
sequences from phases A,C and E for training the network. Using
K = 10 in the K−NN classifier, the highest accuracy we obtained
in threat classification was 60.36%. This was using the median
joint angle trajectories as the response variable in the deep regres-
sion network. The next closest accuracy obtained was 59.36% un-
der the training scheme of using the joint angle trajectories com-

puted from SURF-based IRKF method. However, by applying the
K-NN classifier on the joint angle trajectories from tracked pose
without the proposed neural network, we obtain only 52%. This
is in contrast as the estimated trajectories should provide less ac-
curacy that the ones used for training the algorithm. But, note
that the trajectories used for training are noisy. So, during the
optimization (learning phase), the network not only learns the un-
derlying distribution of the latent features but also models its re-
lationship to the inverse kinematic model. This modeled relation
in the form of weights are not strictly tied to the training set, and
therefore, provides better discriminative inverse kinematic model
parameters. This establishes the fact that deep neural networks
are not only used for classification based on training data but also
provides better discriminative features which spans multiple types
of scenes.

Conclusions and Future Work
In this manuscript, we extended our work done in the area

of threat identification from low resolution video sequences. Our
previous work used improved region-based Kalman filter (IRKF)
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to track the pose and obtain continuous body joint trajectories. In
this work, we used an inverse kinematic model based on Groeb-
ner basis to compute body joint angles in the upper extremity from
video sequences. These body joint angles correspond to the gait
patterns needed for this problem. By evaluating the various de-
scriptors in the IRKF, we validated this inverse kinematic model
for classifying threats based on the change in the body joint angle
trajectories. To investigate the use of the inverse kinematic model
without depending on too much on the tracking mechanism, we
developed a deep neural network, which extracts motion and im-
age features using deep belief nets. These features are then cor-
related to the inverse kinematic model using a deep regression
neural network with rectilinear units. We proved that by using the
proposed deep neural network, we not only obtained a good clas-
sification accuracy of 60.32% but also provided an insight into its
capability of having an inverse kinematic model influence the op-
timization of the weights. Our future work will involve the use
of Conditional Restricted Boltzmann machines to infer temporal
gait signatures for future prediction of a threat from streaming low
resolution surveillance videos.
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