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Abstract 
Dictionary Learning and sparse coding methods have been widely 
used in computer vision with applications to face and object 
recognition. A common challenge when performing expression 
recognition is that face similarities may confound the expression 
recognition process. An approach to deal with this problem is to 
learn expression specific dictionaries, so that each atom 
corresponds to one expression class. However, even when 
employing expression specific dictionaries, it is likely that two 
atoms from two sub-dictionaries share common characteristics due 
to facial similarities.  In this paper, we consider a joint dictionary 
that captures common facial attributes, and class-specific 
dictionaries that are used to classify different expressions. We 
investigate three dictionary learning methods for sparse 
representation classification: one that learns a global dictionary 
based on K-SVD, one that learns expression specific dictionaries 
based on Fisher Discrimination Dictionary Learning (FDDL), and 
one that learns a shared as well as expression specific dictionaries 
based on Dictionary Learning Separating Commonality and 
Particularity (DL-COPAR). We demonstrate the effectiveness of 
the shared dictionary learning approach on the extended Cohn-
Kanade database where DL-COPAR outperforms FDDL and K-
SVD by a significant margin.  

Introduction 
Facial expression recognition has many applications such as 

human-computer interaction, driver monitoring, health and 
wellness, entertainment, surveillance and others. Recognizing 
facial expressions is a challenging task, and sometimes similarities 
in facial appearance may interfere with the recognition of facial 
expressions.  In this paper, we propose a sparse representation 
classification approach with joint and discriminative dictionary 
learning in order to overcome the difficulty of confounding face 
expression and identity.   

The pioneering work of Ekman et al. [1], identified six 
universal expressions shown in Figure 1, and introduced a method 
to quantify facial actions and expressions based on action units. 
The Facial Action Coding System (FACS) was proposed to 
quantify facial actions based on muscle movements, so that each 
expression can be represented as a combination of action units. 
Numerous facial expression recognition methods have been 
presented in the literature [2, 3, 4]. These methods can be broadly 
categorized into geometric and appearance based. Common 
geometric methods include Active Shape Model (ASM) or Active 
Appearance Model (AAM) [5]. Appearance based methods work 
with local or holistic facial appearance. They often compute 
intermediate representations of images using features such as 
Gabor wavelets [6] and Local Binary Patterns (LBP) [7]. Gabor 
wavelets generate features that correspond to edges at various 
frequencies and orientations inspired from the human visual 
system. LBP features capture texture variations and are capable of 
handling severe changes in illumination.  

Most of the expression recognition pipelines begin high 
dimensional representations of facial features, and use 
dimensionality reduction techniques such as Principal Component 
Analysis (PCA) and manifold learning.  Dimensionality reduction 
benefits the classification process by reducing the data size and 
organizing the data in a space that improves classification 
accuracy. Manifold learning techniques have been utilized for 
expression recognition [8] among other facial analysis tasks. 
Sparse Representation (SR) classification techniques have 
demonstrated good performance in face recognition [9] and 
expression recognition [10], [11]. Manifold based Sparse 
Representation (MSR) [11] combines manifold learning and sparse 
representations to tackle the problem of coefficient contamination 
due to facial identity in expression recognition. 

Recent developments in dictionary learning methods have 
shown that learning a dictionary from data is beneficial because it 
produces better and more efficient representations [12, 13]. In [14], 
discriminative dictionary learning is proposed by using the class 
label information. In [15], the authors proposed a discriminative 
approach that exploits the coherence between atoms in the 
dictionary to learn a shared/common dictionary and class-specific 
dictionaries.  Other dictionary learning methods include [16-18]. 

A joint/common dictionary is considered to address the issue 
of similarities in elements across dictionaries. The proposed 
approach is effective for dealing with a common problem in 
expression recognition where the learned system classifies faces 
that are similar in appearance rather than classifying the 
expression. In this context, learning an expression specific and a 
shared dictionary plays an important role in classifying expression 
with high accuracy. By detecting shared features, we learn sub-
dictionaries whose atoms are not correlated with other dictionaries. 

 

 
Figure 1. Sample images from the extended Cohn-Kanade (CK+) 
facial expression dataset illustrating (top to bottom, left to right) 

anger, disgust, fear, happy, sad, surprise. 
 
In the next sections, dictionary learning is overviewed for 

sparse representation classification using K-SVD [12], Fisher 
Discrimination Dictionary Learning (FDDL) [14], and Dictionary 
Learning Separating Commonality and Particularity (DL-COPAR) 
[15]. Results are reported on the extended Cohn-Kanade (CK+) 
database. 
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Joint Dictionary Learning 
Sparse Representation 

In a sparse representation framework, a sample 𝒚 in ℝ! space 
is represented on a dictionary of samples 𝐗 ∈ ℝ!×! via the sparse 
coefficients 𝒂, as follows:  

𝒚 = 𝐗𝒂 (1) 

The coefficient vector 𝒂 is sparse if the dictionary 𝐗 is 
overcomplete, i.e., 𝑑 ≪ 𝑝, where 𝑑 is the dimensionality of the 
data and 𝑝 is the number of atoms in the dictionary.  The 
coefficient optimization problem is expressed using the 𝐿! norm in 
a regression framework as follows 

𝒂∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 𝒂 !  𝑠. 𝑡.  𝐗𝒂 = 𝒚 (2) 

where 𝒂 ! = 𝑎! . It has been shown that the 𝐿! norm induces 
sparsity and is robust to outliers. The optimization problem is cast 
in terms of a cost function as, 

𝒂∗ = 𝑎𝑟𝑔𝑚𝑖𝑛  𝐗𝒂 − 𝒚 !
! + 𝜆 𝒂 ! (3) 

where 𝜆 is a parameter regulating the amount of sparsity that we 
want to enforce.  

This optimization problem can be solved using greedy 
algorithms such as Orthogonal Matching Pursuit (OMP) and Least 
Angle Regression (LAR) [19]. The optimization problem in Eq. (2) 
is a convex relaxation problem that was originally formulated 
using the 𝐿! norm. Donoho et al. [20] showed that using the 𝐿! 
norm makes the problem tractable and promotes sparsity in the 
coefficients.  The benefit of using 𝐿! minimization is that the 
problem can be efficiently solved using convex optimization 
algorithms, and furthermore the signal 𝑦 can be represented 
efficiently using a small number of dictionary elements. 

 During sparse representation classification, the approach 
taken is based on minimum reconstruction error. However, a 
drawback of this approach is that the dictionary is not optimized 
and when the number of dictionary samples is very large, the SR 
process can become time consuming and even unstable. It has been 
shown in [12] that better sparse representation is achieved when 
the dictionary is learned from the data instead of using a pre-
defined dictionary.   

In this paper, we consider three dictionary learning methods 
for expression recognition: K-SVD, Fisher Discriminative 
Dictionary Learning (FDDL) and Dictionary Learning Separating 
Commonality and Particularity (COPAR).  A brief overview of 
these methods is presented next. 

K-SVD 
K-SVD [12] was introduced as a means to learn an 

overcomplete dictionary of manageable size from the training data, 
where each new dictionary element is a linear combination of 
training samples. K-SVD is an iterative technique, where at each 
iteration, training samples are first sparsely coded using the current 
dictionary estimate, and then dictionary elements are updated one 
at a time while keeping the remaining atoms fixed.  Rubinstein et 
al. [14] implemented an efficient implementation of K-SVD using 
Batch Orthogonal Matching Pursuit. The objective function that K-
SVD tries to solve is given in Eq. (4). 

𝐃,𝒂 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝒙 − 𝐃𝒂 !
!  𝑠. 𝑡. 𝒂 ! ≤ 𝛿 (4) 

where 𝐃 is the learned dictionary and 𝒂 are the sparse coefficients. 
The norm on 𝒂 is the 𝐿! norm which counts the number of non-
zero elements in the coefficient vector, and the parameter 𝛿 
controls the amount of sparsity in the coefficient vector 𝒂.  

For classification, a simple regression based classifier is 
learned, which is a transformation matrix 𝐂 that estimates the class 
for a given test sample 𝒚!. To solve for 𝐂 ∈  ℝ!×! , we define 𝐇 as 
a sparse ground truth matrix, 𝐇 ∈  ℝ!×! and 𝑁 is the number of 
samples. Each column of 𝐇 corresponds to a training sample, 
where the 𝑐!! element is set to 1 if 𝑦! belongs to that class, or 0 
otherwise. The problem is formulated as  

𝐂  =  𝑎𝑟𝑔𝑚𝑖𝑛 𝐇 − 𝐂!𝐀 !
!  (5) 

The above can be solved directly via ridge regression which has an 
analytic solution given as follows:  

𝐂 =  (𝐀𝐀! )!! 𝐀𝐇!   (6) 

Fisher Discrimination Dictionary Learning (FDDL) 
Meng et al. [14] proposed a discriminative dictionary learning 

framework that jointly learns a dictionary and discriminative 
sparse codes using Fisher's Discrimination criterion. Instead of 
learning one global dictionary for all classes, a class specific 
dictionary 𝐃 =  [𝐃!,𝐃!,… ,𝐃!] is learned, where 𝐃! is the class-
specified sub-dictionary associated with class 𝑖, and 𝑐 is the total 
number of classes.  For classification with such dictionary 𝐃, it is 
possible to use the minimum reconstruction error criterion, as done 
with sparse representation classification [8].  Sparse codes are 
obtained for each of the class specific dictionaries and the 
reconstruction error for each sub-dictionary is computed to 
determine the class label. This is often referred to as local sparse 
coding.  The objective function 𝐽 𝐃,𝐀  is a function of the dictionary 
𝐃 and the sparse codes 𝐀 given by 

𝐽 𝐃,𝐀 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐃,𝐀 𝑟 𝐗! ,𝐃,𝐀! + 𝜆! 𝐀 !

!

!!!

+ 𝜆!𝑓 𝐀 + 𝜂 𝐀 !
!  (7) 

where 𝑓 𝐀  is the term that promotes discrimination in the sparse 
codes based on Fisher's Discrimination criterion and is defined as, 

𝑓 𝐀 = 𝑡𝑟 𝐒𝑾 𝐀 − 𝐒𝑩 𝐀 + 𝜂 𝐀 !
!  (8) 

where 𝐒𝑾 and 𝐒𝑩 are scatter matrices of the within class and 
between class sparse codes respectively and 𝜂 𝐀 !

!  enforces 
convexity and is regulated by parameter 𝜂.  The term 𝑟 𝐗! ,𝐃,𝐀!   
is defined below.  

𝑟 𝐗! ,𝐃,𝐀! = 𝐗! − 𝐃𝐀! !
! + 𝐗! − 𝐃!𝐀!! !

!

+ 𝐃!𝐀!
!
!

!!

!!!
!!!

 (9) 

In addition to penalizing the reconstruction error, 𝑟 𝐗! ,𝐃,𝐀!  
ensures that dictionary atoms corresponding to one sub-dictionary 
are representative of that dictionary alone and don't contribute to 
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the other sub-dictionaries. When learning class specific 
dictionaries, the summation term of 𝐃!𝐀!

!
!

!
 in 𝑟 𝐗! ,𝐃,𝐀!  

enforces that the sparse codes are representative of that class alone 
and do not include other classes.  

The sparse codes can be computed using the Iterative 
Projections Method (IPM) [21].  Since the objective function given 
in Eq. (7) is not jointly convex, an iterative optimization process is 
used, where the dictionaries are kept constant while the sparse 
coefficients are learned, and the sparse coefficients are kept 
constant while the dictionaries are learned. During the dictionary 
update process, each atom in a sub-dictionary is updated separately 
keeping the other atoms constant [14]. A detailed algorithm of the 
dictionary learning process and convexity of the Eq. (8) is given in 
[14]. 

Dictionary Learning Separating Commonality and 
Particularity (DL-COPAR) 

Shu et al. [18] proposed a dictionary learning framework that 
jointly learns class specific sub-dictionaries, while simultaneously 
learning a shared/common dictionary. It is observed that in 
dictionary learning, dictionary atoms in one sub-dictionary may be 
correlated with atoms in another dictionary, which makes the class 
specific dictionary less discriminative. A shared or common 
dictionary contains atoms that have high coherence with atoms in 
class-specific sub-dictionaries. An incoherence term is introduced 
to learn the common dictionary 𝐃! and the objective function of 
the DL-COPAR framework is given as: 

 

𝐽 =
𝐗! − 𝐃𝐀! !

! + 𝐐/!! 𝐀! !

!

+ 𝐗! − 𝐃𝐐 𝐐! 𝐀! !

!
+ 𝜆∅ 𝐀!

!

!!!
 

              +𝜂 𝒬(𝐃! ,𝐃!)
!!!

!!!
!!!

!!!

!!!

 

(10) 

where, 
𝐐! = 𝑞!! ,… , 𝑞!! ,… , 𝑞!!

! ∈ ℝ!×!!   
𝐐/! = 𝐐! ,… ,𝐐!!!,𝐐!!!,… ,𝐐!   

 
 The dictionary D includes the class specific dictionary and 

the common dictionary. It is given as 
𝐃 = 𝐃!,… ,𝐃! ,… ,𝐃! ,… ,𝐃!!! ∈ ℝ!×!.  The sub-dictionaries 
𝐃! ∈ ℝ!×!!  and 𝐃!!! ∈ ℝ!×!!!!  represent the class specific and 
common dictionary respectively, where 𝐾! and 𝐾!!! denote the 
number of atoms in the class specific and common dictionaries 
respectively.  The 𝑗!! column of 𝐐! is a vector of zeros except for 
a value of 1 at the 𝑗!! location, i.e. the column is expressed as 
𝑞!! = [0,… , 1,… , 0]!. Hence, 𝐐!

!𝐐! = 𝐈. A new matrix 
𝐐! = [𝐐! ,𝐐!!!] is obtained from 𝐐! ,𝐐!!! corresponding to the 
selection operator for the class specific dictionary and the common 
dictionary.  

The first term in Equation (10) is the reconstruction error and 
the regulating parameter λ controls the amount of sparsity. The 
term ∅ 𝐀!  = 𝑎!! !

!!
!!!  is the regularization on the class specific 

sparse codes and 𝐴! = 𝑎!! ,… , 𝑎!!
! . The third term in Equation 

(10) is the class specific reconstruction error. In order to ensure 
that the sparse codes are representative of their respective class 
specific dictionary alone, the term 𝐐/!! 𝑨! !

!
 is added to the 

objective function. This term enforces the coefficients to be set to 

zero if they do not correspond to the 𝑐!! class specific and 
common dictionary.  

The incoherence term in Eq. (10) is defined as 𝒬 𝐃! ,𝐃! =
𝐃!!𝐃! !

!
. In [17], the incoherence term was used to eliminate 

similar atoms among sub-dictionaries. But in this formulation the 
incoherence term is used to eliminate common patterns between 
class specific and common dictionaries. The dictionaries and the 
coefficients are learned by alternatively optimizing the cost 
function of Eq. (10).  The atoms in the dictionaries are updates that 
are obtained iteratively one atom at a time [18]. The coefficients 
are learned by keeping the dictionaries constant in Eq. (10). The 
equation then reduces to the LASSO problem, which can be 
efficiently solved by the feature-sign algorithm [23]. 

Experimental Results 
In our experiments, we evaluate three dictionary leaning 

methods, K-SVD [12], FDDL [14] and DL-COPAR [15] on the 
extended Cohn-Kanade (CK+) facial expression dataset [22]. 

 

 
Figure 2. Sample images from the extended Cohn-Kanade (CK+) 

facial expression dataset after cropping and normalization (top to 
bottom, left to right) disgust, surprise, anger, happy, sad, fear. 

 

Dataset 
The extended CK+ [22] expression dataset contains 118 

subjects in 327 video sequences exhibiting the expressions of 
anger, disgust, fear, happiness, sadness, surprise, and contempt. 
Since the images can be of any resolution, the images in the 
sequences were preprocessed to standard size before feature 
extraction. In the first set of experiments, five expressions were 
considered: happy, sad, angry, surprise and fear. For each 
expression sequence, the last six frames were extracted which 
contained the onset of the expression to the peak expression. The 
ground truth information provided in the database contains 
landmark points for each image. These landmark points were used 
to create a bounding box and then normalize the image with 
respect to eye distance and resize the normalized image to a fixed 
size. The images were resized to 24 × 21, and normalized such that 
they had unit 𝐿! norm. Samples images for each expression are 
shown in Fig. 2. 

Three dictionary learning methods, namely K-SVD, FDDL 
and DL-COPAR, were evaluated by performing four-fold cross 
validation.  In our experiments with K-SVD, a dictionary with 150 
atoms was learned. For FDDL, expression specific dictionaries 
with 30 atoms each were learned. For DL-COPAR a common 
dictionary with 10 atoms and expression specific dictionaries with 
30 atoms each were learned.  

For classification with K-SVD, a linear regression classifier 
based on sparse codes was utilized and classification was 
performed based on minimum reconstruction error. A local 
classification scheme was used for FDDL and DL-COPAR, where 
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sparse codes were generated for each expression specific 
dictionary and the reconstruction error was computed.  An 
expression class label was assigned based on minimum 
reconstruction error.  

 
TABLE 1. CLASSIFICATION RESULTS ON THE CK+ DATASET WITH 
FIVE EXPRESSIONS USING FOUR FOLD CROSS VALIDATION 

Method Number  of  
Expressions Accuracy (in %) 

K-SVD Five  
Expressions 

0.93±0.003 
FDDL 0.95±0.01 

DL-COPAR 0.99±0.01 

DL-COPAR Six  
Expressions 0.9811±0.0062 

 
Table 1 reports the average and the standard deviation of the 

expression recognition results.  The advantage of the common 
dictionary is reflected in the improved performance of DL-COPAR 
over K-SVD and FDDL.  Sample basis atoms from DL-COPAR 
are shown in Figures 3 and 4.  

In our second experiment, we applied the DL-COPAR 
method for the recognition of six expressions: happy, sad, angry, 
surprise, fear and disgust. The expression classification results are 
shown in Table 1.  A relatively small drop (<1%) in performance is 
observed when going from five to six expressions. The 
effectiveness of the DL-COPAR framework over the other 
methods is attributed to the shared/common dictionary that is 
learned due to the incoherence term in the dictionary learning 
process. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Sample atoms from each of the expression specific 
dictionaries of DL-COPAR (a) Happy, (b) Sad, (c) Angry, (d) Fear, 
(e) Surprise.  

 
 

 
        

Figure 4. Sample dictionary atoms from the common/shared 
dictionary using DL-COPAR dictionary learning. 
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Figure 5. Comparison between FDDL and DL-COPAR with varying 
class specific dictionary size 

 
 

Another experiment was performed to investigate the effect of 
class specific dictionary size on classification accuracy.  The 
expression recognition performance of the FDDL and DL-COPAR 
frameworks were compared after varying the size of the expression 
specific dictionaries. The recognition accuracy for the two methods 
is plotted in Figure 5. The class specific dictionary size was 
increased from 10 to 30 in increments of 5.  The results illustrate 
that initially the performance of both algorithms is comparable, up 
to a sub-dictionary size of 15.  As the number of atoms in the 
expression specific dictionaries increases, the DL-COPAR 
dictionary learning method outperforms FDDL significantly. 

 

Conclusion 
In this paper, we explored three Dictionary Learning 

frameworks for facial expression recognition. The shared/common 
dictionary learning framework (DL-COPAR) performs 
exceedingly well in comparison to FDDL and K-SVD. This can be 
attributed to the fact that learning expression specific dictionaries 
along with a shared/common dictionary enhances expression 
recognition performance by decoupling facial identity and 
expression during the dictionary learning process due to the 
incoherence term.  Excellent classification performance was 
obtained using DL-COPAR on extended CK+ dataset, with 99% 
accuracy for five expressions and 98.1% accuracy for six 
expressions. 
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