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Abstract
Photo aesthetic quality prediction with machine learning

techniques is an active yet challenging research topic. One of
the most critical components of this task is to obtain the reliable
ground truth for photo aesthetic quality through psychophysical
experiments. A common approach is to use the average or the
majority vote of all collected scores of a photo as its ground truth.
However, these traditional approaches do not take into account
different levels of expertise of the experiment subjects. Further-
more, this method tends to be unstable when the number of as-
sessments is small. In this paper, we propose a strategy that fo-
cuses on improving the reliability of the ground truth estimated
from human-given photo aesthetic scores. Instead of simply cal-
culating the majority vote score or average score of each photo,
we adopt a generative Bayesian approach to simultaneously in-
fer each photo’s true aesthetic quality score, the difficulty of cor-
rectly assessing this photo, and each subject’s expertise. The
statistic model fits into the expectation-maximization (EM) frame-
work. This approach models the collected data with a discrete
truncated Gaussian distribution whose parameters represent the
hidden ground truth score, the difficulty to correctly assess each
photo, and each subject’s expertise.

Introduction
Autonomous photo aesthetic quality assessment is a chal-

lenging task [1, 2, 3, 4, 5, 6]. Compared with general photo
quality assessment, gathering reliable ground truth for aesthetic
quality assessment is a more challenging problem. For instance,
in a psychophysical experiment designed for traditional quality
assessment, participants may be required to locate image com-
pression defects or compare a degraded version with the original
photo. Whereas in aesthetic quality assessment, subjects are usu-
ally required to give the aesthetic quality level or score of a photo
without a reference.

The collected ground truth will be further used in training an
aesthetic quality predictor with different machine learning meth-
ods. Since the training data is decisive to the performance of the
trained predictor, it is of critical importance to develop a robust
method to estimate correct ground truth from the collected ex-
periment data. There are straightforward methods of estimating
ground truth, such as majority vote and score average in an im-
age quality task. However, there are a few drawbacks of these
approaches. First of all, they do not take into account each sub-
ject’s capability of properly giving scores, known as expertise,
and consider all experiment data equally valid. They presume

Research supported by Poshmark Inc., Redwood City, CA, USA.

all subjects have equal levels of expertise, which is typically not
true. Moreover, each photo’s difficulty to be correctly assessed
is also not considered in these traditional methods. Last but not
least, averaging, as is common with a typical maximum likeli-
hood estimator (MLE), tends to give unstable output when the
number of samples is small. To address these disadvantages,
we propose a generative Bayesian approach to simultaneously
infer each photo’s true aesthetic quality score, the difficulty of
correctly assessing each photo, and each subject’s expertise, and
get a maximum-a-posteriori probability (MAP) estimate with an
expectation-maximization (EM) algorithm. This method models
the collected data with a discrete truncated Gaussian distribution
whose parameters represent the hidden ground truth score, the dif-
ficulty to correctly assess each photo, and each subject’s expertise.
These parameters are further modeled by appropriate Gaussian
prior distributions. By treating the subject given scores as the ob-
served random variable and the ground truth score as the latent
random variable, we fit our model into an EM framework, and
obtain a MAP estimation of the ground truth score after the EM
iterations converge.

Some studies have been conducted in the area of inferring
ground truth with probabilistic methods. Dawid and Skene [7]
proposed an algorithm to infer the maximum-likelihood (ML)
estimation of medical observer error-rates with an EM algo-
rithm. Focusing on the two-class supervised classification prob-
lem, Raykar et al. [8, 9] described an ML estimator that jointly
learns the classifier, the annotator accuracy, and the actual true
label, which is also solved with an EM algorithm. Welinder et
al. [10] derived an online algorithm that estimates the most likely
value of the labels and the annotator abilities. Whitehill et al. [11]
provided a robust algorithm that simultaneously infers the label
of each image, the expertise of each labeler, and the difficulty of
each image. Their work mainly focus on the two-class classi-
fication problem, but gives a multi-class classification extension
in the supplementary materials, which assumes that in the case
of mislabeling, the probabilities of all incorrect labels are equal.
While this is a valid assumption in general classification prob-
lems, it does not apply to some other cases, such as image quality
assessment. In image quality assessment problems, the probabil-
ities of assigning an incorrect quality scores to an image are not
uniformly distributed over all scores. Wang et al. [12] proposed
a new model which modifies the assumption proposed in [11] so
that the incorrect quality scores fit into a Gaussian distribution.
However, the work in [12] calculated the probability of correct
rating with a different probability distribution and did not unite
the probability of correct and incorrect assessment into a consis-
tent form.
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Our contribution in this paper is to develop a new model
which leverages a truncated discrete Gaussian distribution to char-
acterize the probability of both correct and incorrect ratings. This
model assumes the true rating score locates at the mean of the
truncated discrete Gaussian distribution, and the incorrect ratings
that are closer to the correct rating (distribution mean) are more
likely to occur compared with those incorrect ratings that are far
from the mean. We choose the truncated discrete Gaussian dis-
tribution because the Gaussian distribution is consistent with sub-
ject rating process. We discretize and truncate it, since our ratings
only take integer values and are bounded. We apply our algo-
rithm to an online fashion shopping photo database, on which a
psychophysical experiment was conducted to collect assessment
data [13, 14]. A few examples of the dataset photos are shown in
Fig. 1. The experiment result shows the proposed model can give
more consistent inference result compared with approaches such
as majority vote and rounded score average, especially when the
number of experiment participants is limited.

Figure 1. Examples of dataset photos.

Inference Process
Suppose the experiment participants are indicated by i ∈ III

and the photos to be assessed are indicated by j ∈ JJJ, where
III and JJJ are the sets of all experiment participants and photos,
respectively. The true score of the photo j is represented as
Z j ∈ {1,2,3, ...,10}, where {1,2,3, ...,10} is the set of integers
that are between 1 and 10 (included). In our setup, score 10 is the
highest aesthetic quality and score 1 is the lowest.

Model Description
The score given to the photo j by the subject i is denoted

by Li j. In our model, Li j is dependent on the true score Z j , the
expertise of the subject i, and the difficulty to correctly assessing
photo j. We further model the expertise of subject i with a ran-
dom variable Ai ∈ (−∞,∞), where a smaller value of Ai means a

higher level of expertise. We suppose Ai has a Gaussian prior dis-
tribution p(α) = N(µα ,σα ). Similarly, we model the difficulty of
correctly assessing photo j with random variable B j, which also
has a Gaussian prior p(β ) = N(µβ ,σβ ). A smaller value of B j
means this photo is easier to evaluate.

With the models for Ai and B j, we further represent Li j with
a truncated discrete Gaussian distribution whose mean is at the
true score Z j:

p(li j|z j,αi,β j) =
1

N′i j

1√
2πσi j

e
− (li j−z j )

2

2σ2
i j

=
1

Ni j
e
− (li j−z j )

2

2σ2
i j , (1)

where σi j = eαi+β j , N′i j and Ni j are normalization factors:

N′i j =
z j+9

∑
m=z j−9

1√
2πσi j

e
− (m−z j )

2

2σ2
i j , (2)

Ni j =
z j+9

∑
m=z j−9

e
− (m−z j )

2

2σ2
i j . (3)

Please note that for simplicity, we use p(li j|z j,αi,β j) to denote
pLi j |Z j ,Ai,B j

(Li j = li j|Z j = z j,Ai = αi,B j = β j), where the upper-
case letters indicate the actual random variables and the lowercase
letters are the probability function variables. The dependency re-
lationships of the random variables are shown in Fig. 2. The un-
derlying logic of this model is that we suppose the scores col-
lected from the experiment should fit into a Gaussian distribution
for which the mean is located at the true score. Furthermore, when
the subject has a higher level of expertise or the photo is easier to
assess, the variance of the distribution σi j becomes smaller, which
makes Li j more likely to be the true score. Conversely, if the photo
is extremely hard to assess or the subject is incapable of making
correct decisions, σi j approaches infinity that makes each score
equally probable. The probability mass function (PMF) of the
rating process is shown in Fig. 3. In this example, the true score
of the photo is 6, which indicates the mean of the distribution is
located at 6.

Figure 2. Graphical model of photo aesthetic quality assessment process.

It is worth noting that we let the range of li j in the model
shown in equation (1) be {z j − 9,z j − 8, ...,z j + 9}, even though
subjects are required to give ratings in the range {1,2, ...,10}. The
reason behind this decision is that if we make li j ∈ {1,2, ...,10},
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Figure 3. Probability mass function of photo aesthetic quality assessment

process when the true score is 6.

it is possible that given some αi and β j values, p(li j|li j,αi,β j)<
p(li j|z′,αi,β j) where li j 6= z′. An example is shown in Fig. 4. In
this example, p(li j = 2|z j = 2,αi,β j) < p(li j = 2|z j = 1,αi,β j)
when σi j = 2. This situation is usually not legitimate since we
expect subjects are most likely to give correct ratings rather than
wrong guesses of other possible scores. This complication of
li j ∈ {1,2, ...,10} is caused by the dramatically greater normal-
ization factor Ni j of p(li j|z j,αi,β j) when z j = li j. Therefore, we
adopt the normalization shown in Eq. (3) where Ni j is constant
w.r.t. li j and z j. This form implies li j ∈ {z j − 9,z j − 8, ...,z j +
9}. In our experiment, the assumption that li j ∈ {z j − 9,z j −
8, ...,z j + 9} gave much more reasonable results compared with
li j ∈ {1,2, ...,10}.

Figure 4. Probability mass function of photo aesthetic quality assessment

when the range of li j is {1,2, ...,10}. It is shown that p(li j = 2|z j = 2,αi,β j)<

p(li j = 2|z j = 1,αi,β j) when σi j = 2.

Expectation-Maximization Inference
In our model, Li j is the observed random variable; and the

true score Z j can be regarded as a hidden (latent) random variable.

Therefore, the inference can fit into an Expectation-Maximization
(EM) framework. Since we assign prior distributions for both Ai
and B j, we apply EM in a Bayesian manner. To achieve this, we
replace the log-likelihood in the auxiliary function with the log-
posterior. We will later show that using the log-posterior in the
auxiliary function is equivalent to using the log-joint-distribution,
which is adopted in [9]. After the EM iteration converges, a stable
p(z j|lll,ααα,βββ ) is obtained, and we can thus get the inferred true
scores from:

Ẑi = argmax
z j

p(z j|lll,ααα,βββ ), (4)

where Ẑi is a MAP estimation of Z j; lll = {li j|i ∈ III, j ∈ JJJ}, ααα =
{αi|i ∈ III}, and βββ = {β j| j ∈ JJJ} are the sets of li j, αi, and β j for
all i’s and j’s. Since z j only depends on photo j and subjects that
assessed photo j, it holds that

p(z j|lll,ααα,βββ ) = p(z j|lll j,ααα j,β j), (5)

where lll j = {li j′ | j′ = j}; ααα j = {αi|i ∈ III j}, and III j is the set of
subjects who assessed photo j. The details of the EM algorithm
are listed below:

Expectation Step (E-step): In the E-step, we first construct
the probability of the latent true score Z j given all observed scores
LLL and current parameter estimates AAAc and BBBc, where the super-
script c means current. The posterior of Z j can be derived as fol-
lows:

p(z j|lll,αααc,βββ c) = p(z j|lll j,ααα
c,β c

j )

∝ p(z j|αααc,β c
j )p(lll j|z j,ααα

c,β c
j )

= p(z j)∏
i

p(li j|z j,ααα
c,β c

j )

= p(z j)∏
i

p(li j|z j,α
c
i ,β

c
j )

∝ ∏
i

1
Nc

i j
e
− (li j−z j )

2

2σc
i j

2
. (6)

The function p(z j|αααc,β c
j ) = p(z j) can be easily observed from

the graphical model shown in Fig. 2. It is possible to use a prior
distribution for Z j; but we simply assume a uniform distribution
among all possible quality scores.

In our method, ααα and βββ are the counterparts of the unknown
parameter terms in the ML-EM algorithm. For a MAP-EM im-
plementation, we construct the auxiliary function that is defined
as the expectation of the log-posterior

Q(ααα,βββ ) = E[log p(ααα,βββ |lll,zzz)]. (7)

In order to update ααα and βββ , we need to solve for

ααα,βββ = argmax
ααα,βββ

Q(ααα,βββ )

= argmax
ααα,βββ

E[log p(ααα,βββ |lll,zzz)]

= argmax
ααα,βββ

E[log p(ααα,βββ ,lll,zzz)− log p(lll,zzz)]

= argmax
ααα,βββ

E[log p(ααα,βββ ,lll,zzz)]. (8)
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Therefore, it is equivalent to make Q(ααα,βββ ) = E[log p(ααα,βββ ,lll,zzz)]
which is the log-joint-distribution. We can further determine that

Q(ααα,βββ ) = E[log p(ααα,βββ ,lll,zzz)]

= E[log p(lll,zzz|ααα,βββ )+ log p(ααα,βββ )]

= E[log p(lll,zzz|ααα,βββ )]+ log p(ααα,βββ ). (9)

The last step is due to the fact that the expectation is taken on the
latent true score Z j given all observed scores LLL and current param-
eter estimations AAAc and BBBc, i.e. p(zzz|lll,αααc,βββ c), while log p(ααα,βββ )
does not rely on this distribution.

Finally, for the equation that calculates Q(ααα,βββ ) with
p(zzz|lll,αααc,βββ c), p(li j|z j,αi,β j) and the prior distributions of αi and
β j, we have

Q(ααα,βββ ) = E[log p(lll,zzz|ααα,βββ )]+ log p(ααα,βββ )

= E[log(p(zzz|ααα,βββ )p(lll|zzz,ααα,βββ ))]+ log p(ααα,βββ )

= E[log(p(zzz)p(lll|zzz,ααα,βββ ))]+ log p(ααα)+ log p(βββ )

= E

[
log

(
∏

j
p(z j)

)(
∏
i j

p(li j|z j,αi,β j)

)]
+∑

i
log p(αi)+∑

j
log p(β j)

= ∑
j

E[log p(z j)]+∑
i j

E[log p(li j|z j,αi,β j)]

+∑
i

log p(αi)+∑
j

log p(β j)

= ∑
j

10

∑
z j=1

p(z j|lll,αααc,βββ c) log p(z j)

+∑
i j

10

∑
z j=1

p(z j|lll,αααc,βββ c) log p(li j|z j,αi,β j)

+∑
i

log p(αi)+∑
j

log p(β j), (10)

where the third equation is based on the conditional indepen-
dences shown in Fig. 2.

Maximization step (M-step): We use gradient ascent algo-
rithm to find ααα and βββ that maximize Q(ααα,βββ ). In order to achieve
this goal, we need to calculate the gradient along each αi direction
as

∂Q(ααα,βββ )

∂αi
=∑

j

10

∑
z j=1

p(z j|lll,αααc,βββ c)
∂ log p(li j|z j,αi,β j)

∂σi j

∂σi j

∂αi

+
∂ log p(αi)

∂αi
. (11)

Since the log conditional probability of li j can be written as

log p(li j|z j,αi,β j) = log
1

Ni j
e
− (li j−z j )

2

2σ2
i j

=−
(li j− z j)

2

2σ2
i j

− logNi j, (12)

the result of Eq. (11) can be expressed as

∂Q(ααα,βββ )
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j
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z j=1
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2
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2
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e
− (m−z j )

2

2σ2
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)
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σ2
α

. (13)

Furthermore, we can calculate the gradient along each β j direc-
tion with a very similar form:

∂Q(ααα,βββ )

∂β j
= ∑

i

10

∑
z j=1

p(z j|lll,αααc,βββ c)

(
(li j− z j)

2

σ3
i j

− 1
Ni j

z j+9

∑
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(m− z j)
2

σ3
i j

e
− (m−z j )

2

2σ2
i j

)
σi j−

β j−µβ

σ2
β

. (14)

The E-step and M-step are repeated alternatively until conver-
gence, which gives the MAP estimation of ααα and βββ . By calcu-
lating Ẑi = argmax

z j
p(z j|lll,ααα,βββ ), we can further obtain the MAP

estimation of the ground truth aesthetic quality scores.

Experiment Result
In this section we show the experimental result of our al-

gorithm and compare with the results of some traditional ap-
proaches.

Dataset
In our project, we collected a dataset consisting of 234 on-

line fashion shopping photos. We then conducted a psychophysi-
cal experiment to collect assessments for these photos. In total 24
subjects attended our experiment. Each subject did not necessar-
ily assess all 234 photos, so each photo actually received 20 or 21
assessments. An example photo and the assessments collected for
it during the experiment is shown in Fig. 5.

Figure 5. Example of experiment photo. The collected assessments are

{1:10, 2:6, 3:7, 4:9, 5:10, 6:7, 7:8, 9:4, 10:10, 11:8, 12:10, 13:5, 14:9, 15:6,

16:7, 17:9, 19:6, 20:9, 21:7, 22:9, 23:9}, where each assessment is repre-

sented by {Subject ID:Score}. This photo received 21 assessments.
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Inference Accuracy Analysis
First, we infer the quality scores with the majority vote,

rounded average, and the proposed Bayesian EM inference al-
gorithms, which are denoted as Ẑma j , Ẑra, Ẑem, respectively. All
collected assessments are used. While the majority vote method
is straightforward to understand, the rounded average score of a
photo is obtained by calculating the average of all assessments of
a photo and then rounding the result to the nearest integer. For
the parameters used in our algorithm, we set µα = 8, µβ = 8,
σα = 10, and σβ = 10. The parameters µα , µβ are chosen empir-
ically based on the converged ααα and βββ values obtained in exper-
iments with random parameter settings. However, we found that
these parameter values can be adjusted within some range without
dramatically affecting the results. The parameters σα and σβ are
chosen so that the algorithm converges in a reasonable number of
iterations, which means it can converge fast but also gives αi and
β j enough freedom to adjust.

The histogram resulting from the three methods are shown in
Fig. 6. It can be observed that rounded average result and the EM-
inferred result are very similar. Actually, a further exploration of
each photo’s quality score reveals that only 14 photos have differ-
ent rounded average and EM-inferred scores, and their absolute
score differences are all 1. This result can be explained by the
fact that the rounded average score Ẑra is closely related to the
ML estimation of the ground truth score in the presence of addi-
tive Gaussian white noise. While our inference is Bayesian MAP-
based, given a sufficient number of samples and proper prior mod-
els, the ML and MAP estimation should converge to the same ex-
pectation. This suggests that the number of assessments (20 or
21) of each photo gathered in our experiment is large enough to
give robust estimation with either ML or MAP estimation. There-
fore, it makes sense to verify if a smaller number of assessments
would yield better MAP estimation than ML estimation. In ad-
dition, since the majority vote scores show a pattern that is very
dissimilar to that of the other two methods, we would like to in-
vestigate whether it is less reliable than those methods.

Figure 6. Inferred quality score histograms with majority vote, rounded

average, and the proposed Bayesian EM inference algorithms.

In order to assess how reliable the three methods are, espe-
cially with a small number of assessments, we adopt the following

strategy. For each method, we use the inferred scores with all as-
sessments, i.e. Ẑma j , Ẑra, and Ẑem, as the ground truth. We further
infer the scores with a smaller number of subjects, and denote the
estimations as Ẑ′ma j , Ẑ′ra, and Ẑ′em. Subsequently, the root mean

squared error (RMSE) between {Ẑma j, Ẑra, Ẑem} and {Ẑ′ma j , Ẑ′ra,

Ẑ′em} is calculated. A robust algorithm should yield reasonably
low RMSE with even a small number of subjects. Taking the pro-
posed EM inference as an example, the ground truth scores are
obtained by running the algorithm with 24 subjects’ assessments
of all photos until convergence. Then we randomly choose 2 sub-
jects and recalculate the scores only with assessments by these
two subjects. Next, the RMSE between the recalculated scores
and ground truth scores is computed. We repeat this procedure
with 10 sets of randomly chosen 2 subjects, and further deter-
mine the mean and standard error of the mean (SEM) of these
10 RMSE’s. Subsequently, this strategy is applied to group size
3, 4, ..., 23. We start with 2 subjects since with only 1 subject
some photos would receive no assessments. We plot the results in
Fig. 7.

Figure 7. RMSE between scores inferred with all subjects and a subset of

the subjects. Average and standard error of the mean (SEM) for each subject

group size are shown in the diagram.

From the diagram, we can easily see that the majority vote
estimation is indeed the least robust. The RMSE values are dra-
matically larger than for the other two methods. For the rounded
average and proposed method, it can be observed that our algo-
rithm yields noticeably smaller RMSE when the number of sub-
jects is less than 10. As the number of subjects grows, the differ-
ence between these two RMSE’s gets smaller. But in most cases
the EM-inferred algorithm still demonstrates better results. We
also recorded the RMSE values of the three methods for each set
of randomly chosen subjects. 82.73% of the sets have smaller
EM-inference RMSE than rounded average RMSE; 100% of the
sets have smaller EM-inference RMSE than majority vote RMSE.
If we only look at the cases where the number of subjects is equal
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to or smaller than 10, then 95.00% of the sets have smaller EM-
inference RMSE than rounded average RMSE, which proves that
our proposed method is more robust with a small number of ex-
periment participants.

Conclusion
In this paper, we propose a Bayesian-EM approach to infer

the ground truth photo aesthetic quality score from the results of
a psychophysical experiment. This method models the subject
assessment process with three random variables, i.e. the ground
truth score, the difficulty to correctly assess a photo, and the ex-
pertise of the subjects participate in the experiment. Regarding the
subject given score as the observed random variable and ground
truth score as the latent random variable, we fit our model into
an EM framework, and obtain a MAP estimation of the ground
truth score after convergence. The result obtained from the exper-
iment conducted with the fashion shopping photo dataset shows
our method works consistently better than majority vote estima-
tion. Compared with the rounded average, our method also yields
more robust estimation results when the number of subjects is
small.
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