

Face Search in a Big Data System
Qian Lin*, Carlos Ceja**, Meichun Hsu**, Yongqiang Mou*, Min Xu*

* HP Labs, Palo Alto, CA, USA

** Hewlett-Packard Enterprise, Sunnyvale, CA, USA

Abstract

Big data applications are growing rapidly as more sensors are
connected to the internet and gathering business critical
information for processing. Imaging sensors are an important type
of sensors for collecting images and video data, and are widely
deployed on smartphones, video surveillance networks, and robots.
Traditional databases are designed to ingest and search structured
information. The analysis of unstructured information such as
images and videos is often done separately. In this paper, we
describe a big data system with deep integration of face analysis
and recognition in images and videos. We show how we can utilize
the built-in parallelization in the Vertica database system to
accelerate feature computation and search. We also show an
example application of the system for face re-identification and
face search in images and videos.

1. Introduction

High performance database is a core component in a big data

system for large scale ingestion and retrieval of data. Such
database often supports user defined functions that can be added to
the core database engine for running customized analysis of data.
We investigated the possibility of utilizing the user defined
function mechanism in Vertica database system for integrating the
face analysis and recognition in images and videos into the big
data system.

Typically, the face recognition system implements the face
enrollment, face verification, and face identification in a software
application. To expose the functionality to developers, RESTful
API is often used [1]. Facial feature data is internal to the software
application and is not exposed to the developers. When analyzing a
large number of video files or a large number of video streams
from a network of surveillance cameras, the software application
can be launched on a computer cluster using a parallel processing
platform such as Hadoop. The analysis result is then aggregated
into a central database server.

We explore the use of Vertica in face recognition system in
this paper. Vertica is a Massively Parallel Processing (MPP)
platform that distributes its workload over multiple commodity
servers using a shared-nothing architecture [2]. While Vertica
supports standard SQL, it is in fact also a parallel and distributed
computing platform that allows general computation functions to
be executed. Vertica allows users to add User-Defined Extensions
(UDxs), which runs inside of Vertica in parallel. Using UDx’s,
non-SQL computation functions can be launched when data is
ingested (loaded) or when a query is performed. This enables the
workload to run closer to the data and thus is significantly more
efficient for execution. But, more importantly, it allows accessing

all these extensions using the familiarity of the SQL language and
all existing SQL-based tools, and simplifies the end to end system
architecture.

2. Face Recognition Implementation in a
Database

The face recognition system typically includes a component

for enrolling face features into database, and a component for
performing identification. First, the system ingests the image or
video data. It then uses a series of processing steps to detect faces
in the image or video frame, detect facial landmark points, align
faces, and extract facial features. The facial features are then
projected into a smaller dimensional space, and enrolled as face
features. When the system performs identification, it ingests
images and videos, and performs similar operations as the
enrollment process to extract face features from images or videos.
It also loads the face features, and matches the extracted features
against those stored in the database. Figure 1 shows the
conventional face recognition system workflow.

Figure 1: Conventional face recognition system workflow: (a) face
enrollment; (b) face identification.

Our objective is to have a simple yet robust implementation of

face recognition that can process large number of images in
parallel, and store facial features as structured information inside a
database. This will provide the flexibility of performing face
searches using SQL, and the search can be easily combined with
other structured data.

We implement the face recognition function in Vertica
database as user defined analytics functions. Rather than
performing face search in application, we initiate the workflow
from the database, and simplify the application so that it only
performs face feature extraction from the image/video input. Based
on a query initiated to the database, a user defined function that

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-462

IS&T International Symposium on Electronic Imaging 2016
Imaging and Multimedia Analytics in a Web and Mobile World 2016 IMAWM-462.1

computes the face feature is run. The results, including the
locations and times of detected faces, as well as the corresponding
face features, are stored in the corresponding fields of the database.
When a query is initiated to enroll faces, the face features are
calculated and stored in database for enrolled faces. When a query
is initiated to identify faces, face features are calculated, and stored
in database as unknown faces to be identified. The face features are
then compared with those of the enrolled faces using a second user
defined function that computes a similarity score between features.
The resulting face similarity scores as well as rankings are stored
in the database. In practical applications, face features for faces to
be identified often have different storage policy as those in the
enrollment database. Figure 2 shows the new face recognition
system workflow.

Figure 2: New face recognition system workflow.

We describe the processes in more details in the following
paragraphs.

(1) Enrollment process:

During the enrollment process, images and videos containing
faces to be enrolled are uploaded. While uploading, a user-
defined function associated with database is run to detect
faces, and to extract face features. Key data fields, including
the person name, file name, face bounding box coordinates,
and face feature, are stored into the enrollment database.

(2) Verification process:

During the verification process, an image of a person,
together with the name of the person, is uploaded. The face
feature is extracted, and is compared with the face features
with the same name stored in the database. The identity of the
person is verified if the similarity score is larger than a
threshold.

(3) Identification process:

During the identification process, the images and videos to be
evaluated are uploaded. The user-defined function associated
with the database is run to detect faces, and to extract face
features. The face features along with other analysis results
such as face bounding box coordinates are stored in the
database. For each incoming face feature, a second user-
defined function is run to compare the current face feature
with the enrolled features in the database. Top n closest face
images can be retrieved and displayed.

(4) Unsupervised identification process:

The system can also be run in unsupervised mode with no
separate enrollment/identification stages. This can be used to
identify faces that appeared in multiple videos. When the
system is running in this mode, faces found in each evaluation

video will be enrolled automatically. Each new face in the
evaluation video will be enrolled, as well as compared with
all previously enrolled faces.

3. Results

We implemented the facial feature extraction and feature

comparison user defined functions (UDxs) on Vertica database.
We then performed performance analysis to assess the
parallelization capabilities using a Vertica cluster. In this section,
we first describe the user defined functions that we developed. We
then show the performance result. Finally, we show an application
of searching faces in video using Vertica.

3.1. User Defined Functions for Face Recognition

The functions of facial feature extraction and feature comparison
are as follows:

 Facial feature extraction UDx: it takes image or video as
input. Then it performs face detection, face alignment,
and facial feature extraction. Finally, it saves analysis
result, including facial features, into a Vertica table.

 Facial feature comparison UDx: it takes two features
from a Vertica table, and computes a similarity score
between the two features.

The images or videos can be placed in Vertica’s local file system,
or in Vertica’s table. Placing them in a Vertica table has the
advantage that they will be available to all the nodes in a cluster.
In the case that we place images and videos in a local file system,
we can use the following SQL command to create tables, and
perform feature extraction and feature comparison:

(1) Create media path table, which specifies the media type
(image or video) and file location:

CREATE TABLE IMG_INFO (mediatype varchar(256),
imgpath varchar(256));

(2) Create feature table, which includes the features, as well

as face bounding box, facial landmark points, pose (roll,
yaw, and pitch angles), and face sharpness:

CREATE TABLE FEATURE_EXTRACTION_RET(type
varchar(256), imgpath varchar(256), frame INTEGER,
center_x INTEGER, center_y INTEGER, width INTEGER,
height INTEGER, landmarks VARBINARY(3000),
feature_codes INTEGER, features VARBINARY(30000),
yaw FLOAT, pitch FLOAT, roll FLOAT, sharpness FLOAT);

(3) Insert one media record to table IMG_INFO:

For image type:

INSERT INTO IMG_INFO VALUES
('image','/home/dbadmin/workspace/test.JPG');

For video type:
INSERT INTO IMG_INFO VALUES
('video','/home/dbadmin/workspace/test.avi');

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-462

IS&T International Symposium on Electronic Imaging 2016
Imaging and Multimedia Analytics in a Web and Mobile World 2016 IMAWM-462.2

(4) Perform feature extraction:

INSERT INTO FEATURE_EXTRACTION_RET(type,
imgpath, frame, center_x, center_y, width, height,
landmarks,feature_codes,features,yaw,pitch,roll,sharpness)
SELECT FacialFeatureExtraction(mediatype, imgpath)
OVER (partition by imgpath) FROM public.IMG_INFO

(5) Perform feature comparison:

SELECT compareFeature(f1.features, f2.features) FROM
FEA AS f1, FEA AS f2 WHERE NOT(f1.frame = f2.frame
AND f1.center_x = f2.center_x AND f1.center_y =
f2.center_y);

An important consideration for performing data analysis is the

location of the data when Vertica database is deployed on a
computer cluster. If the image data is located in a local file system,
they need to be manually distributed to all the nodes before parallel
analysis can happen. We solve this problem by implementing the
ingestion of image data into the Vertica tables, so that the image
data can be made available for analysis on all Vertica nodes. An
additional image loader function is implemented to load the images
into Vertica table as follows:

(1) Insert all the images (jpg, jpeg, png, bmp) from specific

folder (/tmp/img) into images table:

COPY images SOURCE LoadImagesBase64(File='/tmp/img')
DIRECT;
Or Insert one image (1.jpg) image into images table
INSERT INTO images SELECT
LoadImageBase64('/tmp/img/1.jpg') OVER();

(2) Insert features by analyzing images in table.

INSERT INTO features SELECT
FacialFeatureExtraction(Path, ImageBase64) OVER() FROM
images;
where Path is a string with the imgpath (only for reference),
and ImageBase64 is the string in base64 (a long varbinary in
Vertica).

In the next sub-section, we describe the performance of the face
recognition UDxs in a Vertica cluster.

3.2. Parallel Computation Performance

We conducted experiments to test the parallel processing

capability of our system. When a large amount of image and video
files or streams needs to be processed, feature extraction and
feature comparison user defined functions can be launched on
multiple CPUs and multiple nodes, and data is stored back in the
database. The machines used have Intel(R) Xeon(R)
CPU X5680 @ 3.33GHz, and 48GB memory. Three machines
have 12 CPUs, and 1 have 24 CPUs. We performed facial feature
extraction and face search using face images in the LFW dataset
[3]. Table 1 shows our result. We make the following observation.

• Feature extraction time for 13515 faces is 5.808 minutes for 1
node. This translates to about 40 images per second on one node.
The time is reduced to 1.535 minutes for 4 nodes. This implies
that feature extraction is nearly linearly scalable with the number
of computing nodes.

• Feature comparison operation takes much less time. In the
“All vs All” case where we ran pair-wise comparisons among all
the extracted faces in the dataset, which amounts to over 180
million comparison operations, it takes about 4 hours on one node,
which translates into about 12,500 comparisons per second on one
node. When we ran the same task on 4 nodes, it takes about one
hour. This implies that feature comparison operation is also nearly
linearly scalable with the number of computing nodes.
Furthermore, feature comparison operations combined with top-20
selection in the “All vs All” case also validates the scalability of
the multi-node implementation in accommodating the additional
sorting required.

• When the number of comparison operations is small, as
illustrated in the “1 vs All” cases, the multi-node implementation is
not any faster than a one-node implementation due to the small
amount of computation needed in this case. In our next step we
will explore Vertica streaming to enable fast feature comparisons
with large number of concurrent streaming input. To further
optimize the scale of comparisons as the number of images in the
database increases, we will explore high-dimensional indexing
techniques in Vertica as well.

3.3. Example Application: Person Re-Identification
and Face Search in Video

We can apply the face search in database system to the person
re-identification problem. Suppose that we want to identify
whether a person is observed multiple times by a network of
cameras. This can help map the trajectory of the person’s
movement. We can process the video stream from each camera,
and ingest the analysis data including face features into the
database. To find the matches, a separate user defined function can
be run in parallel to do face comparisons. This makes the
computation more efficient.

As an example, we analyzed 18 sample videos in the NICTA

ChokePoint dataset [1] with multiple people appearing in the
videos. We detected a total of 17649 faces in the video frames and
generated the corresponding face features. We can get
instantaneous response in query time for top 10 most similar face
features. Figure 3 shows our demo user interface for face re-
identification using the ChokePoint dataset. Panel 1 shows a list of
videos that we processed. Panel 2 shows the video player. Panel 3
shows the face images in a video selected from the video list in
Panel 1. Panel 4 shows the most similar faces in other videos when
a face image in Panel 3 is selected. When a face in Panel 4 is
selected, the corresponding video segment during which the person
appears is played in the video player in Panel 2.

For a large camera network observing people over a period of

days or in crowded public areas, the number of faces detected in
videos can easily be in the order of millions. The new approach
scales up to large face numbers very well.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-462

IS&T International Symposium on Electronic Imaging 2016
Imaging and Multimedia Analytics in a Web and Mobile World 2016 IMAWM-462.3

Our system has the following advantages:

(1) Unified still image face recognition and video face

recognition: Our system can handle both face enrollment in
images and videos, and face identification in images and
videos work consistently.

(2) Flexible search: Searching face features in the enrollment
database is run by a user-defined function in the database.
Since the search is now supported using SQL, we can provide
much more flexibility in search. For example, we can
combine face search with other database fields such as
location to yield similar faces in a certain location.

(3) Better scalability: By taking advantage of the parallelization

in the database cluster, the face enrollment and identification
can be parallelized using multiple instances of the database
nodes. This can shorten the amount of time needed to process
a large number of images and videos.

Table 1: The processing times of feature computation, comparison, and ranking for 1 Vertica node and 4 Vertica nodes.

Figure 3: Person re-identification demo user interface using Vertica face search.

Name of Operation Type of Operation
Total # of operations

1 Node 4 Nodes

Time (minutes) Time (minutes)

Features and
Insertion

PARTITION BY image
path 13,515 5.808 1.535

Comparison
1 vs All 13,514 0.022 0.041

All vs All 182,641,710 243.859 60.755

Top 20
1 vs All 13514 0.042 0.044

All vs All 270,300 308.012 64.775

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-462

IS&T International Symposium on Electronic Imaging 2016
Imaging and Multimedia Analytics in a Web and Mobile World 2016 IMAWM-462.4

4. Conclusions

We describe a system that implements unified still image and
video face recognition in a Massively-Parallel Processing (MPP)
database - Vertica. The computation for detecting faces and extract
face features is implemented as a user-defined function of the
database. The facial feature comparison is also implemented as a
user defined function. As a result, a user can issue SQL queries to
do face verification and identification, as well as complex search
commands by using additional attributes in database. Scalability to
process a large number of images and videos is solved using the
parallel processing functions in the database.

5. References

[1] Peng Wu, Rares Vernica, Qian Lin, “Cloud based multimedia
analytic platform”, Proceedings of the 21st ACM international
conference on Multimedia, 2013.

[2] A. Lamb, et al, “The Vertica Analytic Database: CStore 7
Years Later”, Proc. VLDB, 2012.

[3] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik
Learned-Miller, “Labeled Faces in the Wild: A Database for
Studying Face Recognition in Unconstrained Environments”,
University of Massachusetts, Amherst, Technical Report 07-49,
October, 2007.

[4] Y. Wong, S. Chen, S. Mau, C. Sanderson, B.C. Lovell, “Patch-
based Probabilistic Image Quality Assessment for Face Selection
and Improved Video-based Face Recognition”, IEEE Biometrics

Workshop, Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 81-88. IEEE, June 2011.

6. Author Biography

Dr. Qian Lin received her BS from Xi'an Jiaotong University in China, her
MSEE from Purdue University, and her Ph.D. in Electrical Engineering
from Stanford University She is currently a research director working on
computer vision and deep learning research at HP Labs. Dr. Lin is
inventor/co-inventor for 44 issued patents. She was awarded Fellowship by
the Society of Imaging Science and Technology (IS&T) in 2012.

Carlos worked at HP Labs developing prototypes for information
visualization and currently collaborates with Advanced R&D for Big Data
Platform at Hewlett Packard Enterprise on HPE Vertica. At present is
studying his Master Degree in Computer Systems Engineering at ITESO.

Mei is Director of Advanced R&D for Big Data Platform at Hewlett
Packard Enterprise, where she is leading development of scalable analytics
on HPE Vertica. Prior to her current role, she was Director of Intelligent
Information Management Lab at HP Labs where she conducted research in
the areas of scalable data management, business intelligence, and
information visualization. Before joining industrial R&D, Mei was a
professor of computer science at Harvard University.

Yongqiang received his Master Degree in Signal and Information
Processing from Xi’an University of Technology at 2012. He is currently
working as a R&D engineer at HP Labs. His research interests include
computer vision, machine learning, and deep learning, focusing on face
analysis, object tracking, large scale image cluster.

Min received his BS and Master from Central South University in China.
He is currently a research and development engineer working on computer
vision and machine learning at HP Labs.

©2016 Society for Imaging Science and Technology
DOI: 10.2352/ISSN.2470-1173.2016.11.IMAWM-462

IS&T International Symposium on Electronic Imaging 2016
Imaging and Multimedia Analytics in a Web and Mobile World 2016 IMAWM-462.5

