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Abstract 

Big data applications are growing rapidly as more sensors are 
connected to the internet and gathering business critical 
information for processing. Imaging sensors are an important type 
of sensors for collecting images and video data, and are widely 
deployed on smartphones, video surveillance networks, and robots. 
Traditional databases are designed to ingest and search structured 
information. The analysis of unstructured information such as 
images and videos is often done separately. In this paper, we 
describe a big data system with deep integration of face analysis 
and recognition in images and videos. We show how we can utilize 
the built-in parallelization in the Vertica database system to 
accelerate feature computation and search. We also show an 
example application of the system for face re-identification and 
face search in images and videos. 

1. Introduction 
 
High performance database is a core component in a big data 

system for large scale ingestion and retrieval of data. Such 
database often supports user defined functions that can be added to 
the core database engine for running customized analysis of data. 
We investigated the possibility of utilizing the user defined 
function mechanism in Vertica database system for integrating the 
face analysis and recognition in images and videos into the big 
data system. 

Typically, the face recognition system implements the face 
enrollment, face verification, and face identification in a software 
application. To expose the functionality to developers, RESTful 
API is often used [1]. Facial feature data is internal to the software 
application and is not exposed to the developers. When analyzing a 
large number of video files or a large number of video streams 
from a network of surveillance cameras, the software application 
can be launched on a computer cluster using a parallel processing 
platform such as Hadoop. The analysis result is then aggregated 
into a central database server.  

We explore the use of Vertica in face recognition system in 
this paper. Vertica is a Massively Parallel Processing (MPP) 
platform that distributes its workload over multiple commodity 
servers using a shared-nothing architecture [2]. While Vertica 
supports standard SQL, it is in fact also a parallel and distributed 
computing platform that allows general computation functions to 
be executed. Vertica allows users to add User-Defined Extensions 
(UDxs), which runs inside of Vertica in parallel. Using UDx’s, 
non-SQL computation functions can be launched when data is 
ingested (loaded) or when a query is performed.  This enables the 
workload to run closer to the data and thus is significantly more 
efficient for execution. But, more importantly, it allows accessing 

all these extensions using the familiarity of the SQL language and 
all existing SQL-based tools, and simplifies the end to end system 
architecture. 

2. Face Recognition Implementation in a 
Database 
 
The face recognition system typically includes a component 

for enrolling face features into database, and a component for 
performing identification. First, the system ingests the image or 
video data. It then uses a series of processing steps to detect faces 
in the image or video frame, detect facial landmark points, align 
faces, and extract facial features. The facial features are then 
projected into a smaller dimensional space, and enrolled as face 
features. When the system performs identification, it ingests 
images and videos, and performs similar operations as the 
enrollment process to extract face features from images or videos. 
It also loads the face features, and matches the extracted features 
against those stored in the database. Figure 1 shows the 
conventional face recognition system workflow. 

 

 
Figure 1: Conventional face recognition system workflow: (a) face 
enrollment; (b) face identification. 

 
Our objective is to have a simple yet robust implementation of 

face recognition that can process large number of images in 
parallel, and store facial features as structured information inside a 
database. This will provide the flexibility of performing face 
searches using SQL, and the search can be easily combined with 
other structured data.  

We implement the face recognition function in Vertica 
database as user defined analytics functions. Rather than 
performing face search in application, we initiate the workflow 
from the database, and simplify the application so that it only 
performs face feature extraction from the image/video input. Based 
on a query initiated to the database, a user defined function that 
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computes the face feature is run. The results, including the 
locations and times of detected faces, as well as the corresponding 
face features, are stored in the corresponding fields of the database. 
When a query is initiated to enroll faces, the face features are 
calculated and stored in database for enrolled faces. When a query 
is initiated to identify faces, face features are calculated, and stored 
in database as unknown faces to be identified. The face features are 
then compared with those of the enrolled faces using a second user 
defined function that computes a similarity score between features. 
The resulting face similarity scores as well as rankings are stored 
in the database. In practical applications, face features for faces to 
be identified often have different storage policy as those in the 
enrollment database. Figure 2 shows the new face recognition 
system workflow. 
 

 
 
 
Figure 2: New face recognition system workflow.  
 

We describe the processes in more details in the following 
paragraphs. 

 
(1) Enrollment process: 

 
During the enrollment process, images and videos containing 
faces to be enrolled are uploaded. While uploading, a user-
defined function associated with database is run to detect 
faces, and to extract face features. Key data fields, including 
the person name, file name, face bounding box coordinates, 
and face feature, are stored into the enrollment database.  
 

(2) Verification process: 
 
During the verification process, an image of a person, 
together with the name of the person, is uploaded. The face 
feature is extracted, and is compared with the face features 
with the same name stored in the database. The identity of the 
person is verified if the similarity score is larger than a 
threshold. 
 

(3) Identification process: 
 
During the identification process, the images and videos to be 
evaluated are uploaded. The user-defined function associated 
with the database is run to detect faces, and to extract face 
features. The face features along with other analysis results 
such as face bounding box coordinates are stored in the 
database. For each incoming face feature, a second user-
defined function is run to compare the current face feature 
with the enrolled features in the database. Top n closest face 
images can be retrieved and displayed.  
 

(4) Unsupervised identification process: 

The system can also be run in unsupervised mode with no 
separate enrollment/identification stages. This can be used to 
identify faces that appeared in multiple videos. When the 
system is running in this mode, faces found in each evaluation 

video will be enrolled automatically. Each new face in the 
evaluation video will be enrolled, as well as compared with 
all previously enrolled faces.  

3. Results 
 
We implemented the facial feature extraction and feature 

comparison user defined functions (UDxs) on Vertica database. 
We then performed performance analysis to assess the 
parallelization capabilities using a Vertica cluster. In this section, 
we first describe the user defined functions that we developed. We 
then show the performance result. Finally, we show an application 
of searching faces in video using Vertica. 

 
3.1. User Defined Functions for Face Recognition 

 
The functions of facial feature extraction and feature comparison 
are as follows: 
 

 Facial feature extraction UDx: it takes image or video as 
input. Then it performs face detection, face alignment, 
and facial feature extraction. Finally, it saves analysis 
result, including facial features, into a Vertica table. 
 

 Facial feature comparison UDx: it takes two features 
from a Vertica table, and computes a similarity score 
between the two features. 

The images or videos can be placed in Vertica’s local file system, 
or in Vertica’s table. Placing them in a Vertica table has the 
advantage that they will be available to all the nodes in a cluster.  
In the case that we place images and videos in a local file system, 
we can use the following SQL command to create tables, and 
perform feature extraction and feature comparison: 
 

(1) Create media path table, which specifies the media type 
(image or video) and file location:  

CREATE TABLE IMG_INFO (mediatype varchar(256), 
imgpath varchar(256)); 
 
(2) Create feature table, which includes the features, as well 

as face bounding box, facial landmark points, pose (roll, 
yaw, and pitch angles), and face sharpness: 

CREATE TABLE FEATURE_EXTRACTION_RET(type 
varchar(256), imgpath varchar(256), frame INTEGER, 
center_x INTEGER, center_y INTEGER, width INTEGER, 
height INTEGER, landmarks VARBINARY(3000), 
feature_codes INTEGER,  features VARBINARY(30000), 
yaw FLOAT, pitch FLOAT, roll FLOAT, sharpness FLOAT);  
 
(3) Insert one media record to table IMG_INFO: 

For image type: 
 
INSERT INTO IMG_INFO VALUES 
('image','/home/dbadmin/workspace/test.JPG'); 
 
For video type: 
INSERT INTO IMG_INFO VALUES 
('video','/home/dbadmin/workspace/test.avi'); 
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(4) Perform feature extraction: 

INSERT INTO FEATURE_EXTRACTION_RET(type, 
imgpath, frame, center_x, center_y, width, height, 
landmarks,feature_codes,features,yaw,pitch,roll,sharpness) 
SELECT FacialFeatureExtraction(mediatype, imgpath) 
OVER (partition by imgpath) FROM public.IMG_INFO 
 
(5) Perform feature comparison: 

SELECT compareFeature(f1.features, f2.features) FROM 
FEA AS f1, FEA AS f2 WHERE  NOT(f1.frame = f2.frame 
AND f1.center_x = f2.center_x AND f1.center_y = 
f2.center_y);  
 
An important consideration for performing data analysis is the 

location of the data when Vertica database is deployed on a 
computer cluster. If the image data is located in a local file system, 
they need to be manually distributed to all the nodes before parallel 
analysis can happen. We solve this problem by implementing the 
ingestion of image data into the Vertica tables, so that the image 
data can be made available for analysis on all Vertica nodes. An 
additional image loader function is implemented to load the images 
into Vertica table as follows: 

 
(1) Insert all the images (jpg, jpeg, png, bmp) from specific 

folder (/tmp/img)  into images table: 

COPY images SOURCE LoadImagesBase64(File='/tmp/img') 
DIRECT; 
Or Insert one image (1.jpg) image into images table  
INSERT INTO images SELECT 
LoadImageBase64('/tmp/img/1.jpg') OVER(); 
 
(2) Insert features by analyzing images in table. 

INSERT INTO features SELECT 
FacialFeatureExtraction(Path, ImageBase64) OVER() FROM 
images; 
where Path is a string with the imgpath (only for reference), 
and ImageBase64 is the string in base64 (a long varbinary in 
Vertica).  
 

In the next sub-section, we describe the performance of the face 
recognition UDxs in a Vertica cluster. 

 
3.2. Parallel Computation Performance 

 
We conducted experiments to test the parallel processing 

capability of our system. When a large amount of image and video 
files or streams needs to be processed, feature extraction and 
feature comparison user defined functions can be launched on 
multiple CPUs and multiple nodes, and data is stored back in the 
database. The machines used have Intel(R) Xeon(R) 
CPU X5680  @ 3.33GHz, and 48GB memory. Three machines 
have 12 CPUs, and 1 have 24 CPUs. We performed facial feature 
extraction and face search using face images in the LFW dataset 
[3]. Table 1 shows our result. We make the following observation. 
 

• Feature extraction time for 13515 faces is 5.808 minutes for 1 
node. This translates to about 40 images per second on one node.  
The time is reduced to 1.535 minutes for 4 nodes.  This implies 
that feature extraction is nearly linearly scalable with the number 
of computing nodes.   
 
• Feature comparison operation takes much less time.  In the 
“All vs All” case where we ran pair-wise comparisons  among all 
the extracted faces in the dataset, which amounts to over 180 
million comparison operations, it takes about 4 hours on one node, 
which translates into about 12,500 comparisons per second on one 
node. When we ran the same task on 4 nodes, it takes about one 
hour.  This implies that feature comparison operation is also nearly 
linearly scalable with the number of computing nodes.   
Furthermore, feature comparison operations combined with top-20 
selection in the “All vs All” case also validates the scalability of 
the multi-node implementation in accommodating the additional 
sorting required.  
 
• When the number of comparison operations is small, as 
illustrated in the “1 vs All” cases, the multi-node implementation is 
not any faster than a one-node implementation due to the small 
amount of computation needed in this case.  In our next step we 
will explore Vertica streaming to enable fast feature comparisons 
with large number of concurrent streaming input.  To further 
optimize the scale of comparisons as the number of images in the 
database increases, we will explore high-dimensional indexing 
techniques in Vertica as well.  
 
3.3. Example Application: Person Re-Identification 
and Face Search in Video 
 

We can apply the face search in database system to the person 
re-identification problem. Suppose that we want to identify 
whether a person is observed multiple times by a network of 
cameras. This can help map the trajectory of the person’s 
movement. We can process the video stream from each camera, 
and ingest the analysis data including face features into the 
database. To find the matches, a separate user defined function can 
be run in parallel to do face comparisons. This makes the 
computation more efficient.  

 
As an example, we analyzed 18 sample videos in the NICTA 

ChokePoint dataset [1] with multiple people appearing in the 
videos. We detected a total of 17649 faces in the video frames and 
generated the corresponding face features. We can get 
instantaneous response in query time for top 10 most similar face 
features. Figure 3 shows our demo user interface for face re-
identification using the ChokePoint dataset. Panel 1 shows a list of 
videos that we processed. Panel 2 shows the video player. Panel 3 
shows the face images in a video selected from the video list in 
Panel 1. Panel 4 shows the most similar faces in other videos when 
a face image in Panel 3 is selected. When a face in Panel 4 is 
selected, the corresponding video segment during which the person 
appears is played in the video player in Panel 2. 

 
For a large camera network observing people over a period of 

days or in crowded public areas, the number of faces detected in 
videos can easily be in the order of millions. The new approach 
scales up to large face numbers very well. 
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Our system has the following advantages: 
 
(1) Unified still image face recognition and video face 

recognition: Our system can handle both face enrollment in 
images and videos, and face identification in images and 
videos work consistently. 
 

(2) Flexible search: Searching face features in the enrollment 
database is run by a user-defined function in the database. 
Since the search is now supported using SQL, we can provide 
much more flexibility in search. For example, we can 
combine face search with other database fields such as 
location to yield similar faces in a certain location. 

 
(3) Better scalability: By taking advantage of the parallelization 

in the database cluster, the face enrollment and identification 
can be parallelized using multiple instances of the database 
nodes. This can shorten the amount of time needed to process 
a large number of images and videos. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: The processing times of feature computation, comparison, and ranking for 1 Vertica node and 4 Vertica nodes. 
 

 
Figure 3: Person re-identification demo user interface using Vertica face search. 

 

  

Name of Operation Type of Operation 
Total # of operations 

1 Node 4 Nodes 

Time (minutes) Time (minutes) 

Features and 
Insertion 

PARTITION BY image 
path 13,515 5.808 1.535 

Comparison 
1 vs All  13,514 0.022 0.041 

All vs All  182,641,710 243.859 60.755 

Top 20 
1 vs All 13514  0.042 0.044 

All vs All 270,300 308.012  64.775 
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4. Conclusions 

We describe a system that implements unified still image and 
video face recognition in a Massively-Parallel Processing (MPP) 
database - Vertica. The computation for detecting faces and extract 
face features is implemented as a user-defined function of the 
database. The facial feature comparison is also implemented as a 
user defined function. As a result, a user can issue SQL queries to 
do face verification and identification, as well as complex search 
commands by using additional attributes in database. Scalability to 
process a large number of images and videos is solved using the 
parallel processing functions in the database. 
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