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Abstract
Consistent monitoring of a right-of-way (ROW) is an impor-

tant task for protecting the integrity of pipeline infrastructure.
Pipeline monitoring is typically conducted visually by ground
based and airborne inspection crews. In this paper, we present
a real-time full-fledged automated airborne monitoring system
that can detect, recognize, and localize machinery threats such
as construction equipment, occurring on a pipeline ROW. In our
approach, a modular key frame (MKF) selection technique is de-
veloped to improve data processing speed, a pyramid Fourier his-
togram feature is used for feature extraction, and a cascaded clas-
sifier is introduced for object categorization. Experimental results
using two real-world datasets indicate that the proposed system is
able to detect and recognize objects in challenging environments
such as low illumination, varying resolution and partial occlu-
sion. The results also show that our system can reach real-time
processing speeds with good accuracy which offers a new and
useful tool for wide area pipeline surveillance.

Introduction
The most common threat to a pipeline ROW is unauthorized

construction equipment capable of digging into a ROW poten-
tially damaging the pipeline and causing a leak, U.S. DOT [1].
Pipeline incidents caused by excavation damage can result in fa-
talities and injuries, as well as significant cost, property dam-
age, environmental damage, and unintentional fire or explosion.
Pipelines typically span long distances over varying terrain mak-
ing pipeline surveillance a difficult, expensive, and time consum-
ing task. Aircraft are commonly used to inspect pipelines and
airborne imagery is often collected to document the threats along
the ROW. Analysis of the extensive quantity of aerial imagery col-
lected during a surveillance mission is a challenging, time con-
suming and computationally expensive task for human analysts.
Therefore, we developed a fully automated image processing sys-
tem that can perform real-time machinery detection and identifi-
cation tasks to improve pipeline inspection, reduce analysis effort,
and enhance the safety of pipeline infrastructure.

Analyzing aerial surveillance videos containing thousands of
frames manually is a difficult task for human analysts. Even for a
computer vision based algorithm, the examination every frame in
a surveillance video is not a meaningful process when some of the
frames do not contain significant information. It would be much
more efficient to only examine the frames that contain important
information. If frames containing important information can be
selected and processed, then the entire computation time can be
reduced significantly. To this end, we improved upon our previ-
ously developed modular key frame (MKF) selection strategy [2]
to achieve better accuracy and to reach real-time performance.

Vehicle detection has been an interesting focus for machine
vision applications. Zhao et al. [3] utilized the features from the
edges of the front windshield and shadows to detect cars, while a
four elongated edge operator was used for vehicle identification
in [4]. Grabner et al. [5] introduced an on-line boosting method
based on implicit appearance models for car detection, whereas
in [6], a set of feature extraction and classification methods were
exploited for vehicle detection from aerial imagery. Recently, a
hybrid deep convolution neural network approach was developed
for vehicle detection in satellite images [7]. In our earlier work
[8, 9, 10], we designed a multistage framework, which utilizes
monogenic features and a part-based model for automatic machin-
ery threat detection on a pipeline ROW from aerial imagery. In
this work, a hardware-software integrated automated system was
developed. The algorithm flow can be seen in Fig. 1.

The scheme consists of six stages: 1) database connection
and loading, 2) key frame selection and key region selection, 3)
feature extraction, 4) object detection, 5) object identification,
and 6) threat priority assessment. In the first stage, a Postgre-
SQL database server, controller, and executable software are con-
nected, such that the incoming frame is loaded and processed in
real-time. The second stage performs the key frame extraction
by selecting the frames that contain salient information and dis-
carding the rest from further actions. Then a key region selection
technique is used on the selected key frames. Following key re-
gion selection, a pyramidal Fourier histogram of oriented gradi-
ents [11] feature is employed for feature extraction in each key
region. As for object detection and identification, a support vec-
tor machine [12] with radial basis kernel is used, and a cascaded
multiclass object recognition approach is applied for object iden-
tification. Lastly, the threat priority is automatically assigned for
each detected object. Meanwhile, a Keyhole Markup Language
(KML) file is generated for expressing geographic annotation and
visualization within mapping software such as Google Earth and
various Geographic Information Systems (GIS). In this paper, we
focus on the scheme stages from 2 to 6.

Figure 1. Block diagram of the proposed scheme.
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Technical Approach

Key Frame Selection
The aim of MKF selection is to best represent the promi-

nent contents contained within a video with the minimal number
of frames. In real-world implementations, such airborne pipeline
monitoring, key frame selection methods must be capable of per-
forming in real-time. Thus, we developed a new MKF technique,
which is based on cumulative batch updating and sub-region di-
viding, with speeds suitable for real-time processing.

Figure 2. Flowchart of the proposed MKF technique. Fk represents the

current frame.

In this algorithm, a set of frames is required to create an
initial batch with r number of frames, and each frame is parti-
tioned into m× n sub-regions in a batch. Then the intensity dif-
ferences between the corresponding sub-regions in two consec-
utive frames are calculated. Following that, we compute global
means and standard deviations for each sub-region are calculated.
During this process, an adaptive threshold is obtained using the
global mean µ
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where Ti j represents the adaptive threshold of all (i j)th sub-
regions, r is the number of frames in the initial batch, and Dz

i j

represents the zth(z = 1,2, ,r− 1) pixel-wise intensity difference

between (i j)th ub-regions in two consecutive frames. Using Ti j, a
key frame can be determined by
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Once the key frames are extracted from the initial batch, we
add a new frame (frame next to the last frame of the batch) to
this batch and discard the first frame in the initial batch, then we
determine whether the new frame is a key frame or not. This step
is repeated until processing all frames in the datasets. A flowchart
of the described MKF technique is presented in Fig. 2.

Key Region Selection
Based on our observations of real world data, the occur-

rence of objects of interest (i.e., construction equipment) in a
scene is random with varying sizes, colors, textures, and orienta-
tions. However, objects of interest (targets) present stronger cor-
ners compared to the background [11]. Thus, we extract potential
regions-of-interest (ROI) that may contain target objects with the
help of the Harris corner detector [13]. It is worth noting, that
there could be more than one corner on a single object (see Fig.
3(c)). Multiple corners occur because of the complexity of a tar-
gets structure. This can result in the detection of the same object
several times in one location. Our approach to handling this is-
sue is to fuse two or more corners based on predefined distance
among the corners and select the strongest twenty corners from
the key frames. In the case of any two key regions having 25%
or more overlapping areas, we discard one of them to avoid the
repetition. Fig. 3 illustrates the key region selection procedure,
where Fig. 3(a) shows the original image, the results of the de-
tected corners are shown in Fig. 3(b). Fig. 3(c) demonstrates the
twenty strongest corners, and the final predicted key regions are
presented in Fig. 3(d) where it is obvious that a target object (i.e.,
excavator) is within the selected key regions.

Figure 3. Key region selection illustration, (a) input image, (b) initial de-

tected corners, (c) the selected first 20 strongest corners, and (d) the final

estimated key regions.

Pyramidal Approach for Feature Extraction
Once the key regions are obtained, we extract robust fea-

tures from the regions to achieve better target classification perfor-
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Figure 4. Illustration of WFPHOG. WFMHOG: weighted Fourier magnitude

HOG.

mance. We extract features using a pyramid histogram of oriented
gradients (PHOG) [14, 15, 16] in the Fourier domain (only mag-
nitude is considered) with corresponding weighting. This tech-
nique is named Weighted Fourier PHOG (WFPHOG) [[11]. Fig.
4 illustrates the concept of the WFPHOG approach, where there
are three main processes. In the first, (level-0), we divide each
sub-region into two square regions with linearly increasing areas,
then compute HOG feature and map it to a discrete Fourier do-
main with associated weighting. In the second, (level-1), we par-
tition the key region into four sub-regions and then WFPHOG is
computed for each individual region. The final feature is built by
concatenating the features from all levels of the pyramid regions.

Object Detection and identification
After the feature extraction stage, we incorporate a cascaded

object classification algorithm to determine the presence of the
objects. Five steps are performed in this stage. First, we apply
we apply the Radial basis function (RBF) based support vector
machine (SVM) classifier through all extracted features from the
estimated key regions and obtain a confidence score for each tar-
get object. Second, all false detections and true detections col-
lected and used to produce a new set of training data. Third, we
train a new classifier using the new training sets. Then fourth, we
apply the RBF-based SVM classifier algorithm again to produce
another confidence score. Last, we combine current and previous
classification scores and compare it with a threshold. If the com-
bined score is higher than the threshold, the system will define the
key region that contains a target threat, or if the combined score
is lower than the threshold, the system will define the region as
having no threat target. The above five steps may repeat if there is
a false detection found after the step 5. This process will continue
until there is no false positives detected. Fig. 5 depicts the object
detection and identification process.

In object identification, the algorithm will receive the true
signals (the detected objects) from the object detection model,
then the extracted WPFHOG feature is fed to a SVM based multi-
class classifier to perform the recognition task. For object recog-
nition, we manually selected over five hundred images, which are
from the detected objects in the previous dataset, as training sam-
ples and categorized them into 6 classes (5 object classes and 1
unknown class). Due to the current limitations of the training
data, we currently identify only 5 object categories. The capa-
bility of the system will increase as more airborne image data is
collected and as more new objects of interest are identified and
classified.

Threat Assessment
It is critical that the operator be able to quickly dispatch per-

sonnel to the location of an unauthorized intrusion of machinery
into the ROW. Therefore, it is necessary to know the geolocation
of the threat object. To meet this need, we designed a framework
that can automatically produce coordinates of the detected threat
objects. The targets coordinate information is stored in a KML file
which can be easily loaded in mapping software such as Google
Earth/Map, ArcMap, or other GIS software to geographically lo-
cate and visualize the detected machinery threat targets. In addi-
tion, our system automatically assigns a priority level to any given
threat as high, medium and low depending on the targets distance
from the pipeline. More details of the distance computation can
be found in [9].

Experiments and Discussion
To demonstrate the performance of our proposed method,

two real-life datasets were used. These two datasets were cap-
tured by a traditional pipeline surveillance aircraft flown at al-
titudes of 1000 to 1300 feet AGL. The video image resolution
was 1920×1080 pixels, and the two datasets contained 4380 and
10983 frames respectively.

To train our system, we manually selected the positive video
frames (the images with construction vehicles) and negative video
frames (the images without construction vehicles) from the cap-
tured datasets. As for parameters in feature extraction, we set an
18-bin histogram for WPFHOG with two levels of spatial pyra-
mid (see Fig. 4). This constructs a feature vector length of
108(18+ 18+ 4× 18) pixels. Once the final feature is obtained,
a support vector machine with Radial basis kernel is used as the
classifier to detect and identify objects.

For evaluation, we manually defined the ground truth from
the testing datasets, and the different evaluation metrics are com-
puted as follows:

• True Positive Rate (TPR): the proportion of actual positives
that were correctly classified as positive threat objects (ve-
hicles) in the detected target images.

• False Positive Rate (FPR): the proportion of actual negatives
that were incorrectly classified as positive threat objects in
the total number of detections.

• False Negative Rate (FNR): the proportion of missed de-
tected threat objects in the detected target images.

Table 1 summarizes quantitative results on the object detec-
tion for both datasets, and some sample detection results on the
images are shown in Fig. 6. As it can be seen, our approach

Figure 5. Concept of the proposed object detection process.
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achieved a 93.6% to 95.4% TPR with a 17.7% to 22.9% FNR for
both datasets. TPR and FNR are likely to improve with the addi-
tion of new training data. While outputting the detection results,
our system is also able to identify object types and automatically
issue warnings regarding the severity of the detected objects by
providing useful information such as object geolocations, threat
priority, as well as the KML files for mapping and document-
ing the detected objects with mapping systems such as Google
Earth/Map, ArcMap, or other GIS software.

Table 1: Quantitative evaluation of the detection performance

Dataset Number
of Frames

T PR FPR FNR

Dataset 1 4380 93.6% 22.9% 6.4%
Dataset 2 10983 95.4% 17.7% 4.6%

Figure 6. Sample results. Left are the input images and right are the output

images with detected objects marked as yellow bounding box.

Conclusion
In this paper, we introduced an automated airborne pipeline

monitoring system that can be used to monitor pipeline ROWs for
unauthorized intrusions of construction equipment. Our frame-
work includes several distinct stages to detect and identify ma-
chinery threats to the pipeline ROW, and to issue warnings re-
garding the severity of the detected objects. We simulated and
tested this proposed technique under challenging conditions to in-
vestigate its capability and reliability. Test results show that our
system can achieve real-time performance with good accuracy.
Based on these results, we are confident that our automated air-
borne pipeline monitoring system can be used as an accurate, effi-
cient, and practical tool for wide-area pipeline ROW surveillance.
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