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Abstract
Visual place recognition is an interesting technology that can

be used in many domains such as localizing historical photos, au-
tonomous navigation and augmented reality. The main stream of
research in that domain was based on the use of local invariant
features like SIFT. Little attention was given to region descriptors
which can encompass local and global visual appearances. In
this paper, we provide an empirical study on a particular visual
descriptor: covariance matrices. In order to enhance the discrim-
inative power of the descriptor, multi-block based descriptors are
designed and compared. We show further experimental results on
matching test images with reference images acquired in dense ur-
ban scenes in the streets of the city of Paris. Experiments show
that the multi-block based matching algorithms can lead to both
high accuracy and scalability.

Introduction
Overview

Image-based localization is the task of determining the lo-
cation from which a query photo was taken [1, 2, 3, 4, 5, 6, 7].
The problem is commonly formalized as identification of refer-
ence images depicting the same scene as the query which can be
followed by viewpoint estimation. Researchers start to focus on
image-based localization as it enables many interesting applica-
tions such as real-time camera pose tracking and robot navigation
[8].

Unmanned navigation and more generally Advanced Driver
Assistance Systems (ADAS) require localization of the vehicle.
For vehicle localization it is shown that GPS can be the most pop-
ular tool that performs global localization [9]. However, despite
its popularity, GPS has some limitations that are very often ob-
served in dense urban environments. Indeed, in such environ-
ments satellite signals might be intercepted or affected by build-
ings and other urban structures. This limitation in visibility and
bad geometry of satellites or the multi-path problem can then de-
crease the accuracy of the GPS based localization. To alleviate
these shortcomings, other sensors are deployed and added to the
localization system to complete the GPS information. These per-
ception sensors can be a camera or a Lidar.

Simultaneous Localization and Mapping (SLAM) was con-
sidered one of the vision based approach for localization. It was
mainly developed for mobile robots. Good progress has been
achieved in SLAM, but is still far from being an established and
reliable technology due to the lack of robustness. Most place
recognition techniques typically utilize an image retrieval ap-
proach. As can be seen, whether the location is a geo-referenced

3D pose or simply 2D coordinate on a 2D map, image retrieval is
an essential step in any image-based localization system. Image
retrieval can benefit from many advances regarding descriptors
and their matching [10, 11, 10, 12]. It consists in determining
the most similar reference image to a query image, and hence the
most likely location from where the query image was captured.

Image retrieval is based on a trivial fact: a visited place
should give rise to an image similar to the one in the database
for the same location. However, image appearance can drastically
affected by many perturbing factors. This technique requires two
main processing steps: (i) extracting image descriptors on which
the similarity is based, and (ii) computing a similarity score that
should be used in the decision phase.

In [13], the author proposes a fast appearance-Based
Mapping (FAB-MAP) technique, which employs Bag-of-Words
(BOW) image retrieval systems and a Bayesian framework. FAB-
MAP utilizes Chow-Liu trees algorithm in order to compute a
score for the co-occurring visual words. FAB-MAP enables to re-
cover the vehicle current position from reference key images. The
hybrid RatSLAM/FAB-MAP system [14] has shown that map-
ping can be performed even in difficult outdoor conditions when
the environment appearance varies due to changes in illumination
and structure. However, the results clearly show that the map di-
verges when there are long sections of path where no matches
occur.

In [15], the authors propose an image retrieval framework
for image-based localization. They introduce the concept of co-
occurrence matrix that encodes both visual words (dictionary
atoms) and spatial words. The image matching is then scored ac-
cording to the matches found between a request image and each
image in the reference database. The similarity score between a
query image and a database location is equal to the number of
correspondences in the spatially-consistent group.

Paper contribution
Most of image retrieval techniques for image-based local-

ization use feature points such as SIFT and SURF [16] and
many frameworks have been built upon the use of such feature
points. However, much less attention was given to block descrip-
tor. These visual features as such are convenient under small vari-
ations in lighting and orientation. However, under complex and
similar environments, image mismatch can occur. In other words,
a query image, taken from the current location might be matched
to the content of one or more reference images in a large database.
This would eventually lead to the fail of the mapping result.

In this paper, we provide an empirical study on a particular
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image descriptor: Covariance matrix. The paper has two main
contributions. Firstly, applying the descriptor on image-based lo-
calization. Secondly, we provide a quantitative evaluation using
several classifiers.

Global Descriptors
Covariance descriptors

The region covariance descriptor was firstly proposed by
Tuzel et al. in [17]. The idea is to represent a feature distribu-
tion using its sample covariance matrix. Let I be a W ×H one-
dimensional intensity or three-dimensional color image, and F
be the W ×H × d dimensional feature image extracted from I.
F(x;y) = ψ(I;x;y) where ψ is a function extracting image fea-
tures such as intensity, color, gradients, and filter responses, etc.
For a given region R ∈ I, let {fi}i=1...N denote the d-dimensional
feature points obtained by ψ within R. N denotes the number of
pixels in R. The region R is then represented by a d×d covariance
matrix:

C =
1

N−1

N

∑
i=1

(fi−µ)(fi−µ)T

where µ is the mean vector of {fi}i=1...N .
Whenever the region R is rectangular, fast calculation of co-

variance matrices can be provided by the intermediate represen-
tation called integral image. With this representation, covariance
descriptor of any rectangular region can be computed within con-
stant time.

Covariance matrices do not lie on the Euclidean space.
Therefore, an arithmetic subtraction of two matrices would not
measure the distance of the corresponding regions. In fact,
nonsingular covariance matrices are Symmetric Positive Definite
(SPD) and lie on a connected Riemannian manifold. Accordingly,
Riemannian metrics should be used for computing distance and
mean of covariance matrices.

Under the Log-Euclidean Riemannian metric, distance mea-
sure between covariance matrices preserves much of the natural
properties of the affine-invariant metric while being computation-
ally straightforward: the distance between two covariance matri-
ces C1 and C2 is given by,

d(C1,C2) = || log(C1)− log(C2)||

where ||.|| is the vector norm operator (`1 or `2) and log(C) is the
matrix logarithm of the square matrix C.

Thus, every image region, R, can be characterized by
log(CR). Since this is a symmetric matrix, then the feature vec-
tor can be described by a d× (d +1)/2 where d is the number of
channels used to build the covariance matrix.

Another way used to compute the distance between two co-
variance matrices under the affine-invariant Riemannian metric is

ρ(C1,C2) =

√√√√ d

∑
i=1

log2
λi(C1,C2)

where {λi(C1,C2)}i=1...d are the generalized eigenvalues of
C1 and C2 computed from

λiC1xi−C2xi = 0, i = 1 . . .d

and xi 6= 0 are the corresponding generalized eigenvectors.

Block-based descriptors
In order to increase the contribution of a bigger part of their

regions in the resulting descriptor, input images are broken up
into blocks. Then, for each block, the features extraction process
is applied. The final descriptor of the image is obtained by con-
catenating the features vectors of all the constituent blocks. In
our work, we tested three blocks decomposition methods that we
denote by MB1, MB2 and MB3. These methods were proposed
in [17], [18] and [19] respectively. Examples of blocks decompo-
sition are depicted in Figure 1.

(a) Multi-blocks decomposition MB1: overlapping regions case

(b) Multi-blocks decomposition MB2: multiple-patches case

(c) Multi-blocks decomposition MB3: contiguous regions case

Figure 1. Illustration of the multi-blocks image representation. The sought

features correspond to the concatenation of those of the blocks resulting from

the decomposition of the initial image into sub-regions.

Experimental Setup
Generating the image database

The retrieval performance depends on the specificity or dis-
tinctiveness of the scene. Naturally, not all scenes in real world
scenario satisfy this requirement. Fortunately, an autonomous
system is usually collecting a stream of images at a fixed rate
either in time domain or in space domain. Thus, to build the set of

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Intelligent Robots and Computer Vision XXXIII: Algorithms and Techniques ROBVIS-395.2



reference images, we adopt the Google Street View service [20]
that allows having panoramic views from positions along many
streets in the world. A virtual tour was made in the city of Paris us-
ing Street View and a set of 400 reference color images that depict
building facades and other structures was collected with an aver-
age of 4 images per faade. The size of each image is 512×1024
pixels. Figures 2 and 3 show some examples of the reference
dataset for different and same faade respectively.

Figure 2. Examples of different facades in the reference dataset.

Figure 3. Examples of the same facade in the reference dataset.

For testing purpose, we use the reference images in order
to generate four test sets in each of them the similarity with the
reference set is decreased. The test images correspond to zoomed,
cropped and resized views of the reference images. An example
of a reference image and the corresponding test images is shown
in Figure 4.

Descriptor extraction details
The Covariance matrix corresponding to a given image was

generated using d = 14 channels extracted from it. These chan-
nels are respectively x-abscissas, y-ordinates, RGB components,
HSV components, image gradient with respect to x, y and xy. The
size of the descriptor vector is given by d(d + 1)/2 i.e. 105 fea-
tures.

Certainly when dealing with a block-based descriptors case,
the size of the features vector will be multiplied by the number of
blocks into which the image is divided.

Image matching
In order to match the test images with the set of reference

images, two different classifiers were used: the classic k Near-
est Neighbor (kNN) [21] and the Partial Least Square (PLS) [22].

Figure 4. Example of a reference image and the ad-hoc test images corre-

sponding to a zoom factor of 5, 10, 15 and 20% respectively.

The Partial Least Squares (PLS) classifier or regressor is a statis-
tical method that retrieves relations between groups of observed
variables X and Y through the use of latent variables. It is a pow-
erful statistical tool which can simultaneously perform dimen-
sionality reduction and classification/regression. It estimates new
predictor variables, known as components, as linear combinations
of the original variables, with consideration of the observed out-
put values. PLS is also extended to deal with non-linear cases
[23]. In our work, the number of latent components is fixed to
50. Note that each test image is matched against all images in the
reference image set.

Experiments performed
The localization framework used to perform the experiments

is built on two main processing modules which are the descrip-
tor computation and the classification ones. For comparison pur-
poses, several combinations/scenarios are considered for the four
test sets. Table 1 summarizes the set of combinations tested dur-
ing the experiments (each row corresponds to a combination).

In another group of experiments, in order to test the effects
of eventual occlusions that may take place during localization,
e.g. due to the passage of a car near the faade being captured, a
rectangle of a size close to the one of a car has been randomly
added to the test images before running the recognition process
(Figure 5).

Experimental Results
Table 2 shows, for each tested combination, and for the four

test sets, the rate of successful matching corresponding to covari-
ance descriptors. The best performances are shown in bold. The
test sets correspond to increasing zoom levels ranging from 5%
to 20%. As expected, the recognition rate decreases as the zoom
level of the images increases
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Table 1. The combinations distance-block layouts for covari-
ance descriptors.

Distance Blocks Classifier

Log difference - L1 Mono NN
PLSR

Log difference - L1 Multi MB2 NN
PLSR

Log difference - L2 Mono NN
PLSR

Log difference - L2 Multi MB2 NN
PLSR

Log difference - L2 Multi MB3 NN
PLSR

Eigenvalue-based Mono NN
PLSR

Eigenvalue-based Multi MB1 NN
PLSR

Figure 5. Simulating occlusions by adding a rectangle to the test images.

At low zoom level, both classifiers give maximum recogni-
tion rates with no significant differences. However, for a given
classifier, the distance measures and blocks decomposition seem
to have a great impact on the performance. Indeed, Table 2 shows
that the KNN classifier based on multiblock (MB2) combination
achieves a maximum accuracy of about 95%. While, for the
monoblock case the maximum performance was only 89%.

When the zoom level increases, the difference in maximum
performances of classifiers also increases. At 20% zoom level
(the most challenging case), the PLSR classifier reaches a maxi-
mum accuracy of about 95% which is 2% less than the accuracy
achieved at 5% zoom level. For this classifier, the log-difference
L2 distance and the multi-block MB3 decomposition give the best
performance. This tends to confirm that the MB3 layout was bet-
ter than MB1 and MB2 (two known decompositions for covari-
ance descriptors). It seems that the PLSR is less affected by the
zoom increase when compared with the KNN classifier. In fact,
at 20% zoom level, the KNN classifier experiences a 27.5% de-
crease of the maximum accuracy achieved at 5% zoom level. We
can also observe that the eigenvalue based distance gave better
performance than the Log difference distance for the mono-block
case.

Tables 3 shows the results of the same tested combinations
while simulating occlusion in the test image sets. Similarly to
the discussion made above, the classification rates given by the
two classifiers, for a given combination, are close to each other

and decrease with the increasing of the zoom level of the test im-
ages while being smaller than the ones obtained in the absence of
occlusions. The difference in values obtained with and without
simulated occlusions depends on the classifier used in the tested
combination. This difference is negligible for PLSR (less than 1%
on average) and varies between 3.7% and 8.2% in average for NN.
The combinations that led to the best performance when adding
occlusion were the same as in the case without occlusion.

On the other hand, in order to investigate the influence of
the number of the ranking of reference images on the rate dur-
ing classification, several ranks are used by our framework. The
cumulative score obtained for the main combinations (mono and
multi-blocks, L1 and Chi-Squared distances) are depicted on Fig-
ures 6 and 7.

Figure 6. Cumulative score (NN) for covariance monoblock log difference.

Figure 7. Cumulative score (NN) for covariance multiblocks log difference.

Conclusion
In this paper, we have presented an empirical study on a par-

ticular image descriptors and its use for visual place recognition
in urban scenes. The study showed that the use of multi-block
based features can enhance the discrimination of the obtained fi-
nal descriptor. The study was limited to a relatively small refer-
ence dataset. This is justified by the fact that in real application
the system can have partial information on the neighborhood so
the automatic image retrieval does not need to do a search among
millions of images. The conducted study showed that the use of
multi-block based covariance descriptor with the PLS classifier
can lead to good and robust results. Future work can investi-
gate the use of deep learning paradigms in order to simultaneously
solve the feature extraction and the matching process.
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Table 2. Correct classification rate (%) obtained with covariance descriptors for different tested distances and different kinds of
image decomposition (mono-block and multi-block cases).

Test set 1 Test set 2 Test set 3 Test set 4
(5% zoom) (10% zoom) (15% zoom) (20% zoom)

Distance and decomposition NN PLSR NN PLSR NN PLSR NN PLSR
Log difference - L2 (monoblock) 78.8

75.8

67.0

70.0

50.8

62.8

31.8

53.8
Log difference - L1 (monoblock) 89.0 80.3 73.3 54.8
Eigenvalue-based (monoblock) 91.5 84.8 87.3 65.8
Log difference - L2 (multiblock MB2) 86.8

89.5
76.0

85.3
68.2

76.5
50.7

53.8Log difference - L1 (multiblock MB2) 95.3 92.0 83.0 67.8
Eigenvalue-based (multiblock MB1) 87.0 96.8 80.3 94.5 68.5 91.3 51.3 87.8
Log difference - L2 (multiblock MB3) 92.8 97.5 87.0 97.5 81.3 96.5 65.8 95.3

Table 3. Correct classification rate (%) obtained with covariance descriptors, in the presence of simulated occlusions, for different
tested distances and different kinds of image decomposition (mono-block and multi-block cases).

Test set 1 Test set 2 Test set 3 Test set 4
(5% zoom) (10% zoom) (15% zoom) (20% zoom)

Distance and decomposition NN PLSR NN PLSR NN PLSR NN PLSR
Log difference - L2 (monoblock) 72.3

73.3

61.0

68.5

43.2

59.5

27.8

50.8
Log difference - L1 (monoblock) 86.8 76.0 68.3 50.8
Eigenvalue-based (monoblock) 85.8 77.3 76.8 59.0
Log difference - L2 (multiblock MB2) 78.8

89.3
67.0

82.5
50.8

73.3
31.8

62.3Log difference - L1 (multiblock MB2) 94.8 89.8 72.8 61.5
Eigenvalue-based (multiblock MB1) 84.0 95.5 75.5 94.5 63.3 90.3 47.8 86.0
Log difference - L2 (multiblock MB3) 92.6 97.5 85.8 97.5 79.8 95.8 60.5 94.3
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