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Abstract. An automatic system to extract terrestrial objects from
aerial imagery has many applications in a wide range of areas.
However, in general, this task has been performed by human
experts manually, so that it is very costly and time consuming. There
have been many attempts at automating this task, but many of the
existing works are based on class-specific features and classifiers.
In this article, the authors propose a convolutional neural network
(CNN)-based building and road extraction system. This takes
raw pixel values in aerial imagery as input and outputs predicted
three-channel label images (building–road–background). Using
CNNs, both feature extractors and classifiers are automatically
constructed. The authors propose a new technique to train a
single CNN efficiently for extracting multiple kinds of objects
simultaneously. Finally, they show that the proposed technique
improves the prediction performance and surpasses state-of-the-art
results tested on a publicly available aerial imagery dataset.
c© 2016 Society for Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2016.60.1.010402]

INTRODUCTION
Extraction of buildings and roads from aerial imagery
has many applications in a wide range of areas including
automated map making, urban planning, change detection
for real-estate management, land use analysis, disaster relief,
etc. However, to date this task has been performed by
human experts manually, so that it is a very costly and
time-consuming process. Accurate pixel labeling of a large
aerial image is a complex attentional task for a human,
because terrestrial objects have a great deal of variation
in their shapes, and an object may be occluded by other
objects such as trees and also by buildings’ shadows.
Therefore, automatic extraction of buildings and roads is
highly demanded and many attempts have been proposed in
the remote sensing literature.

There are many previous works that have attempted
to extract terrestrial objects from aerial imagery. Many of
these works use local image features to classify each pixel
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or segment to an object label, so that the way in which the
features are designed is critical for the performance.

Sirmacek et al.1 proposed a probabilistic framework
to detect buildings, utilizing four different methods for
local feature extraction. First, they separately used a Harris
corner detector,2 gradient-magnitude-based support regions
(GMSRs),3 Gabor filtering in different orientations,4 and a
features from accelerated segment test (FAST)5 to extract
feature vectors from aerial imagery and obtain four different
estimation results of building locations. The parameters of
these methods were adjusted independently for the dataset
used in the article. Then they combined the separate
estimation results from different features into a single
building detection output by utilizing data and decision
fusion methods.

Senaras et al.6 also proposed a decision fusion method
for building detection. They first performed mean-shift
segmentation to an aerial image with a preliminary learned
band width parameter, and then calculated the normalized
difference vegetation tndex (NDVI)7 from the red color
channel of the aerial image and the corresponding infrared
image. The NDVI image was binarized with Otsu’s method8
to extract vegetation segments. They also performed this
binarization on a hue–saturation–intensity (HSI) image con-
verted from a three-channel image consisting of infrared–
red–green to extract shadow regions. Using the results of
these pre-processings, both vegetation and shadow segments
were excluded from the group of all candidate segments.
To classify the remaining segments into building class or
background, they extracted 15 different image features from
each segment. Then, they trained 15 different classifiers
with those features and classified each segment by the 15
classifiers independently and obtained 15 decisions for a
single segment. Finally, all decisions for a segment were
combined by utilizing fussy stacked generalization.9

These methods based on decision fusion have achieved
accurate extraction of terrestrial objects from aerial imagery.
However, they have utilized local image features specially
designed for extracting a specific object, and the fusion
techniques of multiple decisions have also been intended to
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extract a specific object. There are not as many methods for
extracting multiple objects simultaneously as for extracting
each object separately, although there are many different
terrestrial objects in aerial imagery, and applications (e.g.,
automated map making) cannot be achieved by extracting
only one object. Furthermore, the occurrence of some
terrestrial objects is correlated with other objects, especially
in the case of buildings and roads in urban scenes. Therefore,
we assume that the consideration of multiple objects
simultaneously will improve the performance of extraction
of each object.

In this article, we aim at automatically obtaining good
feature extractors for both buildings and roads from raw
pixel values without any pre-processing. We achieve this
by utilizing convolutional neural networks (CNNs) that are
trained on a publicly available large aerial imagery dataset.10
We show that our CNNs can also classify all pixels in
aerial imagery into buildings, roads, or background more
accurately than previous works.10–12 Our method does not
need to design image features manually, and the training of
multiple classifiers independently for each terrestrial object
to be extracted is also not needed. Therefore, our method
does not need to consider how to fusemultiple decisions, and
the output of our CNNs inherently constructs three-channel
label images (buildings–roads–background).

The rest of this article is organized as follows. The
second section introduces some related works that use CNNs
for aerial imagery interpretation, and then presents a brief
overview of our contributions. The third section presents
a brief overview of convolutional neural networks which
constitute the core of our system. The fourth section presents
the details of our proposed methods, including the problem
formulation to predict building, road and background
labels simultaneously. The fifth section presents the training
settings of the CNNs. The sixth section describes the datasets
that we use for training and evaluation of our proposed
methods. The seventh section presents experimental setups
and evaluation results of our proposed methods on the
datasets. The eighth section discusses the experimental
results and the ninth section summarizes ourmost important
findings.

RELATEDWORKS AND CONTRIBUTIONS
Approaches utilizing artificial neural networks to solve
aerial imagery interpretation problems have already been
proposed and have achieved good performance. Mnih et
al.11 proposed a road extraction system utilizing restricted
Boltzmann machines (RBMs). They formulated the problem
of extraction of road pixels from aerial imagery as a
patch-based semantic segmentation task. An input aerial
image is divided into 64 × 64 patches, and principal
component analysis (PCA) is applied to them to reduce the
dimensionality. Then those PCAvectors are used to fine-tune
an RBM that has been pre-trained in an unsupervised
way.13 This RBM predicts a road probability map from
a PCA vector of an aerial imagery patch. They finally
trained a post-processing network that refines the predicted

probability maps to incorporate structures such as road
connectivity into the final outputs. They evaluated the
performance of their method with a large dataset that
consisted of aerial imagery and corresponding binary road
label images. The dataset covered roughly 500 km2.

This RBM-based road extraction method was updated
by utilizing convolutional neural networks and incorporating
two different noise models.12 They considered two types
of noise occurring in label images, omission noise and
registration noise. The former occurs when an object
that appears in aerial imagery does not appear in the
corresponding label image. The latter occurs when the
location of an object in a label image is inaccurate. They
proposed asymmetric Bernoulli distribution and translational
noise distribution to handle these two types of noise. Finally,
they showed the effectiveness of the noise models and
state-of-the-art results of road extraction. However, in the
Ph.D. thesis by Mnih,10 he concluded that label noise has a
negative but relatively small effect on prediction results in the
case of the method utilizing neural networks because of its
powerful representational ability.

Our contributions in this article are threefold. First, we
propose a multi-channel prediction method with a single
CNN based on the patch-based formulation of semantic
segmentation of aerial imagery.11 We train a CNN that has
a three-channel output layer and predict buildings, roads,
and background simultaneously. Second, we propose a new
output function for the CNN to consider the specialty of the
background class. Third, we propose a new model averaging
method that can avoid producing patchy results such as those
in Figure 6(a).

The first and second proposals are deeply related with
each other. The labels that we consider, namely, buildings
and roads, are correlated with each other, so we assume
that if we exploit the correlation effectively with CNNs, the
simultaneousmulti-channel predictionwill bemore accurate
compared with predicting each channel independently with
different CNNs that have a single-channel output. Thus,
we predict the probabilities of both buildings and roads at
each pixel. To predict multiple labels, we have to consider
the background class at the same time. However, there are
potentially a large number of classes in the background
(e.g., tree, river, sea, dog, human, car, etc.), so a feature to
represent the background class would be difficult to obtain
compared with a feature to represent a single class, namely,
buildings or roads. Therefore, we assume that if we suppress
the effect of the background class in the loss function for
the training CNNs, the CNNs can learn about building and
road representations more effectively. Therefore, we propose
a new output function for the CNNs. Utilizing this function
during training improves the performance of the CNN that
predicts multi-channel label images. Our CNN surpasses
state-of-the-art performance; however, it does not need any
further machinery such as noise models and structured
prediction which are utilized in conventional methods.10–12

Our third proposal is a new model averaging technique
for semantic segmentation with CNNs. It performs model
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Figure 1. The architecture of the CNN used in this article.

averaging in the conventional sense and also performs
smoothing over the outputs simultaneously. This article
uses the same CNN architecture as our previous article.14
However, we substantially improve the performance by
utilizing the new output function and this new model
averaging technique first proposed in this article.

CONVOLUTIONAL NEURAL NETWORKS
In recent years, convolutional neural networks have attracted
much attention in the computer vision area. Convolutional
neural networks can be trained as robust feature extractors
from raw pixel values and, at the same time, learn classifiers
for object recognition tasks,15 regressors for human pose
estimation tasks,16 or mappings for semantic segmentation
tasks.17 A CNN is a biologically inspired variant of a
multi-layer perceptron. The base idea of CNNs was intro-
duced by Fukushima18 in 1980 as a neural network model
for visual recognition tasks. The model, Neocognitron,
stacks convolutional layers and pooling layers alternately.
These layer architectures are inspired by the receptive
fields and the hierarchical structure in the cat’s visual
cortex found by Hubel and Wiesel19 in 1962. Convolutional
neural networks utilize these layer architectures as their
components. One of the early successful applications of
CNNs is the hand-written digit recognition system proposed
by LeCun et al.20,21 They introduced a way to train
CNNs with a classical gradient-based optimization method,
backpropagation, which has been utilized to optimize
parameters of multi-layer perceptrons since the work of
Rumelhart et al.22

Base Architecture
The characteristics of CNNs are alternatively stacked con-
volutional layers and spatial polling layers, often followed
by one or more fully connected layers as in a multi-layer
perceptron. Figure 1 shows the base architecture we use in
this article. A convolutional layer has a number of filters and
convolves them on an input image for extracting features. A
pooling layer applies subsampling to the output of the next
lower layer for acquiring translational invariance. Our CNN

has five layers containing trainable parameters. The input is a
64× 64-sized three-channel RGB aerial imagery patch, and
the output is a 768-dimensional vector, which we reshape to
a 16× 16-sized three-channel image patch that consists of
buildings–roads–background channels.

We describe this architecture as C(64, 16 × 16/4)–
P(2/1)–C(112, 4 × 4/1)–C(80, 3 × 3/1)–FC(4096)–
FC(768), where C(a, b× b/c) means a convolutional layer
consisting of a filters that are b× b-sized and the convolution
stride is c, P(a/b) means an a× a max pooling layer with
stride b, and FC(a) means a fully connected layer that has
a units. We describe this architecture for multi-channel
prediction as ours in all tables and figures in this article, and
the conventional version for single-channel prediction that
has 256 units in the last layer10 is described asMnih-CNN.

PROPOSEDMETHOD
The goal is to predict a multi-channel label image M̃ from
an input aerial image S. Figure 2 shows an example of S
and M̃. We directly learn a mapping from raw pixels in S
to a true label image M̃ by training the CNN. Let K ′ be the
number of object classes of interest; label image M̃ hasK ′+ 1
channels. Because it is difficult to consider all objects that can
appear in aerial imagery as classes of interest, we consider the
background class to represent a pixel that does not belong to
any of the K ′ classes of interest. In this article, we extract two
objects, buildings and roads, so that a label image consists
of three channels, buildings, roads, and background. Let K
denote the number of all classes including the background,
K =K ′+ 1= 3. Here, a label image is aK -channel image, so
that each single pixel on the label image is a K -dimensional
vector. In a label image, the sum over all elements of a pixel
vector is always one because each pixel should always be
either buildings, roads, or background.

Patch-based Formulation
In this article, we formulate the pixel labeling task in a similar
way to what has been proposed by Mnih et al.10 We train
the CNN to predict a wm × wm-sized true label patch m̃
from a ws × ws-sized aerial imagery patch s. Each pixel
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(a) Aerial imagery S (b) Ground truth M (c) Predicted label image M

Figure 2. An example of the resulting predicted label image.

at location i in a true label patch m̃ is a K -dimensional
one-hot vector, m̃i = [m̃i1, m̃i2, . . . , m̃iK ]. We describe the
output of the CNN by m̂, that is a wm×wm-sized predicted
label patch. Each pixel at i in a predicted label patch m̂ is
also a K -dimensional vector. Here, we assume that all pixels
in a true label patch m̃i (i = 1, . . . ,w2

m) are conditionally
independent of each other given a corresponding aerial
imagery patch s. Therefore, the posterior of a true label patch
given an aerial imagery patch is represented as

p(m̃ | s) =
w2
m∏

i=1

p(m̃i | s). (1)

We train the CNN to maximize this posterior by minimizing
the negative log likelihood defined as

L = −
w2
m∑

i=1

ln p(m̃i | s). (2)

Figure 3 shows the size difference between the input and
output patches. For example, focussing on a small region
as depicted in the leftmost patch in Fig. 3, it is difficult to
recognizewhat it is. However, if an input aerial imagery patch
has wider region as depicted in the center image in Fig. 3,
some context information can be utilized to predict labels,
and it can be recognized as a part of a building. Therefore,
we set the size of an input patch ws larger than the size of a
predicted label patch wm, as depicted in the rightmost figure
in Fig. 3. This technique for context consideration is also
utilized by Mnih et al.11 and improves the performance.

Channel-wise Inhibited Softmax
In this article, ws = 64, wm = 16, and K = 3. We reshape
the last layer of the CNN (a 768-dimensional vector) to a
16× 16× 3-sized image patch form. Let xi = [xi1, xi2, xi3]T
denote the ith pixel in this output patch. The softmax
operation

m̂ik =
exp(xik)∑
j exp(xij)

(3)

(a) (b)

Figure 3. The size difference between the label image patch m̃ and the
aerial imagery patch s.

is applied to each element of xi to convert it into a label
probability vector m̂i = [m̂i1, m̂i2, m̂i3]

T. Each posterior at
a pixel i is represented as p(m̃i | s) =

∏K
k=1 m̂

m̃ik
ik , where

m̃i = [m̃i1, m̃i2, m̃i3]
T is a one-hot vector to represent a true

label vector at pixel i. The negative log likelihood is calculated
as below, and we minimize this loss by stochastic gradient
descent23 with backpropagation:22

L = −
w2
m∑

i=1

K∑
k=1

m̃ik ln m̂ik. (4)

Here, we propose a new output function called channel-
wise inhibited softmax (CIS). We inhibit all units in a specific
channel in the output layer of the CNN before calculating
softmax. In concrete terms, we put zero in all of the output
units of the CNN in the background channel, namely, ∀i, xi1,
and then calculate softmax by Eq. (3). Let π(·) denote an
element-wise operation of the normal softmax to a vector
and � denote an element-wise product. The predicted
three-channel probability vector at pixel i that is calculated
with CIS is

m̂CIS
i ≡ π(c� xi), where c= [c1, c2, . . . , cK ]T,

m̂CIS
ik =

exp(ckxik)∑
j exp(cjxij)

, ck =

{
0, if k= 1,
1, otherwise.

(5)
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Then the loss function is defined as

LCIS
= −

w2
m∑

i=1

K∑
k=1

m̃ik ln m̂CIS
ik . (6)

The derivative of this loss function at xij is

∂LCIS

∂xij
= −

K∑
k=1

m̃ik
1

m̂CIS
ik

∂m̂CIS
ik

∂xij

= −

K∑
k=1

cjm̃ik(δjk− m̂CIS
ij )

= cj

{
m̂CIS

ij

K∑
k=1

m̃ik−
K∑
k=1

m̃ikδjk

}
= cj(m̂CIS

ij − m̃ij), (7)

where

∂m̂CIS
ik

∂xij
=

∂

∂xij
exp(ckxik)∑K
l=1 exp(clxil)

=

{
cjm̂CIS

ik (1− m̂CIS
ij ), if j= k,

cjm̂CIS
ik (0− m̂CIS

ij ), otherwise,

δjk =

{
1, if j= k,
0, otherwise.

It should be noted that
∑K

k=1 m̃ik = 1 is applied to the last
but one line in Eq. (7).

Model Averaging with Spatial Displacement
Model averaging is an ensemble learning method to avoid
overfitting. Especially in the context of neural networks,
Dropout24 is known as a way to obtain a similar effect
of model averaging within a single network. We utilize
Dropout with dropout rate = 0.5 in the FC(4096) layer for
regularizing networks, but we also explicitly perform model
averaging by training multiple CNNs that have the same
architecture but are initialized with different weights. In this
article, we train each model eight times. Each training stage
is started from different initial weights that are sampled from
the same Gaussian distribution with different random seeds.

In the inference stage, we give eight displaced input
aerial images with different offsets to those eight versions of
a single model. We call this operation model averaging with
spatial displacement (MA). Figure 4 shows that eight inputs
for eight different versions of a single model are displaced
by d (0 ≤ d ≤ 7) pixels from the original image location.
The predicted label patches of those versions are tiled with
the same displacement d to synthesize a final predicted label
image. After tiling those patches, we divide all pixel values by
eight for averaging.

LEARNING
We learn all parameters in the CNN by minimizing the loss
function with mini-batch stochastic gradient descent with

Figure 4. Model averaging with spatial displacement.

momentum. During learning, we reduce the learning rate
by multiplying by a fixed reducing rate every τ iterations.
Furthermore, we regularize the network with L2 weight
decay. Therefore, the hyper-parameters in the learning stage
are the mini-batch size, the learning rate (LR) η, the LR
reducing rate γ , the LR reducing frequency τ , a weight
of the momentum term α, and a weight of the L2 weight
decay β . The learning rate η is started from η0, and we
use the following values for all experiments in this article:
η0 = 0.0005, τ = 104, γ = 0.1, α = 0.9, β = 0.0005, with
the mini-batch size= 128. These values are chosen based on
Ref. 12.

During training of the CNN, we perform real-time data
augmentation to extend the dataset by performing two kinds
of transformations to both the input aerial imagery patch
and the corresponding true label patch. We apply rotation
with a random angle θ and random L–R flip to them. The
random angle θ is sampled from the uniform distribution,
θ ∼U (0, 2π), for every patch. Both the input aerial imagery
patch and the true label patch are rotated around the center
point with the same angle. L–R flipping is also performed
randomly and equally to both inputs and true label patches.

After performing transformations to the inputs and
true labels, the input aerial imagery patch is normalized by
subtracting the mean value and dividing by the standard
deviation. This procedure is called global contrast normal-
ization (GCN).25

DATASET
We built a new dataset by selecting data from two datasets,
Massachusetts Buildings Dataset (Mass. Buildings) and
Massachusetts Roads Dataset (Mass. Roads), which are
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Table I. Overview of the datasets.

Dataset name Training Test Validation

Massachusetts Roads10 (Mass. Roads) 1108 49 14
Massachusetts Roads-Mini (ours ) (Mass. Roads-Mini) 137 10 4
Massachusetts Buildings10 (Mass. Buildings) 137 10 4
Massachusetts Buildings & Roads (ours ) (Mass. BR) 137 10 4

proposed by Mnih10 and publicly available on website
http://www.cs.toronto.edu/∼vmnih/data/.WemergedMass.
Buildings and Mass. Roads to create Massachusetts Buildings
and Roads dataset (Mass. BR) which has multi-channel
label images. The size of all images in these datasets is
1500× 1500 and the resolution is 1 m2/pixel. Table I shows
the composition of all datasets we use in this article. Both
Mass. Buildings and Mass. BR consist of 151 pairs of aerial
images and corresponding single-channel label images.
These datasets cover a large area of roughly 340 km2. Each
dataset is divided into three groups. The training, test, and
validation subsets of both datasets comprise 137, 10, and
4 images, respectively. On the other hand, Mass. Roads
consists of 1171 pairs, and these are separated into 1108
training images, 49 test images, and 14 validation images.

To create theMass. BR dataset, we selected aerial images
that had both building labels and road labels from Mass.
Buildings and Mass. Roads. Then we found that all aerial
images in Mass. Buildings are included in Mass. Roads.
Therefore, we added road labels to Mass. Buildings. We
synthesized three-channel label images by stacking building,
road, and background label images as the three channels.
Background labels were created by calculating the XOR of
building and road label images. Examples of an aerial image
and the corresponding three-channel label image in this new
dataset are shown in Fig. 2(b).

Finally, we found that we cannot compare the result of a
model trained on Mass. BR with another model trained on
Mass. Roads directly, because some images in the training
set of Mass. BR are included in the test set of Mass. Roads.
Therefore, we took subsets of the Mass. Roads dataset and
created the Mass. Roads-Mini dataset. The training, test,
and validation images in Mass. Roads-Mini are completely
the same as in Mass. BR, but Mass. Roads-Mini has only
road labels. Hence, using Mass. Roads-Mini dataset to
train a single-channel CNN, we can directly compare the
road prediction result with the road channel result of the
multi-channel CNN.

EXPERIMENT
To show the effectiveness of CIS and MA by comparing with
the previous work,10 we train a single-channel CNN, namely,
Mnih-CNN (third section), on Mass. Buildings and Mass.
Roads separately with data augmentation (fourth section)
and model averaging with spatial displacement (fourth
section).

(a) Precision-recall curve of building label prediction

(b) Precision-recall curve of road label prediction

Figure 5. Precision–recall curves.

Table II shows the performance of the single-channel
predictions of the conventional method12 in the top three
rows and the performance of the single-channel prediction
with MA. Table III shows each channel’s result of ours. It
should be noted that all of our models are trained with data
augmentation, although we do not describe this explicitly
in all tables. Ours (multi-channel with CIS) means that the
model is trained on Mass. BR and the loss function is
calculated by Eq. (6). All values in these tables are recalls
at breakeven points of the relaxed precision–recall curves
depicted in Figure 5, and the detail is described in the next
subsection.

Evaluation Metric
The most common metrics for evaluating building and
road extraction results are precision and recall. In the
remote sensing literature, these are also called correctness and
completeness.26 The precision is the ratio of the number of
true building or road pixels in label images to the number
of pixels detected as belonging to building or road in the
predicted label images, while the recall is the ratio of the
detected pixels to the true pixels.
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Table II. Recall at breakeven on the test dataset of the single-channel prediction models.

Model Mass. Mass. Mass.
Buildings Roads Road-Mini

Mnih-CNN10 0.9150 0.8873 N/A
Mnih-CNN+ CRF10 0.9211 0.8904 N/A
Mnih-CNN+ Post-processing net10 0.9203 0.9006 N/A
Ours (single-channel with MA) 0.9426 0.9047 0.9005

Table III. Recall at breakeven on the test dataset of themulti-channel predictionmodels.

Model Building channel Road channela

Ours (multi-channel with MA) 0.9413 0.9019
Ours (multi-channel with CIS) 0.9459 0.9065
Ours (multi-channel with CIS + MA) 0.9488 0.9118

a This can be compared with the results of Road-Mini.

However, to compare our results with the results
reported by Mnih,10 we use the same metric to evaluate our
results. They used relaxed precision and recall scores instead
of exact precision and recall scores for all experiments. The
relaxed precision is defined as the fraction of detected pixels
that are within ρ pixels of a true pixel, while the relaxed recall
is defined as the fraction of true pixels that are within ρ pixels
of a detected pixel. Relaxation of the precision and recall in
this manner is also used in Wiedemann et al.26. Then, in all
experiments in this article, the slack parameter ρ is set to 3,
which is the same value as used in Wiedemann et al.26 and
Mnih.10

A precision and recall curve consists of many sets of
precision and recall values at different thresholds. In other
words, to draw the curve, each point is calculated as a set
of precision and recall values at threshold t , and t ranges
over [0, 1]. Then, we summarize this curve with a recall at
the breakeven point. At a breakeven point, the precision and
recall values are equal. All values in Tables II–IV are recalls
at breakeven points.

Evaluation on Urban Area
To show the benefit of using the correlation between
buildings and roads in aerial images, we perform further
evaluation. We assume that if our model utilizes the
correlation effectively, the performance should be better
than the conventional model, with a larger margin in urban
regions in which both buildings and roads appear. Because
if a patch has only road or building pixels, the correlation
cannot be utilized, we extract 64 × 64-sized patches that
have both Nb building pixels and Nr road pixels, where
Nb >w2

s /K and Nr >w2
s /K from test images. Here, w2

m and
K are the number of pixels in a patch (64 × 64) and the
number of classes (K = 3), respectively. Thus, the extracted
patches always include both buildings and roads with a
larger area than a third of the whole area of the patch. We

Table IV. Recall at breakeven on the selected region of the test images.

Model Mass. buildings or
buildings channel

Mass. roads-mini or
road channel

Ours (single-channel with MA) 0.9418 0.8507
Ours (multi-channel with MA) 0.9539 0.8701
Ours (multi-channel with CIS + MA) 0.9686 0.9020

(a) without model averaging
with spatial displacement

(b) with model averaging
with spatial displacement

Figure 6. A prediction result of Mnih-CNN-Multi.

evaluate three models on the extracted test patches. Table IV
shows the resulting recalls at breakeven points. The row
of ours (single-channel with MA) shows the results of the
single-channel models trained on Mass. Buildings or Mass.
Roads-Mini separately, and MA is used to create the final
outputs. These are used to discuss the effectiveness of the
multi-channel output by comparing with ours (multi-channel
with MA) and ours (multi-channel with CIS + MA).

DISCUSSION
For single-channel prediction, Table II shows that ours
(single-channel with MA) is the best result on all datasets. All
the models in this table are to predict a single-channel label
image that represents either building or road probability.
The conventional methods shown in the top three rows
perform noise modeling. Furthermore, Mnih-CNN + CRF
andMnih-CNN+Post-processing net use conditional random
field and additional multi-layer perceptron for structured
prediction, respectively. On the other hand, our model does
notmodel label noise specifically and has no post-processing.
However, ours is more accurate than all of the conventional
models on all datasets. The differences between Mnih-CNN
and ours (single-channel with MA) are the use or not of
data augmentation during training and MA in the inference
stage. Although MA does not perform refinement of results
by recognizing any meanings of pixels, MA smoothes the
outputs over the boundaries of predicted label patches and
improves the performance significantly. This effectiveness is
also shown in the case of multi-channel prediction. Fig. 6
shows the effectiveness of MA in a concrete example.

Our multi-channel CNNs output three-channel pre-
dicted label patches. Therefore, we extracted each channel to
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evaluate the accuracy of each class. In Table III, we compared
the performance of our proposed techniques on the same
base architecture. In this table, ours (multi-channel with CIS
+ MA) achieves the best results in both building and road
channels even compared with the results of single-channel
predictions. Although the number of training images in
Mass. BR is one-eighth compared with Mass. Roads, the
performance of this model trained on Mass. BR is better
than all of the results of single-channel models trained
on Mass. Roads. Therefore, we found that channel-wise
inhibited softmax (CIS), which assigns zero to all units in the
background channel and performs softmax, is a better way
to train a CNN for multi-channel semantic segmentation of
aerial imagery, and performing MA in the inference stage is
also effective.

The reason why CIS improves the performancemight be
related to the inherent redundancy of the softmax function.
In general, subtracting a constant vector from an input vector
given to softmax does not affect the output of softmax. For
example, let x be a K -dimensional vector and π denote the
softmax function. The ith element of the softmax result of
x− c, where c = (c, c, . . . , c)T (a K -dimensional constant
vector), is

π(xi− c) =
exp(xi− c)∑K
k=1 exp(xk− c)

=
exp(−c) exp(xi)

exp(−c)
∑K

k=1 exp(xk)
= π(xi). (8)

Therefore, there have been some methods to eliminate
this redundancy. One of them is to take xk ≡ 0 for some
preferred class k, which was introduced by Ripley,27 and used
in Andersen28 as a normalized exponential transformation.
Hence, our CIS performs this transformation to each
pixel for the multi-channel semantic segmentation problem.
Furthermore, we showed that choosing the background class
as k in xk ≡ 0 improves the performance in a task that cannot
avoid considering ‘‘background’’ or ‘‘the others’’ as one of the
objective classes. This is a regularization method for neural
networks, so we showed that it is effective even for deep
CNNs designed to perform semantic segmentation.

Fig. 5 shows the relaxed precision–recall curves of all
results. The red, green, and blue cross marks mean the recalls
at breakeven points of the conventional models proposed in
Mnih.10 All curves of ours (multi-channel) are located above
those cross marks in both building and road prediction. As
shown in both figures, the results with CIS are always better
than the results without CIS, and the results with CIS + MA
are further better than the results with only CIS. This shows
thatCIS is effective formulti-channelmodel training andMA
can further improve the performance when it is used in the
inference stage.

Table IV shows the recalls at breakeven points that are
evaluated on an urban area of the test images. The area
consists of patches where the number of background pixels
is less than a third of the total number of pixels in a patch.
In other words, the patches in the area always have both

building and road pixels. In Table IV, all of the recall values
of ours (multi-channel with CIS +MA) are better than for the
single-channel model, with larger margins compared with
the evaluations on the whole areas of the test images shown
in Table III. This difference shows that our models have
more advantage in urban regions that have both buildings
and roads appearing at the same time within a small region
because of utilization of the correlation. This advantage is
important in some applications that require high accuracy in
crowded urban areas, for example, real-estate management
and updating of maps in areas that have many small houses
and roads.

Focussing on the results in the road channel shown in
Table IV, all scores are decreased from the results shown
in Table III. The percentages of the decreases of ours
(single-channel with MA), ours (multi-channel with MA),
and ours (multi-channel with CIS + MA) are 5.53%, 3.53%,
and 1.07%, respectively. The first two models show larger
performance decreases compared with the last model, so that
the extracted regions might have much difficulty in terms
of extracting roads. Therefore, even in the case of the last
model, the performance was decreased slightly. However, the
last model has succeeded in suppressing the performance
decrease compared with the first two models, with over five
times and three times smaller percentage. This result also
shows the effectiveness of CIS.

The additional computational cost of CIS has little
influence on the training time and the processing time to
output predicted label patches. In the inference stage, all of
the processing times to predict a label image from a 1500×
1500-sized aerial image were almost the same between all
models when calculated on an NVIDIA Tesla K80. The
average processing times of ours (multi-channel withCIS) and
Mnih-CNN were 2.76 s and 2.80 s, respectively, for each aerial
image. However, although the conventional method10 needs
two different models to create a multi-channel result, our
model can predict building and road labels simultaneously
with a single feedforward. This means that the conventional
method needs about twice the processing time to obtain
building and road predictions compared with ours. However,
if we perform MA by using eight different versions of the
model to obtain more accurate results, it requires about
eight times longer processing time compared with the case
of the conventional method. However, if multiple GPUs are
available, all the calculations of the eight versions can be
parallelized, so the drawback turns out to be marginal.

CONCLUSION
In this article, we proposed a method to train CNNs for
multi-label semantic segmentation of aerial imagery, and a
new output function channel-wise inhibited softmax (CIS)
to train the CNNs effectively in such task. Furthermore,
we showed that the new model averaging technique called
model averaging with spatial displacement can improve the
prediction results further. Ourmethod with all proposals can
predict building and road labels simultaneously with high
accuracy compared with the conventional method10 which
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predicts each label separately. We showed the performance
of our methods by evaluating them on a new dataset Mass.
BR. Furthermore, to show the benefit of using the correlation
between buildings and roads in aerial images, we evaluated
them on urban regions of test images and showed the
effectiveness of the multi-channel formulation with CIS. In
the case of road prediction, the results also showed that CIS
enables us to achieve better results with a one-eighth sized
dataset compared with the previous work.

Finally, we implemented ourmodels with Caffe,29 a deep
learning framework, and all of the codes of our proposed
methods, the experiments, and the new datasetMass. BR are
publicly available at https://github.com/mitmul/ssai.
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