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Abstract
The computational framework, based on the conformal cam-

era, is developed for processingvisual information during smooth
pursuit movements of a robotic eye. During smooth pursuit, the
image of the tracked object remains nearly stationary while the
image of a stationary background sweeps across the image plane
of the camera. The background’s image transformation derived
in the second-order approximation enable the anticipation of the
perceptual outcome of the camera pursuit. This can be used to
support the correct visual information of the moving object in
front of the stationary background, These results complement the
author’s previous study on the predictive image processing for vi-
sual stability during the conformal cameramovements resembling
primate’s saccadic eye rotations. The visual information process-
ing algorithms that can support visual stability during smooth
pursuit and saccadic movements of an anthropomorphic robotic
camera are needed for an autonomous robot efficient interactions
with the real world, in real time.

Introduction
In this article we develop a computational framework for

biologically-mediated processing of visual information during
foveated-sensor camera rotations resembling primate’s smooth
pursuit eye movements (SPEM). The presented algorithms can
support perceptual stability for autonomous robotic systems
needed for their efficient interaction with dynamic environments.

Primate Perception During Eye Movements
Whenever primates direct the gaze to attend a scene detail,

their highest acuity is confined to the foveal region subtending the
visual angle of 2 degrees. To overcome the acuity limitation of
foveated vision, humans and other primates explore the scene by
making about 3 to 5 saccades per second with the eyeballs speed
of up to 900 deg/s to fixate the high-acuity fovea on the salient
and behaviorally relevant parts of the scene. In addition, primates
are able to execute smooth pursuit eye movements that keep the
fovea focused on a slowly moving object (up to 100 deg/s), but
they also employ a combination of smooth pursuit and saccades
to track an object moving unpredictably or moving faster than 30
deg/s).

Visual neurons in the primate brain have spatial receptive
fields (RFs) that encode the position of an object in gaze-centered
coordinates, that is, in respect to the frame centered on the fovea
in retinotopic maps. Because of incessant eye movements, the
retinotopic representation of this position information is con-
stantly changing. For this reason, very sophisticated neural pro-
cesses have evolved to maintain a temporally continuous, stable
perception of the world.

The identification of visuosaccadic pathways [19] supports
the idea that the brain uses a copy of the oculomotor command
of the impending saccade, referred to as efference copy or corol-

lary discharge (see a review in [3], to shift transiently the RFs of
stimuli to their future location before the eyes saccade takes them
there. This shift remaps the retinotopic maps from the presac-
cadic frame to the postsaccadic frame in the anticipation of each
upcoming saccade, giving access to the visual information at the
saccadic target before the saccade is executed. It is believed that
this predictive remappingmechanism contribute to visual stability
[4, 11].

Smooth pursuit eye movements (SPEMs) by stabilizing the
tracked objects image on the fovea, superimpose additional mo-
tion on the retinal images of the stationary background and other
moving objects, leading to the possible distortion of the perceived
speed and direction of motion. Moreover, in natural viewing cor-
rective saccades often accompany smooth pursuit eye movement
[2, 17]. Whenever eyes are pursuing a moving object in front of
a stationary background, the object’s image is stabilized on the
fovea and the background image sweeps across the retina in op-
posite direction. Nevertheless, we generally perceive the object as
moving and the background as stationary, despite opposite retinal
information. This indicates that the stable perception that we en-
joy has to be maintained at all time during SPEM. Consequently,
in addition to the extraretinal information such as eye intended
movement (efference copy), the retinal motion information should
also contribute to processing visual information during smooth
pursuit [7, 9, 13].

Modeling Visual Information During Robotic Eye
Movements

Visual information acquisition sensors, with software and/or
hardware-implemented image processing used in anthropomor-
phic cameras, can be classified into two broad categories. The
foveated-sensor, frame-based, video acquisition systems [1, 27]
and asynchronous spiking, frame-less, contrast-variation acquisi-
tion systems [10, 16]. Frame-less based vision systems have a
huge advantage over standard frame-based vision systems due to
very high dynamic range and temporal resolution, but very low
computational load and internal latency [14].

The frame-based cameras with foveated sensor architecture
have been implemented in numerous applications in the context of
machine vision, but they have not been widely used in commer-
cial applications due to the lack of efficient tools for processing
and analyzing visual information [28]. On the other hand, so far
only a limited range of applications has been demonstrated for
frame-less vision systems mainly because the visual information
processing and analyzing tools are not available [5].

The conformal camera framework [23, 24] has been recently
used in [25, 26] to model some of the front-end processes un-
derlying stability of perception for a fovated-sensor camera head
mounted on the moving platform that replicates human saccadic
eye movements [6, 8]. In this study, the conformal camera’s ge-
ometric framework is applied to develop anticipatory processing
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Figure 1. The conformal camera. The points of space are centrally pro-
jected into the sphere, representing the retina, and into the image plane. The
sphere and the center of projection N represent the eyeball and the pupil.
The image representation suitable for computational processing is given by
stereographic projection σ from the sphere (the retina) to the image plane.

of visual information than can support perceptual stability during
SPEM. The algorithms for image projective transformations are
given in the initial image plane of the conformal camera during
its smooth pursuit movement.

The paper is organized as follows. In Section 2, we discuss
imaging with the conformal camera. Section 3 develops the ap-
proximations of the image projective transformations during a se-
quence of a small horizontal rotations of the conformal camera.
In Section 4, we use the first-order approximation of the image
projective transformations to model horizontal SPEM.

The Conformal Camera
The conformal camera was introduced in [21, 22]. We

demonstrated in these references that the conformal camera pos-
sesses many features that are particularly useful in computation-
ally efficient modeling the eye’s imaging functions. In particular,
the underlying geometric analysis of the conformal camera inte-
grates the scene projected onto the rotated eye’s retina with the
correspondingly changing retinotopic maps into a single numeri-
cal system.

The conformal camera consists of the unit sphere S 2 and an
image plane C through the sphere center O, see Fig. 1. The end
point N of the sphere diagonal, which is orthogonal to the image
plane, is the center of the projection of the spatial points into the
plane.

The camera’s orientation is described by the positively-
oriented orthonormal frame (e1,e2,e3), such that e3 = −→ON. The
frame is attached at the camera’s center and resulting spatial co-
ordinates are denoted by (x1,x2,x3). The image plane x3 = 0 is
parametrized with complex coordinates x1 + ix2.

A spatial point (x1,x2,x3), projected along the ray throughN
to the point z of the image plane, defines the mapping

jN(x1,x2,x3) = z=
x1+ ix2
1−x3

. (1)

Taking restriction σ = jN |S2 , we obtain the stereographic
projection

σ : S2 → Ĉ= C∪{∞} (2)

given by

σ (X1,X2,X3) = z =
X1 + iX2
1−X3

, (3)

σ (0,0,1) = ∞.

The extra point ∞ representing σ (N) is appended to C such
that stereographic projection is one-to-one and onto and, there-
fore, identifies the extended image plane with the sphere. Ĉ is
known as the Riemann sphere [12].

Two fundamental properties of stereographic projection are
particularly useful in imaging with the conformal camera. First, σ
maps circles in the sphere that do not pass through N to circles in
the image plane, while any circle containingN is mapped to a line.
It is customary in the Riemann sphere to regard lines as circles
passing through ∞. Second, σ is conformal, that is, it preserves
the oriented angles.

Since the pixels are preserved by stereographic projection σ
between the sphere (the retina) and the image plane, we conclude
that the retinal illuminance is preserved as well.

Image Projective Transformations
The basic image transformations, the h- and k-transfor-

mations, are shown in Fig. 2. In the h-transformation, the image
of a planar object (e.g., a planar surface of an object) is translated
out of the image plane by the vector b= 〈b 1,b2,b3〉, as a result of
the object undergoing the translation in the scene by the vector v,
and projected back into the image plane by j N . This results in the
following mapping:

Figure 2. The image projective transformation hk in the conformal camera
resulting from the horozontal motion of the object PQ that undergoes trans-
lation by v and the rotation by φ .

z′ = h(b1,b2,b3) · z=
z+b1+ ib2
1−b3

=
δ z+ γδ
1/δ

, (4)

where δ = (1− b3)−1/2 and γ = b1 + ib2. From here on, we use
the following action

z �−→
[
a b
c d

]
· z =

az+b
cz+d

, ad−bc= 1, (5)
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and note that

h(b1,b2,b3) · z=
[

δ γδ
0 1/δ

]
· z.

The h-transformation is followed by the k-transformation
that results from the rotation of the object by (ψ ,φ ,ψ ′) relative
to the center of projection N. That is, the image is first projected
into the sphere S2 by σ−1, then it is rotated with the sphere by the
Euler angles (ψ ,2φ ,ψ ′) (here, ψ is the rotation angle about the
x3-axis, followed by the rotation angle 2φ about the x2-axis and
the rotation angle ψ ′ about the x3-axis) and projected back to the
image plane, giving

z′′ = k(ψ ,2φ ,ψ ′) · z′ =
[

α β
−β α

]
· z′ = αz′+β

−β z′+α
(6)

where

α = e−i(ψ+ψ ′)/2 cosφ , β = −e−i(ψ−ψ ′)/2 sinφ . (7)

The composition of the h- and k-transformations gives the
image g-transformation of an object undergoing rigid motions in
the scene

z′′ = g · z= k(ψ ,2φ ,ψ ′)h(b1,b2,b3) · z. (8)

The Group of Image Projective Transformations
In tis section we briefly describe the action of the group of

projective transformations of the image intensity function and ref-
ere to [22, 23] for detailed discussion.

In the conformal camera, the image projective transforma-
tions are defined as the composition of finite iterations of the h-
and k-transformations.

Then, by the representation of h- and k-transformations as
the matrices acting on the points of the image plane, see (5), we
obtain that the image projective transformations are given by the
mappings

g · z=
az+b
cz+d

, g=
[
a b
c d

]
∈ SL(2,C), (9)

which are extended to the Riemann sphere Ĉ = C∪{∞} as fol-
lows: [

a b
c d

]
·∞ = a/c,

[
a b
c d

]
· (−d/c) = ∞, if c 	= 0,

and
[
a b
0 1/a

]
·∞ = ∞.

In (9)

SL(2,C) =
{[

a b
c d

]
: ad−bc= 1

}
,

is the group of 2×2 matrices of complex numbers with determi-
nant one.

For the given intensity function f (z), its image projective
transformations are given by

f (z) �→ fg(z) = f (g−1 · z) = f
(
dz−b
−cz+a

)
,

g=
[
a b
c d

]
∈ SL(2,C). (10)

Imaging with the Conformal Camera
The basic image transformations in the conformal camera

can only be defined for the planar objects in the scene, cf. [23]. To
justify this requirement, we note that only the most basic features
are extracted from the impinged visual information on the retina
before they are sent to the brain areas for processing. Thus, the
initial image of the centrally projected scene is comprised of nu-
merous brightness and color spots from many different locations
in space, without explicit information about the perceptual orga-
nization of the scene [18]. What is initially perceived is a small
number of objects’ surfaces that are segmented from the back-
ground and from each other [15]. The object’s 3D attributes are
acquired when 2D projections on the retina are processed down-
stream the visual pathway by neuronal populations extracting the
monocular information (texture gradients, relative size, linear and
aerial perspectives, shadows and motion parallax) and, whenever
disparity is also available (two eyes seeing the scene), the binoc-
ular information.

Active Imaging: the Vector b
We demonstrate in Fig. 3 that when the line of sight of the

camera is rotated, the image transformation of a planar stationary
object is given by the kh-transformation,

z′ = k(ψ ,−2φ ,ψ ′)h(b1,b2,b3) · z

=
[

α β
−β α

][
δ γδ
0 1/δ

]
· z

=
αδ 2z+αγδ 2 +β
−βδ 2z−βγδ 2 +α

, (11)

where δ = (1−b3)−1/2 (with b3 < 1), γ = b1+ ib2 and α and β
are given in (7).

In fact, Fig. 3 explains that when the camera rotates by φ
about the x2-axis, the center of projection undergoes translation
by t = −−→NN1. Then, the object both translates by−t and rotates by
−φ with respect to the center of projection, the point N represent-
ing the eye’s pupil.

In the image transformation (11), the eye’s rotation angles
can be assumedknown, as they are used to program the eye move-
ments. However, the vector b is the model’s internal parameter
which has to be derived in terms of the eye’s intended gaze change
and object’s geometry and location. In this section, the vector b
is obtained in a full generality.

Referring to Fig. 3, the coordinates of the object’s endpoints
P(p3, p1) andQ(q3,q1) are

p1 = s tanϕ , p3 = s+1

where s is the distance to the fronto-parallel plane containing the
endpoint P and

q1 = s tanϕ +wsinα , q3 = s+1+wcosα .

Because under the gaze rotation φ , the center of projection N is
translated by t, PQ is translated by the vector −t, where

t = 〈t3,t1〉 = 〈cosφ −1,sinφ〉 (12)

Coordinates of the endpoints P ′(p′3, p′1) and Q′(q′3,q′1) of the
translated line segment P′Q′, are the following

p′1 = s tanϕ − sinφ , p′3 = s+2−cosφ
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Figure 3. When the camera gaze is rotated by φ , the image projective transformation in the initial coordinate system is given by the g-transformation where
g= hk is the result of the composition of the relative object movements (translation by −t and rotation by −φ in the scene.

and

q′1 = s tanϕ +wsinα − sinφ ,

q′3 = s+2+wcosα −cosφ .

The components b1 and b3 of the vector b are derived from
the relation,

b1 = ξP− zP = ξQ− zQ (13)

and the proportions obtained from similar triangles 
NzPO ∼

NPp3, 
NzQO ∼ 
NQq3, and similar triangles that can be
easily identified from the last two of the following proportions

−zP
1

=
p1

p3−1
,

−zQ
1

=
q1

q3−1
=
s tanϕ + sinα − sinφ

s+1−cosφ
,

ξP
1−b3

= − p1− t1
p3−1− t3

= − s tanϕ − sinφ
s+1−cosφ

,

and

−ξQ
1−b3 =

q1− t1
q3−1− t3 =

s tanϕ +wsinα − sinφ
s+1+wcosα −cosφ

.

To this end, using the proportions in ξP− zP = ξQ− zQ, we
first derive

− (1−b3)(s tanϕ + ssinφ)
s+1−cosφ

+ tanϕ

= − (1−b3)(s tanϕ +wsinα − sinφ)
s+1+wcosα −cosφ

+
s tanϕ +wsinα
s+wcosα

and then solve for b3, to obtain

b3 = 1−
(
1+ 1−cosφ

wcosα+s

)
(s+1−cosφ)

s+ tanα(1−cosφ)
tanα−tanϕ + sinφ

tanα−tanϕ

(14)

Similarly, from b1 = ξP− zP, we have

b1 = −
(
1+ 1−cosφ

wcosα+s

)
(s tanϕ − sinφ)

s+ tanα(1−cosφ)
tanα−tanϕ + sinφ

tanα−tanϕ

+ tanϕ , (15)

where we substituted the expression for b 3.

Sequence of Horizontal Gaze Rotations
Whenever eyes are pursuing a moving object, both eye

movements and object movements induce an image motion on
the retina. Therefore, eye movements must be compensated to
allow a clear and stable perception of our surroundings. Given
the complexity of the smooth pursuit system, the cortical pro-
cessing of different coordinate systems (retinal information, in-
formation about object movement in space, and information about
eye movement relative to the head) and the visual-to-motor trans-
formations necessary to generate these precise eye movements
remain largely unclear [20]. Hence, our goal here is to layout
the geometric and computational framework for visual informa-
tion processing during SPEM without assuming the neural mech-
anisms maintaining visual stability. In particular, we study the
background image projective transformations that occur when the
conformal camera’s gaze is horizontally rotated.

Linearization of the Vector b
Introducing power series sinφ = φ − φ 3/6+ .. and cosφ =

1−φ2/2+ .. into expressions for b3 and b1 given in (14) and (15),
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where ‘..’ indicates the corresponding higher order terms in φ , we
get for (14),

b3 = 1− 1+
( 1
s + 1

wcosα+s
) φ2

2 + ..

1+ 1
s(tanα−tanϕ) φ + ..

,

which is expanded in powers of φ as follows,

b3 =
1

s(tanα − tanϕ)
φ −

[
1

wcosα + s

− tanϕ
s(tanα − tanϕ)

− 2
s2(tanα − tanϕ)2

]
φ2

2
+ ..

Similarly, for (15), we have

b1 = − tanϕ − 1
sφ + tanϕ

wcosα+s
φ2

2 + ..

1+ 1
s(tanα−tanϕ) φ + tanα

s(tanα−tanϕ)
φ2

2 + ..
+ tanϕ ,

which is expanded as follows,

b1 =
tanα

s(tanα − tanϕ)
φ −

[
tanϕ

wcosα + s

− s tanϕ tanα −2
s2(tanα − tanϕ)

− 2tanϕ
s2(tanα − tanϕ)2

]
φ2

2
+ ...

Then, substituting

s(tanα − tanϕ) =
ssin(α −ϕ)
cosα cosϕ

= ± d
cosα

where d is the distance to the plane containing the planar object,

d =
s|sin(α −ϕ)|

cosϕ
, (16)

which can be easily obtained from the right triangle 
NDP in
Fig. 3, we arrive at the second order approximations

b3 ≈ ±cosα
d

φ

−
[

1
wcosα + s

± sinα
d

+
2cos2 α
d2

+
1
s

]
φ2

2
(17)

b1 ≈ ± sinα
d

φ +
[
− tanϕ
wcosα + s

± s tanϕ sinα −2cosα
sd

− 2tanϕ cosα 2

d2

]
φ2

2
(18)

that make the set of parameters especially convenient for error
analysis. In the above expressions, the upper sign is for α > ϕ
while the lower sign is for α < ϕ .

Thus, the approximation of vector b to the first order in φ is
the following

b= ±φ
d
〈cosα ,sinα〉. (19)

where α gives the orientation of the object PQ relative to the ini-
tial coordinate system and d is the distance (16) to the plane con-
taining the (planar) object.

From the second order terms in (17) and (18), we see that the
approximation breaks down whenα = ϕ or α = ϕ ±π , and when

ϕ = ±π/2. From (16) and s = pcosϕ , where p is the distance
to P satisfying p 	= 0, we see that s= 0 if and only if ϕ = ±π/2,
and d = 0 if and only if α −ϕ = 0,±π . Under the first condition
(s = 0), some points do not project to the image plane (that is,
they project to ∞), and under the second condition (d = 0), a pla-
nar two-dimensional object has a one-dimensional projection on
the image plane. These conditions are the same as the ones that
prevent the proper functioning of the primate vision system.

Maybe the most significant result is the fact that in the first
order approximation, the vector b direction (relative to the initial
coordinate system) is given by the angle α (b is parallel to −→PQ),
while its length depends linearly on φ (or −φ) and inversely on d,
the distance to the plane containing the planar object.

Thus, since the values of α and d fix the plane containing
the planar object, the leading term approximation of b does not
depend on the object size w or where on the plane it is located.
We conclude that the approximation (19) applies directly to 2D
planar objects (or planar surfaces of 3D objects) as it does not
depend on the shape of these objects.

Sequence of Small Gaze Rotations
We consider a sequence of horizontal rotations (φm,m =

1,2,3, ...), where φm is the angle rotating gaze m− 1 to gaze m
with the 0th gaze being the initial gaze. The image transforma-
tions are given in the initial coordinate system.

From now on, we change to the following notation: the coor-
dinate system rotated with the camera by the angle φm is denoted
by (xm3 ,xm1 ). We choose both φm and the scene parameters, such
that the corresponding image h-transformation is well approxi-
mated by using the linear term of the vector bm,

bm =
φm
dm−1

〈cosβm−1,sinβm−1〉. (20)

Here, for m= 1, d0 = d and β0 = α , so that

b1 =
φ1
d
〈cosα ,sinα〉. (21)

We need to find βm and dm for m ≥ 2. To this end, when
the conformal camera undergoes the second gaze rotation φ 2, the
angle β2 of b2 is α −φ1.

Thus, for the mth gaze rotation, the angle βm−1 of bm is the
following

βm−1 = α −
m−1
∑
k=1

φk, m ≥ 2. (22)

Finally, using the results derived in Appendix, we have the
following formulas for dm,

dm−1 = ±d+2sin

[
1
2

m−1
∑
k=1

φk

]
cos

[
α − 1

2

m−1
∑
k=1

φk

]
= ±d+ sinα − sinβm−1, m≥ 2 (23)

with the upper sign holding for α > ϕ and the lower sign holding
for α < ϕ . The distance d is given in (16).
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Figure 4. The image projective transformations during the sequence of the gaze rotations φ1 , φ2 and φ3. The relative motions of the object PQ used in
the construction of the image transformations, as explained in Fig. 3, are also shown. The panel (a) confirms the results from the previous section on the
approximation of the vector b in (20) and (22): the direction of b2 is the rotated direction of b1 by φ1 and the direction of b3 is the rotated direction of b1 by φ1 + φ2

Conclusions: Modeling Horizontal SPEM
The horizontal SPEM with angular speed ω(t) , t ≥ a is ap-

proximated for a time step Δt by a sequence of discrete rotations
(φm,m = 1,2,3, ...) where φm = ωmΔt is the rotation from gaze
m−1 to gazem with the average angular speedω m in time inter-
val [tm−1,tm], tm = a+mΔt . For ω(t) we choose Δt such that for
each φm, the approximation (20) holds.

Let the intensity function f (z)denote the image of the object.
Using the results from the previous section and Fig. 4, the image
projective transformation of the rotation from gazem−1 to gaze
m, in the initial coordinate system, is the following

f
(
z(m−1)

)
�→ f

(
z(m)

)
= f

(
g−1m · z(m−1)

)
, (24)

where

gm = k (0,−2φm,0)h(bm sinβm−1,0,bm cosβm−1)

=
[

cosφm sinφm
−sinφm cosφm

][
δm γmδm
0 1/δm

]
(25)

and hence,

g−1m = h−1(bm sinβm−1,0,bm cosβm−1)k−1(0,−2φm,0)

=
[
1/δm −γmδm
0 δm

][
cosφm −sinφm
sinφm cosφm

]
(26)

Here bm = φm/dm−1 and βm−1 and dm−1 are given in (22) and
(23), respectively. Further, δm = (1−bm cosβm−1)−1/2 and γm =
bm sinβm−1. In implementation, the product of matrices in (26)
has to be linearized in φm .

By the iteration of (24) we obtain the SPEM’s sequence of
image projective transformations of the object given only in terms

of the initial orientation angle α and the distance d of the plane
containing the object planar surface.

Explicitly, for the given initial image f of a stationary object
and the given SPEM’s sequence (φ 1,φ2, ...,φn ), the image under-
goes the following transformation under the pursuit

f
(
z(n)
)

= f
(
g−1(n,n−1,...,1) · z

)
where g(n,n−1,...,1) = gngn−1...g2g1 and

g−1(n,n−1,...,1) = g−11 g−12 ...g−1n−1g
−1
n

with g−1m given in (26).
We recall that each dm−1 in (23), which describes the vector

bm in (20), can be determined only by the planar object (or planar
surface of the object) orientation α and the distance d to the plane
containing this object. These values can be typically estimated
by the primate’s vision system. Therefore, our modeling of the
SPEM with the conformal camera should be able to support the
stability of visual informations during smooth pursuit of an an-
thropomorphic robotic camera that is needed for an autonomous
robot efficient interaction with the real world, in real time.

Implementation in a pursuit movement by the conformal
camera will be done in the future.

Appendix: The Formula For dm
In this appendix we derive the formula for dm that appeared

in (20). To get dm, we use Fig. 5 which shows details near pro-
jection centers N1, N2 and N3 of the three first gaze rotations gaze
rotations φ1, φ2 and φ3.

To this end, using the isosceles triangle 
CNNk and the fact
that |CN| = 1, we first note that
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Figure 5. Geometric details near the projection centers N and N1 shown in Fig. 3 and the next two projection centers N2 and N3 .

|t1m| = |t1 + t2 + ...+ tm |
= 2sin

[
1
2
(φ1+φ2 + ...φm)

]
= 2sin

[
1
2

(
m

∑
k=1

φk

)]

and

γm =
π
2
− 1
2

m

∑
k=1

φk.

Next, at the vertex N, we can write

ψ +δm + γm = π

which, using ψ = α −π/2, can be solved for δm as follows

δm = π −α +
1
2

m

∑
k=1

φk.

Finally, from

d−dm = |NRm| = |t1m |cosδm

= 2sin

[
1
2

m

∑
k=1

φk

]
cos

[
π −α +

1
2

m

∑
k=1

φk

]

= −2sin
[
1
2

m

∑
k=1

φk

]
cos

[
α − 1

2

m

∑
k=1

φk

]
,

which can be easily verified in Fig. 5, we obtain

dm = d+2sin

[
1
2

m

∑
k=1

φk

]
cos

[
α − 1

2

m

∑
k=1

φk

]

= d+ sinα − sin

[
α −

m

∑
k=1

φk

]
.
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