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Abstract
Currently, there are no all-inclusive methods for visual anal-

ysis of ensemble vector fields (EVF) that provide identification
of flow trends and general flow similarity over the full extent of
transport across ensemble members. Finite-time Variance Anal-
ysis (FTVA) provides flow structure information only on particle
distributions at the termination of streamline integration. In this
paper, we first present a flow structure based on streamline clus-
tering. Second, we discuss a method using streamline clustering
to provide information of flow coherence at corresponding spatial
regions in the EVF. We consider the regions where bifurcation in
flow trends among the EVF members occur. We will also discuss
how both methods can be used as a sequential framework for EVF
analysis, by using the results of the scalar flow structure to find
regions of member flow dissimilarity for further analysis.

1 Introduction
Ensembles of vector field data, as produced via Compu-

tational Fluid Dynamics (CFD) simulations, are now common
within the simulation community, in order to represent the output
of a fluid model using distributions of input parameters [29]. The
variation in parameter selection can represent uncertainty about
boundary conditions, densities or other relevant input.

As a consequence, we are now faced with the challenge of
analyzing and visualizing ensemble vector fields (EVF). EVF are
made up of individual realizations, each a possible outcome, of
the simulation. Flow has traditionally been visualized by advec-
tion of mass-less particles, e.g streamline integration, in a certain
vector field. There are many methods to analyze single instance
vector fields and quantify their flow.

When extending those methods to ensembles, multiple prob-
lems arise. For one, statistical variation likely exists between the
members of an EVF. A key visualization problem is first detect-
ing and then displaying that variation. Most importantly, we want
to draw attention to significant trends among members. Modes
of flow coherence (e.g., trends) should ideally be considered over
the full extent of flow: (1) initially, for identification, between the
entire paths of each particle’s movement sharing a common seed
location within the field and then (2) subsequently, within known
regions of the field where the modes of variation are clearly evi-
dent, as determined from the results of the initial consideration.

Until now, such methods as Finite-time Variance Analysis
(FTVA) [27] have been employed to quantify global flow vari-
ation in an ensemble. Such methods only investigate variation
in the flow through a given seed location at the termination of
integration, via the principal components of the covariance ma-
trix computed from the positions of particle deposition. Transport
separation, however, may occur anywhere along streamlines with
a common seed over the ensemble. FTVA, therefore, overlooks
potentially important bifurcation between members.

In this work, we provide the following contributions:

• We utilize proven and efficient streamline clustering meth-
ods [1] to characterize, on the scale of the entire field, the
flow coherence and bifurcation of the ensemble.

• We quantify via a two-stage streamline clustering method
using representative streamlines from their cluster, the de-
gree of flow coherence in regions of known bifurcation
across the ensemble members.

• We show how both methods can be used together by first
employing the flow structure to identify potential bifurcation
and then the exploration of the regions of bifurcation.

2 Related Work
Much work had been done to define and identify global fea-

tures of flow fields for crisp vector fields. Relevant publications
are summarized here.

Lagrangian Coherent Structures (LCS) are a broad class of
feature identification for the fluid medium [23]. Perhaps the first
notable example is the Finite-time Lyaponov Exponent (FTLE)
fields [7] for steady and unsteady vector field visualization.

Generalization of LCS has been discussed in depth [11].
Frameworks for flow field structure definition and visualization
have been laid out in [25]. There, the authors discuss pathline
predicate definitions relevant for given investigations of flow phe-
nomena.

A variance based FTLE-like method for unsteady uncertain
vector fields was first presented in [27]. This method reports the
spatial second moment of particle destination, using the principal
components of their covariance matrix as a result of initial uncer-
tainty in the vector field. Theisel et al. [21], [22] examined un-
certain vector field topology using Gaussian uncertainty. Analy-
sis of streamline separation at infinity using time-discrete Markov
Chains was explored in [24], in order to remove the finite-time
requirements from [27].

While the papers discussed so far did not utilize EVF, adap-
tion of probabilistic and summary statistics are discussed in the
survey paper [20]. Hummel et al. [8] was the first work to apply
FTVA from [27] to address EVF visualization. Their paper also
used a Minimum Spanning Tree (MST) to detect and visualize
trends in particle destinations at finite-time.

With novel numerical schemes to generate ensemble data us-
ing non-Gaussian input parameters [29] and [26], techniques to
show the subtle variation and modality in output EVF is becom-
ing increasing needed from the visualization community.

Similar to our work but not appropriate for flow trend detec-
tion, are several streamline clustering methods. In [12], the au-
thors extend the point-based clustering algorithm called Density-
based Spatial Clustering of Applications with Noise (DBSCAN)
to line segments. They applied this method to find representative
trajectories in hurricane track data. In [15], the authors use curva-
ture distribution of a field of streamlines to find shape similarity.
Neither of these studies are ensemble based, but use crisp vector
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fields.
Chen et al. [1] provide an efficient two-stage streamline clus-

tering method based on spatial properties. The first-stage groups
streamlines using k-means for feature vectors comprised of the
start-point, mid-point, and destination-point of streamlines. Their
second-stage finds sub-clusters from the first-stage, based on lin-
ear and angular entropy. They summarize flow in regions by find-
ing representative streamlines closest to cluster centroids. Eval-
uation of fiber clustering methods for diffusion tensor imaging is
discussed in [18]. It was from this study that [1] gave an approxi-
mate and efficient method.

Guo et al. outline a framework in [6] to provide an interactive
assessment of ensemble variation. They call their system eFLAA
(ensemble Flow Line Advection and Analysis). They present a
novel parallel computation for calculating streamline spatial dif-
ference over an ensemble and then visualizing the differences.
They compute various features of their ensembles (e.g., carbon
dioxide concentration) along streamlines whose variation meets a
given threshold.

Mirzargar et al. [17] extend boxplots to curves. They ap-
ply their method to quantify and visualize ensemble streamlines
and hurricane track data. While they show the band-depth for
individual streamlines, they do not delineate bifurcation between
member streamlines. Their method is not directly applicable to a
dense-field summary of streamline data.

3 Background
We briefly describe the current methods for extracting flow

structure from crisp vector fields and EVF. We also discuss in-
formation entropy as related to streamline identification and its
potential use for EVF statistics.

3.1 Flow Classification
Flow classification is based on material transport in vector

fields, and thus provides a global picture of the vector field. The
flow map Φ is derived from the vector field using integration.

Φ(x(t);T ) = x(t +T ) (1)

Equation 1 describes the final location of a particle seeded at x at
time t and advected for an interval T . The field is not required to
be time-varying and in such a case, T simply refers to the number
of integration steps forward or backward in Φ.

3.2 Finite-time Lyapunov Exponent
Taking the largest eigenvalue of the right-Cauchy Green de-

formation tensor, Eq. 2, we find the magnitude of the direction of
greatest stretching in the flow medium at x(t). The tensor removes
effects of reference frame rotations in ∇Φ.

λmax(∇Φ(x(t);T )T
∇Φ(x(t);T )) (2)

The finite-time Lyapunov exponent is a logarithmic scaling of the
maximum direction (Eq. 3).

FT LE(x(t),T ) =
1
T

log
√

λmax (3)

FTLE is a scalar field over the vector field domain. Finding its
height ridges provides a topological skeleton of the regions in con-
traction or expansion.

3.3 Ensemble Vector Fields
Ensemble vector fields (EVF) are uncertain vector fields de-

rived from variations between multiple instances (or runs) of an
experimental/observation space (i.e., a container or geographical
volume for inspection and the related starting conditions, compu-
tational model, and fluid characteristics). Repeated runs of the
same simulation, with varying simulation input parameters, pro-
duce member realizations that taken together can be considered
as a distribution of all possible outcomes of the field for a given
set of parameters. For the purposes of this study, we limit our
definition of an EVF to the definition given in Hummel et al. [8].

In that definition, a time-varying flow field can be described
as in Eq. 4, where v is defined over a spatial domain Ω⊆Rd , with
dimension d.

v : Ω× I→ Rd (4)

The time interval is I ⊆ R. An EVF is a set of m vector fields
over the same spatial domain and the ensemble space can be con-
sidered to be the intersection of all such vector fields, ΩEV F =
Ω1∩...∩Ωm and IEV F = I1∩...∩Im.

EV F : {1, ...,m}×ΩEV F × IEV F → Rd (5)

EV F(i, ., .) corresponds to the i-th realization in our ensemble.
We can see an example of particle transport in an ensemble (Fig.
1).

Run 1
(x, y)

Run 2
(x, y)

. . .
(x, y)

(x, y)(x, y)(x, y)

Figure 1: Streamlines seeded at the same positions in all mem-
bers of the EVF have different transport paths. Seeds in the EVF
lead to stronger or weaker path trends. Note that this is similar
to FTVA for EVF, but that streamlines may terminate with weak
separation but have strong separation anywhere along their trajec-
tories. Here, the green streamline branches from the blue and red
streamlines, but all terminate with weak variance.

3.4 Finite-time Variance Analysis
A probabilistic variant of FTLE is called the FTVA, Eq. 6. It

takes the covariance matrix of particle positions advected over the
ensemble domain from given seed locations. It was first presented
by Schneider et al. [27].

FTVA(x(t),T ) =
1
T

log
√

λmax(Cov(x(t);T )) (6)

3.5 Streamline Information Entropy
Many works have used information theory [28] applied to

streamline geometry [5], [15], [16] for the purposes of select-
ing streamlines. In this study, we are interested in summarizing
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Figure 2: Shown here are three example streamlines all starting
at the same location. We use at least the beginning, middle, and
end locations. Other points used in the feature vector are evenly
spaced over the approximated arc length and registered.

streamlines from the EVF with a common seed. We use this sum-
mary in two ways. First, it is used to weight the sampling fre-
quency of points along streamlines (i.e., a higher sampling fre-
quency captures greater streamline variability). Second, we uti-
lize entropy as a reference map to better understand the overall
variation in streamline geometry from the EVF.

We use both linear and angular streamline entropy [1]. Equa-
tion 7 represents the linear entropy [5], EL, of single streamline.
LS is its total length and m the number of positions available from
the numerical integration. D j is the length of the j-th segment.

EL =− 1
log2(m+1)

m

∑
j=0

D j

LS
log2

D j

LS
(7)

Equation 8 represents the angular entropy [16], with A j the angle
of the line segment j, LA is the total angular variation along the
streamline (e.g. the sum of the absolute values of the A j), and EA
the total angular entropy for the streamline.

EA =− 1
log2(m)

m−1

∑
j=0

A j

LA
log2

A j

LA
(8)

Both of these metrics summarize the degree of variation in a
streamline over its entire path.

4 Methods
We first describe our method for extracting a cluster-based

flow structure from an EVF. Second, we provide an exploratory
region-based EVF similarity metric based on the same underlying
streamline clustering method.

In section 5, we show how the results from our flow structure
can guide a user to probe more deeply into the regions that give
rise to global bifurcation in transport among the members.

4.1 Cluster-based Flow Map
For a seed in the simulation domain ΩEV F , we define a fea-

ture vector to represent each streamline. We sample position as
a spatial feature. The number of features included are at a min-
imum the initial, middle, and terminal positions of a streamline.
Streamline clusters are found for each seed in ΩEV F , where a ve-
locity value has been stored from the simulation. This result is
similar to Φ. The cluster map ΦC, is represented as:

ΦC(x) = |CS|, CS = {c1, ...,cn} (9)

where x is the location of the seeded streamlines, CS is the set of
all streamline clusters ci, i is an integer such that 0≤ i≤ n, and n
the number of clusters. |CS| is the cardinality of the finite set CS.
Set ci contains the similar streamline feature vectors seeded at x.

We use the mean linear EL, and mean angular entropy EA
of a population of streamlines to determine the frequency of sam-
pling. The following steps are performed in computing ΦC(x) for
each x:

Step 1 Lookup precomputed EL for x.
Step 2 Lookup precomputed EA for x.
Step 3 Calculate the number of streamline sample points, ∝(

EL +EA
)
.

Step 4 For each streamline, assign a feature vector.
Step 5 Perform DBSCAN on all streamline feature vectors.
Step 6 Record the number of clusters found in ΦC.

The number of regularly sampled features is proportional to
the mean linear and angular entropy (see step 3 above). We lin-
early interpolate the number of samples between a minimum and
a maximum positive integer and take the floor of the result. The
upper-limit on the number of samples is dependent on the data or
user constraints. The α for interpolation is equal to the ratio of
the average of the linear and angular entropy (at the seed) to the
absolute value of the difference between the maximum and min-
imum total entropy (linear and angular entropy combined) from
the data set.

Because we desire to detect bundles of streamlines that may
start out together, diverge, and finally converge over the ensemble
members, we need to sample spatial features that are registered
between the streamlines. Note that our method of clustering is
inspired by [1]. They found sub-clusters based on entropy from
initially grouping streamlines sampled at three spatial locations
each. We use streamline entropy to determine sample frequency
for streamlines at a seed. In Fig. 2, the blue and red streamlines
are spatially similar. However, if the minimum three points are
used for the feature vector, all streamlines in the example would
be found in a single cluster.

4.2 Spatial Feature Registration
Streamline registration of spatial features is accomplished

via an approximation of arc length. t is a real number on the
interval [0,1] and is considered a fraction of the total arc length of
a curve (streamline). The arc length L of curve S is defined as in
Eq. 10 on the interval [a,b]. ds2 = dx2 +dy2, for the infinitesimal
line segment ds.

LS =
∫ b

a
ds =

∫ b

a

√
1+
(

dy
dx

)2
dx (10)

S is the streamline from which we have a set of points derived
from numerical integration in the vector field. l can be considered
an ordered list of those points and can be accessed by index i. For
our finite approximation, when n is the number of points from
integration, we have:

LS =
n−1

∑
i=0

dist(l(i), l(i+1)) (11)

where dist is the Euclidean distance between two points. Parame-
ter t then, is the fraction of LS we wish to consider for comparison
between a registered set of streamlines.
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Figure 3: Illustration of DBSCAN cluster analysis requiring min-
imum points constituting a cluster. Points around A are core
points. Points B and C are not core points, but are density-
connected via the cluster of A (and thus belong to this cluster).
Point N is Noise, since it is neither a core point nor reachable
from a core point. DBSCAN also requires a maximum distance
parameter ε that determines density-connected points [4].

4.3 Cluster Parameter Selection
Hummel et al. used a MST for terminal point trend clustering

[8]. That study reported using a fraction of the average length of
streamlines for the minimum distance between clusters.

We apply DBSCAN to assign cluster labels to member
streamlines. Refer to Fig. 3 for an example. DBSCAN takes two
parameters: ε , the maximum distance between features in a clus-
ter, and minPts, the minimum number of data points in a cluster.
The value for ε can be chosen by using a k-distance graph, plot-
ting the distance to the k = minPts nearest neighbor. Good values
of ε are where this plot shows a strong bend. If ε is chosen too
small, a large part of the data will not be clustered. Whereas for a
too high value of ε , clusters will merge and the majority of objects
will be in the same cluster [4].

We, however, take an approach similar to [8], setting the
minimum distance between clusters to be related to their spa-
tial domain. We use five percent of the diagonal distance across
the full simulation domain as ε . For p-values, most authors re-
fer to statistically significant as P < 0.05 [19]. Thus, five per-
cent presents itself as a good “rule-of-thumb” for the fraction of
the domain. We do not use the length of the streamlines them-
selves because we apply our clustering to multiple points along
the steamlines. ε needs to be a function of the spatial domain size
instead.

Ester et al. recommends minPts ≥ D+1, where D is the di-
mension of the data set [4]. Karami et al. provide adaptive strate-
gies for parameter selection but at significant computational over-
head [10]. In our study, minPts is set to five percent of the training
data set size (e.g. the number of streamlines for a seed).

4.4 Region-based EVF Flow Similarity
In Fig. 4, EVF exhibit regional flow coherency when repre-

sentative flow lines for the region can themselves be clustered.

(a) (b) (c)

Figure 4: Schematic for observing regional clustering across en-
semble members. (a) and (b) represent separate realizations with
the upper quadrant (heavy outline) considered. (c) EVF union of
members (a) and (b). Arrows are representative flow for the re-
gion.

We summarize the possible combinations of coherence over

the ensemble members in Fig. 5. The lower-left quadrant: co-
herent flow in individual members and among members. Lower-
right: incoherent flow in members but coherent among mem-
bers. Upper-left: coherent flow in members but incoherent among
members, and in the upper-right, incoherent flow in individual
members and among members.
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Figure 5: Matrix showing primary combinations of EVF flow sim-
ilarity. Each box shows hypothetical representative flow (arrows)
for a given region in a member of the vector field.

We utilize the following steps to summarize flow in a re-
gion from the EVF. After steps 1 through 4 are complete, ensem-
ble flow coherence is visualized in a region using representative
streamlines.

Step 1 Define a spatial region (⊂ΩEV F ) for inspection.
Step 2 Gather precomputed streamline segments spanning the

region.
Step 3 For each member, cluster streamline segments.
Step 4 Assign a representative streamline per cluster by using

the streamline closest to the cluster centroid via Euclidean
distance.

5 Experiments
5.1 Implementation

Our results were obtained from code written in Python, uti-
lizing the SciPy package, Sci-kit Learn [9], and HDF5 [2] via
H5py [3].
Table 1: Timings for flow maps and FTVA pre-computation for
the data sets in this study. Number of members reflects the mem-
bers used in the computations and not necessarily the total avail-
able members. In cases where less members are used than avail-
able, those members used were randomly chosen from the avail-
able set. Compute times are dependent on number of ensemble
members and field resolutions.

resolution members
time
steps

flow map FTVA

Lock 128x128 20 1100 30375.94s 206.69s
Ocean 53x90 30 1100 9285.76s 54.09s
Stir 152x152 15 1100 32126.12s 335.73s

The PC system used an Intel Core i7-3930k with 32 GB of
RAM. All Python scripts were run as single-threaded processes.
Tables 1 and 2 show compute times for algorithms used in this
study. Time spend on file I/O is excluded. We omit timings for
regional analysis, since compute times vary widely based on di-
mensions of the selected area.
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Table 2: Timings for pre-computation of clustering for terminal
points (term.) and multiple streamline samples (3 pts., 13 pts.,
and variable pts. between 3 and 13) for the data sets in this study.
Included is the total calculation time of the linear and angular en-
tropy pre-computations. Compute times are dependent on number
of ensemble members and field resolutions. Identical resolution
and number of members used for these timings are shown in table
1.

term. 3 pts. 13 pts. var. pts. entropy
Lock 389.23s 22523.08s 23900.47s 23086.69s 20359.93s
Ocean 97.32s 4590.12s 4704.98s 3581.92s 11842.21s
Stir 602.34s 31761.07s 32555.85s 14291.28s 28710.68s

5.2 Data Sets
Lock-exchange The initial conditions are heavy fluid on

one side and light fluid on the other, separated by a barrier (the
lock) [29]. At initial time, that barrier is removed, and the flow is
allowed to evolve. See Fig. 6a. Initial uncertainty originates from
not knowing the position of the interface between the two fluids.
In other words, the volumes of heavy and light fluid on each side
is not exactly known, and the initial barrier slides left and right
accordingly. At the start of the simulation, the probability distri-
bution of the position of the barrier is Gaussian. Therefore, after
infinite time, it is expected that the barrier is characterized by a
similar Gaussian distribution, but with the light fluid on top of the
heavy one, and with the variance of distribution stretched if the
size of the whole lock domain is not square. However, the prob-
ability distributions of the interface or the dominant dynamics in
between this start and infinite time are not assumed Gaussian. The
lock-exchange data has the following parameters: 128 x 128 grid
with velocity measurements, 1000 realizations.

(a) (b) (c)
Figure 6: Single member velocity magnitude fields from, (a)
Lock-exchange data, (b) Ocean data, and (c) Industrial Stirring
data.

Ocean This data set covers a region of the Massachusetts
Bay on the east coast of the United States of America [13, 14].
See Fig. 6b. The Massachusetts Bay volume in the study was
divided into 53 x 90 grid with 16 depths. The depths at these
53 x 90 grid points vary significantly: depths as shallow as 90
meters and as deep as 196 meters were recorded. The impor-
tant visualization concern for this data set is understanding where
ocean current streamlines seeded at the same location split into
distinct paths in different realizations. For example, streamlines
may deviate geometrically between their common seed positions
and their individual termination position in a set of streamlines
from multiple realizations, but still have similarly located termi-
nal positions. See Fig. 7.

Figure 7: Member streamline bifurcation between members in
ocean data set. Seed location is at the red cross marker. Stream-
lines separate along their trajectories forming two distinct clusters
as seen in the central border selected region in yellow. However,
the distribution of their terminal positions alone (FTVA) do not
account for these separate bundles, especially as seen in the spread
of the terminal positions in the upper-right and lower-left of the
Fig. (additional yellow boxes).

Industrial Stirring The stirring data set is a set of 15 two-
dimensional flow fields resulting from the simulation of mixing
in a stirring apparatus [8]. See Fig. 6c. The device consists of
two counter-rotating pairs of mixing rods that stir a medium in a
cylindrical tank. The ensemble was generated by slightly varying
the viscosity of the fluid to investigate mixing quality of the device
for a range of different fluids. The primary question for this data
set regards the effectiveness of the stirring process. An ensemble
visualization is expected to be able to identify regions where the
mixing quality is high or low throughout the ensemble.

5.3 Results and Analysis
This study does not use individual member variances (FTLE)

in the consideration of FTVA [8], but compares our new visual-
izations to FTVA only. Using FTLE generalizes the application of
FTVA to sensitivity between otherwise identical simulation runs
(where variations due to numerical error and other noise-based
variation is potentially present). Perhaps a more informative met-
ric on FTVA, and streamline clustering in general, is streamline
entropy, as discussed in section 4. Thus, our visualizations refer
to both average linear and angular entropy maps, as well as FTVA
maps, for interpretation of streamline clustering and sampling fre-
quency for individual streamlines.

Lock-exchange The first data set to be evaluated is the lock-
exchange simulation ensemble. The most interesting aspects of
the flow occur at the mixing interface between the two fluids. Fig-
ure 8a and Fig. 8b, show FTVA applied for forward and backward
integration, respectively. Figure 8c and Fig. 8d display the ter-
minal position clusters. Our methods of clustering entire stream-
lines are shown in Fig. 8f (three sample points for all streamlines)
and Fig. 8g (ten additional sample points along each streamline).
Similar flow patterns are seen using both methods, although our
method captures aspects of both terminal end point distributions
with either streamline sampling frequency. As we increase the
sampling rate used in Fig. 8f to the one used in Fig. 8g, there are
areas where cluster counts increase and are not seen using termi-
nal positions alone. These clusters arise due to variations captured
by using more samples and thus detect trends of overall streamline
geometry.

When consulting the linear entropy map (Fig. 8d), the pat-
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 8: Comparison of transport visual summaries for the lock-exchange data set. Methods from [8] are along first row separated by
the horizontal line. The vertical line separates entropy maps on the left and cluster results on the right half of the Fig. (a) FTVA for
forward integrated streamlines. (b) FTVA for backward integrated streamlines. (c) Number of trend clusters from terminal positions in
forward integration. (d) Number of trend clusters from terminal positions in backward integration. (e) Map of average linear streamline
entropies for ensemble. (f) Map of average angular streamline entropies for ensemble. (g) Streamline clusters sampled at three points
per streamline. (h) Streamline clusters sampled at ten additional points per streamline. (i) Gradient magnitude for linear entropy map.
(j) Gradient magnitude for angular entropy map. (k) Sample map, i.e. the map of the points sampled on each streamline for their
corresponding seed location. (l) Cluster map for streamlines sampled variably based on entropy. (Note: color bars for sample and cluster
maps contains discrete colors labeled from top to bottom in increasing order.)
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tern of the flow field where both variance and distinct flow trends
emerge is summarized for the lock-exchange data. Small field
differences occurring in angular entropy are seen in Fig. 8e, pro-
viding a nearly constant field except near the transitions in entropy
in the upper-left and lower-right corners of the domain. This indi-
cates that the number of clusters and variances we see in the flow
occur primarily from variation along streamline lengths, i.e. their
linear entropy. However, when both linear and angular entropy
inform the sampling frequency for streamlines, the overall higher
magnitude of angular entropy (in this example) dominates the in-
fluence on sampling frequency for streamlines in the interior of
the domain. The cluster map using variable sampling between a
minimum of three samples and a maximum of thirteen samples
(Fig. 8k), shows a result consistent with the uniform sampling in
Fig. 8h. (The number samples for streamlines at each seed lo-
cation is shown in Fig. 8j.) Finally, we see from the magnitude
of the gradient of the linear entropy map (Fig. 8h), that a larger
number of clusters are found for streamlines with seed locations
near the gradient ridges. Where linear entropy changes over the
domain, we see streamline geometry variance over the ensemble
members (and thus streamline trends).

We now investigate regions from the lock-exchange simu-
lation domain. We show this for two separate regions using the
method outlined in section 4.4. We can see regional clustering in
Fig. 9, for a region exhibiting incoherent flow patters within each
member of the region. This is similar to the lower-left quadrant of
Fig. 5. The flow is simplified using representative streamlines for
the region. If we track the streamlines as entering from the bottom
of the selected region, some of the representative streamlines flow
more from top to bottom that veering to the right or left. Thus,
we consider three distinct flow trends from the members of the
ensemble for this region.

In contrast, Fig. 10 displays more regional coherence of the
type shown in the lower-left quadrant of Fig. 5. The region has
a single representative streamline per member. The summary
streamlines also show little variation as shown in Fig. 10d. There
is coherence both within the region per member, and between
members, for a strong overall coherence in the ensemble.

This similarity is different than that shown in Fig. 8. In the
full-field analysis, we do not know where in the field trends occur,
only that they do for particular seeds. When applying streamline
clustering for a region, we show the EVF giving rise to trends seen
mapped to seed locations as in Fig. 8. However, this insight is lim-
ited to the region itself and the trends produced by flow through
the region may be mapped to more than one seed, either within
the region itself or outside it. We will next show two more data
sets, using our method applied to the entire field as we did for the
lock-exchange in Fig. 8.

Ocean Figure 11 is analogous to Fig. 8, but shows results
for the ocean data. The primary variance occurs in the central
region of the simulation domain for both integration directions.
This is somewhat intuitive, since streamlines seeded there have
the potential to cover a larger area and thus their terminal positions
to differ over greater distances. The trend/clustering analysis for
terminal points is shown in Fig. 11c and Fig. 11d, for forward and
backward integration respectively.

Our streamline clustering method provides a much higher
sensitivity for visualizing trends in the streamlines than conven-
tional FTVA. The number of clusters increase from Fig. 11f to 11g

at the higher sampling frequency. This is due to detecting more
variation on the streamlines and seeing a higher resolution of the
trends. Figure 11a through Fig. 11d fail to detect most of the flow
behavior that occurs near the upper coastal region and the flow
trends present there, i.e. flow bundles that separate along the in-
termediate positions of the streamlines but have similar positions
at their terminal positions. See Fig. 7 for an example of this.

In Fig. 11d and 11e, it can be seen that streamlines seeded
centrally have higher average streamline entropy (linear and an-
gular). Again, we see more clusters near the ridges in the gradient
magnitudes of Fig. 11h and Fig. 11i. Near the center of the do-
main, the number of the clusters drops to zero in Fig. 11g (the
higher streamline sampling frequency). The lack of trends for
these seeds is not seen in Fig. 11c and Fig. 11d (and in the lower
sampling rate of our method in Fig. 11f). Our method uncov-
ers the highly variable and chaotic flow mapped to this seeding
region. This behavior is also shown when adaptive sampling is
applied in Fig. 11k.

Industrial Stirring Figure 12 applies the same method to
the industrial mixing simulation ensemble. As discussed in [8],
the design of the stirring machinery shows needed improvement
due to the low variance in much of the domain via FTVA. This
is corroborated and repeated here in Fig. 12a and Fig. 12b. The
trend analysis from [8] additionally shows much of the domain
possessing at least two clusters of terminal particle positions for
both the forward and backward integration.

Our method shown in Fig. 12d through Fig. 12k, sharply con-
trasts parts of the previous analysis from [8]. We find even in re-
gions of high variance, little evidence of good transport. As can
be seen in Fig. 12d and Fig. 12e, there are irregular domain re-
gions showing very low average linear and angular streamline en-
tropy. (This is most evident in the ovoid structure to the far-right
middle section of the domain.) Interestingly, the region along the
lower-left of the cylindrical tank possesses high average entropy,
but little to no clusters (see Fig. 12f, Fig. 12g and Fig. 12k). This
would appear to contradict the regions with low entropy and also
no clusters, except for the fact that we had already observed that
regions with a high number of trends generally occur at the ridges
of the gradient magnitudes of the entropy maps. We see that this
region with high entropy in the lower-left of the domain also ex-
hibits low gradient magnitude (not a region containing a ridge)
and thus agrees with the earlier assessment.

There is little difference between the average linear and an-
gular entropy maps for this data set (Fig. 12d and Fig. 12e) and
this signature may be useful for classifying such overall behav-
ior. In regions of the flow that both have low average entropy and
low levels of cluster count, we would want to improve the overall
transport. This analysis may suggest that a potential geometrical
or material design might be implemented to prevent lack of agita-
tion at the fluid and paddle points of contact, since this behavior is
consistent across the ensemble where fluids of varying parameters
of viscosity were used in the simulation.

6 Conclusion
In this paper, we first presented a flow structure based on

streamline clustering over their spatial extent. Using the mean lin-
ear and angular streamline entropy maps, we showed that where
variations in entropy is greatest, there is in general a correspond-
ingly high number of clusters for those streamlines.
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(a) (b) (c) (d) (e)
Figure 9: Streamline clusters for an incoherent flow region in lock-exchange data set. (a) Region location (shown by white box selected
rectangle) from lock-exchange velocity magnitude field. (b) All streamlines from a single member. (c) First cluster from (a) with
representative streamline. (d) Second cluster from (b) with representative streamline. Representative streamlines are highlighted in red.
(e) Plot of representative streamlines for 20 members, each a random color.

(a) (b) (c) (d)
Figure 10: Streamline clusters for a coherent flow region. (a) Region location (shown by white box selected rectangle) from lock-
exchange velocity magnitude field. (b) All streamlines from single member. (c) Single cluster with representative from (b). Representative
streamlines are highlighted in red. (d) Plot of representative streamlines for 20 members, each a random color.

Preliminary results revealed that related methods of trajec-
tory similarity/clustering did not capture the behavior of spatial
bifurcation or flow bundling as we had anticipated. For example,
TRACLUS [12] is a direct extension of DBSCAN to line-segment
data. TRACLUS tends to cluster trajectories without regard to
individual path integrity, and often finds patterns in partitioned
segments of the initial streamlines instead.

We followed our analysis of flow structure by investigating
flow coherence at regions of bifurcation in a 2D EVF. Finally, we
discussed how both methods can be used in a sequential frame-
work for EVF analysis. The methods presented here are not lim-
ited to steady-flow. For the purpose of clarity in this initial study,
we chose to focus on a single time-step in the simulation.

Future work will employ better adaptive strategies for
streamline sampling frequency and incorporate multiple similar-
ity metrics. Additionally, new methods of region analysis over the
entire simulation domain may prove useful via algorithmic versus
manual inspection.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 11: Comparison of transport visual summaries for the Massachusetts Bay data set at surface level. Methods from [8] are along first
row separated by the horizontal line. The vertical line separates entropy maps on the left and cluster results on the right half of the Fig.
(a) FTVA for forward integrated streamlines. (b) FTVA for backward integrated streamlines. (c) Number of trend clusters from terminal
positions in forward integration. (d) Number of trend clusters from terminal positions in backward integration. (e) Map of average linear
streamline entropies for ensemble. (f) Map of average angular streamline entropies for ensemble. (g) Streamline clusters sampled at three
points per streamline. (h) Streamline clusters sampled at ten additional points per streamline. (i) Gradient magnitude for linear entropy
map. (j) Gradient magnitude for angular entropy map. (k) Sample map, i.e. the map of the points sampled on each streamline for their
corresponding seed location. (l) Cluster map for streamlines sampled variably based on entropy. (Note: color bars for sample and cluster
maps contains discrete colors labeled from top to bottom in increasing order.)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 12: Comparison of transport visual summaries for the industrial stirring data set. Methods from [8] are along first row separated
by the horizontal line. The vertical line separates entropy maps on the left and cluster results on the right half of the Fig. (a) FTVA for
forward integrated streamlines. (b) FTVA for backward integrated streamlines. (c) Number of trend clusters from terminal positions in
forward integration. (d) Number of trend clusters from terminal positions in backward integration. (e) Map of average linear streamline
entropies for ensemble. (f) Map of average angular streamline entropies for ensemble. (g) Streamline clusters sampled at three points
per streamline. (h) Streamline clusters sampled at ten additional points per streamline. (i) Gradient magnitude for linear entropy map.
(j) Gradient magnitude for angular entropy map. (k) Sample map, i.e. the map of the points sampled on each streamline for their
corresponding seed location. (l) Cluster map for streamlines sampled variably based on entropy. (Note: color bars for sample and cluster
maps contains discrete colors labeled from top to bottom in increasing order. Also notice that all fields shown in this Fig. are slightly
truncated in their upper right corner from Fig. 6c. We use the intersection of the simulation region for all members in the ensemble.)
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