
Journal of Imaging Science and Technology R© 60(1): 010404-1–010404-11, 2016.
c© Society for Imaging Science and Technology 2016

Visual Descriptors for Dense Tensor Fields in Computational
Turbulent Combustion: A Case Study

G. Elisabeta Marai and Timothy Luciani
University of Illinois at Chicago, Department of Computer Science, Chicago, IL 60607

E-mail: gmarai@uic.edu

Adrian Maries
Learning Research and Development Center, Pittsburgh, PA 15260

S. Levent Yilmaz
Mathworks, Natick, MA 01760

Mehdi B. Nik
Stanford University, Center for Turbulence Research, Department of Mechanical Engineering, Stanford, CA 94305

Abstract. Simulation and modeling of turbulent flow, and of turbulent
reacting flow in particular, involve solving for and analyzing
time-dependent and spatially dense tensor quantities, such as
turbulent stress tensors. The interactive visual exploration of these
tensor quantities can effectively steer the computational modeling
of combustion systems. In this article, the authors analyze the
challenges in dense symmetric-tensor visualization as applied
to turbulent combustion calculation; most notable among these
challenges are the dataset size and density. They analyze, together
with domain experts, the feasibility of using several established
tensor visualization techniques in this application domain. They
further examine and propose visual descriptors for volume rendering
of the data. Of these novel descriptors, one is a density-gradient
descriptor which results in Schlieren-style images, and another
one is a classification descriptor inspired by machine-learning
techniques. The result is a hybrid visual analysis tool to be utilized
in the debugging, benchmarking and verification of models and
solutions in turbulent combustion. The authors demonstrate this
analysis tool on two example configurations, report feedback
from combustion researchers, and summarize the design lessons
learned.

INTRODUCTION
Computational simulation of turbulent combustion for gas
turbine design has become increasingly important in the
last two decades, due in part to environmental concerns
and regulations on toxic emissions. Such modern gas
turbine designs feature a variety of mixing fuel compo-
sitions and possible flow configurations,1,2 which make
non-computational simulations difficult. The focus of the
computational research effort in this direction is on the
development of computational tools for the modeling and
prediction of turbulent combustion flows.
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Tensor quantities are common features in these tur-
bulent combustion models. In particular, stress and strain
tensors are often correlated to turbulent quantities—which
appear unclosed in the mathematical formulation and
thus need to be modeled as part of the computational
simulation. Visual identification of the characteristics of
such tensor quantities can bring significant insights into the
computational modeling process.

However, these computational tensor fields are very
large and spatially dense—a good example of the Big Data
revolution across sciences and engineering. Figure 1 shows
an example turbulent combustion configuration, featuring a
grid size of 106 and 6× 106 particles (shown as spheres);
this dataset should be considered in contrast to traditional
tensor datasets, which feature grid sizes in the 102 range. At
such large scales, typical glyph encodings become cluttered
and illegible. Furthermore, combustion experts seldom have
an intuitive understanding of the tensor quantities. In this
respect, froma tensor visualization perspective, workingwith
these datasets poses an array of challenges. Are traditional
tensor and flow representations useful in this context?
Does increasing the level of complexity or expressiveness
of such representations help or hinder? Is interaction speed
more important than the benefits gained from complex
descriptors? In this article, we address a specific application
design problem. In the process of exploring the design
space, we also investigate some of the larger visualization
questions above, through the opportunity of a case study in
the computational-combustion domain.

In thiswork,motivated by an ongoing collaborationwith
domain experts,3 we investigate the challenges associated
with the exploratory visualization of tensor quantities in tur-
bulent combustion simulations. We first provide a character-
ization of the problem domain, including a data analysis.
Through a case study involving five senior combustion
researchers, we then iteratively explore the space of ten-
sor visual encodings. We implement and evaluate several
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Figure 1. One timestep in an example turbulent combustion configuration.
The grid size is 106. In this image, 6× 106 particles are shown as
spheres. This dataset should be contrasted to traditional tensor datasets,
which feature sparse grids in the 102 range. At this scale, typical glyph
encodings become cluttered.

approaches advocated by the visualization community in
an interactive prototype, and we contrast these approaches
with the best-of-breed visualization practices in the target
domain. Based on domain expert feedback, we then focus
our efforts on identifying effective visual descriptors for
volume rendering of the combustion tensor data. Our
contributions include a novel density-gradient descriptor
and the adaptation of a machine-learning classification
technique. Next, we evaluate the visual descriptors on two
computational-combustion datasets of particular interest,
and we show the importance of the proposed approach
for debugging the numerical simulation of complex con-
figurations. In an effort to better bridge the gap between
the combustion and tensor visualization communities, we
describe these tensor field datasets. Last but not least, we
contribute a summary of design lessons learned from the
study and from the application design process.

To the best of our knowledge, this is the first formal,
exploratory case study of tensor visualization techniques in
the context of very large, high-density turbulent combustion
flow.

TENSORS IN TURBULENT COMBUSTION
MODELING
Turbulent Combustion Modeling. A sufficiently accurate,
flexible and reliable model can be used for an in silico
combustor rig test as a much cheaper alternative to the real-
life rig tests employed in combustor design and optimization.
In order to achieve such amodel, themethodology should be
well tested and proven with lab-scale configurations.

Multiple numerical approaches exist for the generation
of such computational models of combustion, most notably
Direct numerical simulation (DNS), Reynolds-averaged
Navier–Stokes (RANS) and Large eddy simulation (LES).
DNS, RANS and LES have complementary strengths. How-
ever, allmodels begin by describing the compressible reacting

flow via a set of partial differential equations (PDEs) that
represent the conservation of mass, momentum and energy.
These PDEs are a fully coupled set of multi-dimensional
non-linear equations and can be posed in a variety of
forms depending on the flow conditions (compressibility,
scale, flow regime, etc.).4 In this article, we exemplify the
visualization of stress/strain tensors, and therefore restrict
the presentation to the pertinent subset of these PDEs,
namely the momentum transport equation.

Stress, Strain and Turbulent Stress Tensors. A tensor is an
extension of the concept of a scalar and a vector to higher
orders. For example, while a stress vector is the force acting
on a given unit surface, a stress tensor is defined as the
components of stress vectors acting on each coordinate
surface; thus, stress can be described by a symmetric
second-order tensor (a matrix).

The velocity stress and strain tensor fields aremanifested
in the transport of fluid momentum, which is a vector
quantity governed by the following conservation equation:

∂ρui
∂t
+
∂ρuiuj
∂xj

=−
∂p
∂xi
+
∂τij

∂xj
for i= 1, 2, 3, (1)

where the Cartesian index notation is employed, in which the
index i= 1, 2, 3 represents spatial directions along the x , y
and z Cartesian coordinates, respectively, and the repeated
index j implies summation over the coordinates. Here, t is
time, ρ is the fluid density, u ≡ [u1, u2, u3] is the Eulerian
fluid velocity, p is the pressure and τ is the stress tensor
defined as

τij =µSij, (2)

where µ is the dynamic viscosity coefficient (a fluid-
dependent parameter) and S is the velocity strain tensor
defined as

Sij =
1
2

(
∂ui
∂xj
+
∂uj
∂xi

)
. (3)

For an intuitive understanding of the fluid stress and
strain tensors (or, rather, the rate-of-strain tensor), let us
consider, in contrast to combustion fluids, an elastic solid
such as a strip of rubber. If we twist the rubber around
and keep it twisted, a certain amount of deformation
occurs. While this deformation does not have an intuitive
equivalent in fluids, gases may dilate, rotate and shear during
combustion. The rate at which these deformations occur is
manifested in the velocity strain (a.k.a. rate-of-strain) tensor
S defined in Eq. (3).

Similarly, the stress tensor is the force that is required to
sustain a given strain rate. Considering again the solid rubber
example, one can apply the same deformation on a tough
rubber versus a more elastic rubber. However, the tough
rubber requires more force to get the same strain. For the
fluid flowmotion, there are different constitutivemodels that
relate strain to stress. In combustion, the experts examine
Newtonian fluids, a special family of fluids where the stress is
a linear function of the rate of strain, as spelled out in Eq. (2).

From the computational modeling perspective, the third
tensor quantity of interest is the turbulent stress tensor. The
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turbulent stress tensor T is defined as

Tij = 〈ρ〉(〈uiuj〉L−〈ui〉L〈uj〉L). (4)

We note from Eq. (4) that the role and meaning of
the turbulent stress tensor are very different from the stress
tensor. In fact, the definition above does not relate in
any way to stress. However, many combustion modeling
techniques rely on a ‘‘turbulent viscosity hypothesis,’’ where
T is modeled as if it is acting like a stress tensor:

T =µtS, (5)

where µt is the turbulent viscosity coefficient. Indeed, the
whole literature on modeling of turbulent flow is providing
closuremodels forT in oneway or another. For these reasons,
the velocity strain tensor and its derived stress tensor and tur-
bulent stress tensor are of extreme interest to computational
modelers. We note that the rate-of-strain tensor provides an
immediate proxy—modulo a constant coefficient—for both
the stress tensor and the turbulent stress tensor.

RELATEDWORK
Several methods have been proposed for the visualization of
tensor datasets. They include eigenvector colormaps, glyphs,
streamlines, volume rendering and volume deformation.

Eigenvector colormaps5 are commonly used bymechan-
ical engineers for component-by-component visualization of
vector and tensor quantities. The limitation of colormaps
is that they can only display one type of information at
any one time, e.g., tensor component or eigenvalue. Another
approach utilizes glyphs.5 In engineering fields, glyphs
tend to be domain-based, highly specific abstractions. For
example, stress hedgehogs6 and Mohr circles7 have been
used to visualize mechanical stress in civil engineering,
but are unfamiliar to combustion researchers. Streamlines
(sometimes called hyper-streamlines) and streamtubes have
been used to visually represent mechanical stress.6,8 Like
glyphs, streamlines are also prone to clutter and occlusions.
Volume rendering of stress magnitudes,9,10 combined with
tracing of short line segments to show stress direction,
has been used both in orthopedic planning11 and to
indicate the effect of stress on objects in engineering.12
The volume-rendering approach holds promise for dense
datasets, although it can primarily show scalar information;
many of the existing mappings are not applicable directly to
visualizing combustion flow.

Because of the complexity of a 3D tensor field—
each tensor potentially has six components (three diagonal
and three non-diagonal elements), three eigenvalues and
three eigenvectors—tensor visualization techniques often
suffer from occlusion and cluttering problems. To address
these problems, researchers often use interaction and, more
recently, dimension reduction via classification.11,13–15

METHODS
Domain Characterization
In this section we present the first contribution of this
design study, an analysis of the problem domain. We

collected the information below, and we also performed the
followup design and evaluation through a collaboration with
five senior combustion modeling researchers. The research
experience levels in this group ranged from 32 years to
8 years. Four of these domain experts are well versed
in the best-of-breed visualization practices in their larger
field (CFD—computational fluid dynamics); two of these
experts are co-authors of this article. One of the five
domain experts also has several years of experience in
developing commercial visualization software for modeling
and simulation applications.

Data Analysis. Turbulent combustion modeling datasets are
the result of computational simulations often performed at
high resolution in both space and time. Even with the use
of current state-of-the-art supercomputers and algorithms,
the simulations can get quite demanding or even unfeasible
computationally. For example, LES simulations of a realistic
laboratory size flame require resolutions of the order of
107 grid points. Post-processing data are output at around
200 GB per timestep. A typical run using 1000 processors
takes 1 month of continuous runtime. DNS, being a model-
free representation of the basic equations, suffers from high
computational demand. LES and RANS can address this
shortcoming, however, at the cost of modeling errors and loss
of generality. LES and RANS models allow the researcher to
tackle ever larger and more realistic combustion problems,
so the size of the datasets can still get prohibitively large;
conventional visualization practices do not commonly apply.
Visualization, however, is quite essential for the combustion
community, as it can bring to light the inaccuracies in the
numerical approach and can also allow researchers to analyze
the validity of the models employed.

The questions posed during analysis have, fundamen-
tally, an exploratory nature: the experts seek to deter-
mine whether a particular tensor-based modeling approach
introduces any artifacts in the simulation of a complex
configuration. Unlike in the case of scalar and vector fields,
the experts are, however, seldom able to define beforehand
the nature of these tensor artifacts.

Case Study Methodology. The methodology used for this
case study included informal interviews, direct observation,
participation in the life of the experts’ groups, collective
discussions, analyses of documents and results produced
within the groups, self-analysis and results from evaluation
activities.

As is typical in scientific visualization, the application
is primarily intended for use by a small number of skilled
professionals, and is best evaluated through an exploratory,
case study approach. In contrast to this approach, evaluation
via formal user studies can bias the routine statistical analysis
toward specific tasks, solutions and approaches—due to the
lack of necessary or sufficient domain knowledge on the side
of non-expert users and designers.

This report is the first formal exploratory case study on
tensor visualization techniques for very large high-density
turbulent combustion flows, in contrast to many previous
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user studies conducted on visualization of scalar and vector
fields. While scalar and vector field visualizations benefit
from clearly defined features and tasks, tensor field analysis
has largely an exploratory nature.

Challenges.While many tensor visualization techniques have
been proposed and implemented in various systems, in
particular in medical imaging and civil engineering, the
visualization of turbulent combustion tensors is challenging
on multiple fronts.

The first challenge we identify is the one of effective
visual abstractions. By effective we denote visual abstractions
which capture the physical or mathematical aspects of the
tensors and which are intuitive to the application-domain
practitioners. The visual abstraction issue is particularly
difficult because the physical meaning of engineering tensors
is not necessarily intuitive. Symmetric second-order tensors
are used routinely as abstract quantities in the mathematical
modeling of turbulent combustion, and they are considered
very useful for computation. Yet, only abstractions of the
tensor, such as the trace of the tensor matrix, may bear
physical meaning to the domain practitioner.

The physical meaning of tensors can further greatly
impact how they should be analyzed and visualized, even
when the mathematical representations of these tensors are
the same across domains. Examples of this include the
stress tensor and strain tensor from solid mechanics, the
rate-of-deformation tensor from fluid dynamics, and the
diffusion tensor from medical imaging, all of which are
second-order, symmetric tensors. Yet, mathematical analyses
and visualizations need to be tailored to best suit the domain
scientists’ needs.

A second major challenge is the one of scalability.
Because combustion datasets are the result of computational
simulations often performed at high resolutions, they tend
to be large scale and particularly dense. Such high densities
and big volumes lead naturally to scalability, clutter and
occlusion problems when visualizing the data, as well as to
slow interaction when visually exploring the data.

Third, because researchers are particularly interested
in the 3D structure of the flow and the possible ways
to numerically decompose and simulate this flow, it is
important to support local details in the 3D global context of
the data.

Iterative Design and Evaluation
Our second contribution is an iterative exploration and
evaluation of the visual design space relating the visual
encodings and interaction techniques to the requirements
of the tensor target domain. In this section, we describe a
set of visual abstractions which aim to capture the physical
or mathematical aspects of the tensors, and then focus on
designing a set of specific volume-rendering descriptors.

In this study, we adopted a parallel-prototyping ap-
proach. In this approach, multiple designs are created and
presented for feedback in parallel; the process has been
shown to lead to improved cross-pollination of ideas and
less similar designs compared with serial prototyping.16

Following a feasibility analysis of related visualization
approaches (in the third section), an analysis of the perceived
visualization state of the art in the target domain, and several
group discussions in the tensor visualization community,17
we selected the following parameter axes for exploring the
tensor visual descriptor design space: glyphs, streamlines and
volume-rendering descriptors. Along each axis, the level of
complexity of each descriptor was varied: the glyph type
spanned linear, Westin’s and superquadric representations;
the placement, seeding and (optional) rendering style of
glyphs and streamlines were varied (grid based or flow based;
plain or illuminated streamlines); and visual descriptors
of increasing complexity were used for volume rendering.
Interactions were considered in conjunction with these
visual descriptors and with the tasks outlined in the earlier
section; we support manipulation, zooming and filtering
operations. The application tool was implemented in C/C++
with OpenGL and CUDA for rendering and QT for the user
interface.

Visual Encodings
Glyph and Streamline Descriptors. Representations that com-
bine the different tensor components into a single imagewere
of immediate interest to our collaborators in combustion
research. In particular, previous analyses of the smallest
dataset routinely used component-by-component colormap
representations (ParaView) to identify discontinuities in the
tensor field. We speculated that a combined representation
of the tensor components as glyphs would prove useful
for this task. We experimented with Westin’s composite
glyphs,18 superquadric glyphs19 and a highly simplified
linear encoding. The stress tensor is symmetric, and its
eigenvalues are real and positive.

Westin’s glyph consists of a rod, a disc and a sphere.
The eigenvectors and eigenvalues of the velocity strain tensor
were calculated for each evenly spaced grid point, then
mapped to the composite glyph. In the degenerate case, when
the difference between the first two eigenvalues was less than
0.001 (heuristically determined), the corresponding glyph
was displayed as a gray sphere.

Alternatively, to better convey shape and orientation, the
tensor information was encoded using superquadric glyphs.
The use of just six vertexes per quadric in the Sandia-D
dataset results in about tenmillion vertexes to compute, store
and view in real time; in reality, each quadric needs at least
20 vertexes to distinguish its shape. The superquadric glyphs
can optionally be colormapped.

Finally, following user feedback, we explored a third,
highly simplified, linelet encoding of the orientation and
magnitude of the main eigenvectors only.

As anticipated, mapping glyphs to the 3D tensor field
led to clutter and occlusions, even when the glyph field
was subsampled by a factor of 25. The problem was not
significantly alleviated by simplified glyph encodings. While
the simplified, linear result was easier to interpret, in
particular in 2D cross-sections of the field, 3D views of the
representation were still illegible due to clutter, and failed
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to deliver a sense of the 3D flow. Interestingly, the grid
placement of the glyphs (as opposed to jitter) was preferred
by the domain experts, because of the direct relationship of
this grid to the sampling grid used to compute and simulate
the fields.

Given the specific value range of the tensor fields,
Runge–Kutta 4 integral paths through the main eigenvector
of the stress tensor field yield only linelets of short length—at
most two cells. Runge–Kutta 4 integral paths through the
velocity field inspired, however, a glyph placement scheme
aimed at alleviating the clutter and occlusion problems.
In this scheme, the stress tensor glyphs were placed at
regular intervals along the streamline paths instead of on a
grid. To improve the legibility of the streamlines, we also
implemented an illuminated20 version.
Volume-Rendering Descriptors. In the target domain, volume
rendering is typically used for scalar quantities like species
mass concentration (combustion) or smoke concentration
(CFD). It is rarely used for vector quantities like velocities or
for tensor quantities. The challenge in volume rendering of
tensor quantities lies in selecting the scalar variable to map
to the volume rendering.

In this section we derive and propose specific visual
descriptors for volume rendering of combustion tensor data,
in the following order: velocity-gradient-based descriptors,
a density-gradient descriptor and a classification-based de-
scriptor obtained by adapting a machine-learning clustering
technique.
Velocity-gradient-based descriptors. In the experts’ opinion,
volume rendering gives an idea of the extent or spread of
a specific variable. Therefore, in principle, any tensor-based
variable that not only has a physical meaning for tensor
modeling, but also has a tendency to spread or diffuse out,
is a good candidate for volume rendering. However, the
challenge lies in identifying intuitive descriptors for the target
domain.

Analysis of the definitions and derivations of the various
tensor quantities shows that the velocity strain tensor
contains a good amount of physical information. The various
components of this tensor have a straightforwardmeaning; in
particular, the deformation D can be decomposed through
standard matrix decomposition into a symmetric and an
anti-symmetric component as

D= 1/3∇I + S+�. (6)

In this decomposition, ∇ is the dilatation term div u
(divergence of u), which is a scalar, and I is the identity
matrix; div u is zero for incompressible fluids (e.g., water
at room temperature), but not in our case. Here, S is the
symmetric-deviatoric component:

S= 1/2(∂ui/∂xj+ ∂uj/∂xi)− 1/3∇I (7)

and� is the anti-symmetric component:

�= 1/2(∂ui/∂xj− ∂uj/∂xi). (8)

Dilatation appears here for compressible flows only.

Figure 2. Volume rendering of divergence of the temporal mixing layer
dataset, and color transfer function (right). Regions with saturated blue or
red indicate higher magnitudes of divergence, either positive or negative.
The rendering shows very clearly the 3D nature of the tensor field, which
is difficult to extract through other visualization methods.

The respective physical interpretations for these three
terms are, roughly, the dilatation (negative of compression),
the shear rate and the rate of the rotation of the fluid. The
velocity-gradient quantities we turned to for the volume
rendering are thus the dilatation term magnitude, also
known as the divergence, which can be calculated as the trace
of the strain tensor in Eq. (3), the shear rate and the rotation
of the fluid. Figure 2 shows an example image of divergence
for a temporal mixing layer flow.
Density-gradient-based descriptors. We derive a second class
of volume-rendering descriptors from the density gradient of
combustion datasets. The density gradient relates to the stress
tensor through the conservation equation Eq. (1). These
descriptors can be used to generate flow visualizations in the
style of Schlieren images.21

Schlieren (from German, meaning ‘‘streaks’’), first ob-
served by Robert Hooke in 1665, are optical inhomogeneities
in transparent materials which are otherwise not visible to
the human eye. The Schlieren flow photography process
uses a viewing screen and a knife edge to generate a
shadow pattern; this shadow pattern is a light-intensity
representation of the low- and high-density regions in the
flow.

Numerical Schlieren pictures can also be generated, like
experimental Schlieren images, from the density-gradient
field. Following Hadjadj and Kudryavtsev,21 we derive the
quantity

Schlieren(x, y, z)= β ∗ exp
(
−
k ∗ |∇ρ|
|∇ρ|max

)
, (9)

where x, y, z are the 3D coordinates at which the quantity is
evaluated, max denotes the maximum values of the density
gradient over the entire field, and β and k are rendering
parameters. The parameter β determines the shade of
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Figure 3. One timestep of a shocklet dataset, rendered using a Schlieren
density-gradient-based descriptor. For this image, β = 0.8 and k = 20,
which are experimentally determined. Note that the density-gradient
descriptor captures well the shocklet boundary.

the gray color that corresponds to the zero gradient; its
typical value is 0.8. The parameter k serves to amplify
small gradients; in our experiments, a value of k of either
15 or 20 provided good results. Other density-gradient
descriptors are also possible; variations of Eq. (9) can
generate additional effects, such as numerical interferograms
and shadowgraphs.21

Figure 3 shows the Schlieren for one timestep of
a shocklet dataset—a larger, 12,900-timestep variation of
the temporal mixing layer flow shown in Fig. 2. The
density-gradient-based descriptor appears to capture the
shocklet boundary more strongly than the velocity-based
descriptors.

Classification-based descriptor. The last—and most compu-
tationally complex—visual descriptor for volume rendering
we pursue attempts to account for the tensor structure
as a whole. To this end, we use clustering analysis—a
machine-learning technique—to group together tensor data
points that are similar to one another. In this approach,
clustering is performed on the six distinct values of the
strain tensor. Ideally, similar tensor field points are grouped
together into clusters; the optimum number of clusters is
determined through repeated classification and analysis of
the cluster separation. To enable application of clustering
techniques at this scale, we perform a pre-clustering step22
via subsampling of the dataset. This step enables us to obtain
starting cluster centers. The pre-clustering step is followed by
a K-means algorithm with L-2 norm to partition and cluster
the tensor field components.

For volume rendering, each cluster is assigned an index
value, and the transfer function is set monochromatically
according to each cluster. We keep track of each cluster’s
mean signature in order to enable cluster stabilization across
the visualization of multiple timesteps.

An advantage of the approach is that it effectively
segments large combustion datasets into regions of interest,
thus making the effective visualization of very large datasets
possible. Feature extraction also helps users to highlight and
focus on regions of interest. A disadvantage of the approach
is, obviously, that similarity is a relative measure: selecting
too small a number of clusters for classification may miss

modeling artifacts, while too large a number of clusters may
lead to illegible renderings.

In our experiments, clustering was performed on a
quad-core 3.33 GHz Intel i5 CPU machine with 16 GB of
RAM. On average, 8M grid points took between 15 and
20 min to generate three or four clusters.

We note that, as with velocity-gradient and density-
gradient descriptors, multiple other classification descriptors
are possible.

Interaction Techniques
Tufte’s principles23 suggest that the information content
of a visualization would be maximized by a hybrid visual
encoding. To prevent the sheer volume of combined
information from becoming overwhelming, we follow a
strategy based on Shneiderman’s info-vis mantra:24 volume
renderings are used as an overview of the flow and serve as
a visual anchor, while the streamlines generated interactively
enable filtering of interesting regions, and a zoom lens allows
glyph representations to function as details on demand.

The hybrid prototype uses two modes of operation,
explore and filter. In the explore mode, a user canmanipulate
the scene and zoom in and out. To speed up interaction
during rotation and zooming, fewer rays and a reduced
sampling rate along the ray are used compared with the
full-resolution rendering. While ParaView employs a muted
neutral gray background, we found that a dark background
competed less with the volume-rendering overlay informa-
tion.25 In the filter mode, streamlines can be generated
interactively, highlighted and compared. Streamline seed
points can be dragged to new locations in the volume.
To further reduce clutter, the glyph representations can be
mapped either to axis-oriented cutting planes, which are
also controlled by the user, or along velocity streamlines. A
zoom lens was also implemented to facilitate the analysis of
glyph-based representations. Themagnification tool uses the
stencil buffer to create a viewport into the glyphs. In both
modes, a user can filter out streamlines, volumes or the glyph
representations.

APPLICATION TO COMBUSTIONDATA AND
DISCUSSION
We have employed the results of two simulations in this
study. The first and most intriguing dataset, the Sandia-D
experiment, is the result of an LES simulation of a turbulent
jet configuration. The second dataset is a canonical test
problem employed in turbulent reacting flow research,
namely a temporal mixing layer configuration. The feedback
below was provided by the research groups involved in our
study.

Sandia-D
The Sandia-D dataset is a centimeter-scale jet configuration
with a fuel jet at the center (methane–air mixture for this
dataset) surrounded coaxially by a slower-speed hot pilot
flame. The pilot flame is further surrounded by a co-flowing
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Figure 4. Velocity-gradient-based descriptor (divergence) of the Sandia-D dataset. Note the ripple effect in the left image, indicating a numerical artifact
in the simulation; the ripple disappears in later timestamps (right).

hot air stream. It has a Reynolds number of 22,400, and so its
DNS is computationally unreasonable. The LES simulation
provides solutions of the turbulent fields of species as well
as the velocity field as a function of 3D space and time. The
data used in this experiment comprise the filtered turbulent
velocity vector and the turbulent stress tensor fields taken at
a snapshot in time and discretized over a uniform Cartesian
grid of size 200 in the streamwise direction and 160 in each
of the cross-stream directions (≈5M grid points).

The analysis of the Sandia-D dataset showcases the
advantages of the volume-rendering descriptors as a means
of debugging numerical simulations, along the very artifact
identification and analysis tasks outlined earlier. Using the
hybrid prototype, the researchers were surprised to notice
a rippling artifact surrounding the central jet (Figure 4
left). This artifact had escaped previous numerical and
visual analyses. The snapshots shown are for two time
levels at 0.7 and 1.8 residence times, respectively, where one
residence time is equal to the total streamwise length divided
by the mean jet velocity. The rippling effect disappears
as the simulation goes further in time. This non-physical
ripple effect could be attributed to numerical artifacts of
the employed discretization scheme in the LES simulation,
and was pronounced only in the incompressible regions.
This in-depth analysis was enabled by the hybrid prototype
exploration. According to the domain specialists, the hybrid
descriptors made this analysis especially clear in the right
snapshot, where the effects of high-frequency pressure waves
are less compared with earlier in the simulation.

The rippling artifact was clearly and immediately visible
in the divergence descriptor, but not noticeable in either
the shear or rotation descriptors, in the density-based
descriptor, or in the classification descriptor, regardless of the
transfer function used. While the density and classification
descriptors missed the artifact, they were praised for their
accurate detection of boundaries, and the latter also for

its compression potential. Collectively, the descriptors were
considered to be outstandingly useful in an analysis of the
regions at and near the jet core, where they were indicative
of the high spatial and temporal gradient in the gas-mixture
density.

The glyph and streamline components (Figure 5) were
considered to be useful, although not on the same scale as
the volume-rendering descriptors. While the tensor itself is,
in the experts’ verbiage, ‘‘pretty complete, and very useful for
computation,’’ its encoding as a glyph was ‘‘not so easy to
understand.’’ Increasing levels of complexity did not help. In
particular, shape changes in the superquadric encoding were
hard to read at the scale of the dataset, despite the use of
filtering and of the magnifying lens (sometimes at a 10,000:1
zoom level). The glyph placement on streamlines further led
to ‘‘cool images,’’ but no further insight.

The interactivity of streamlines (used as probes in the
hybrid prototype) was much appreciated, and sometimes
praised to excess when compared with state-of-the-art
toolkits, in particular ParaView. Illuminated streamlines
were considered superior; however, the advantage did not
raise the same level of excitement as the interaction aspect.

Temporal Mixing Layer
The temporal mixing layer is a simple configuration where
two streams of fuel and oxidizer flow over and against each
other. The flow speeds are adjusted for a low Reynolds
number, yielding a narrow range of length scales, and this
configuration can be easily tackled with DNS and then used
as a benchmark. The data for the temporal mixing layer are
similarly at a snapshot in time and at the full DNS resolution
over a grid of size 193 grid points in two Cartesian directions
and 194 in the other (≈8M grid points).

For the mixing layer configuration, observations were
immediately visible where the ‘‘mushroom’’ pattern around
the shear layer at the mid-zone was distinguished well
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Figure 5. Glyph- and streamline-based exploration of the Sandia-D dataset, timestep 1. Left: glyphs placed on cutting planes. Right: glyphs placed along
streamlines. Neither representation captures the rippling artifact.

Figure 6. Hybrid tensor visualization of the mixing layer configuration. In
this example, the user customized the transfer function interactively (color
and opacity) to emphasize the median area of the flow corresponding
to the two mixing layers. This snapshot highlights asymmetries in the
combustion flow; the asymmetries are emphasized by streamlines.

from the zero-divergence outer zones (Figure 6). The
density-gradient (Schlieren) descriptor was particularly ap-
preciated over the velocity-gradient ones, for its ability
to emphasize the shocklet boundary. The classification
descriptor (Figure 7) also generated significant excitement
for its ability to correctly identify and track regions of interest
in the dataset.

Overall, the volume descriptors combined with the
interactive streamlines (Figure 8) generated remarkable
excitement. The researchers noted that the tangled, asym-
metric streamlines in the mid-plane illustrate well the
turbulent shear layer behavior where opposing streams of

Figure 7. Classification-based descriptor with four color-coded clusters
for the same 8M point mixing-layer combustion dataset.

fuel and oxidizer meet. Illuminated streamlines were again
appreciated, yet again not on the same scale as the interaction
rates. The experts remarked repeatedly about the prototype’s
ability to focus on the interesting region of the volume (e.g.,
‘‘[compared to this, in other tools] interactive selection is a
beast’’). The researchers also commented on the resolution
and interactivity of the volume rendering, which was eight
times more dense and, in their estimate, ten times faster than
ParaView, the visual tool they had often used for volume
rendering.

As before, increasingly complex glyphs, as well as their
placement along streamlines (Figure 9) were deemed ‘‘cool,’’
but did not lead to additional insight. We note that the
domain experts were unable to discern shape variation
among superquadric glyphs, even with filtering and under
extreme magnification. The experts asked, in fact, for the
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Figure 8. Exploratory visualization of dense tensor fields used in
computational turbulent combustion modeling: hybrid rendering using a
velocity-gradient volume rendering, plane-seeded glyphs and illuminated
streamlines.

Figure 9. Visual velocity-gradient descriptor for an 8M point mixing-layer
combustion dataset. The descriptor is augmented with streamline-placed
superquadric glyphs. While the glyphs here and elsewhere are
downsampled by a factor of 100, it should be noted that the scale of the
datasets renders them illegible and of limited use, even when significantly
magnified.

more complex glyphs to be colormapped into different
categories; voiding the point of complex glyphs based on
shape.

We note that the hybrid application compared favorably
with existing visualization toolkits that offer a reduced set
of similar, though less interactive, visualization features,
such as ParaView, VisIt, Ensight and TecPlot. The essential
advantages of using our utility for turbulent tensor visual-
ization were its performance, the specific volume descriptors
proposed and the fact that it was tailored to this specific
application. The interactive rendering rates, the real-time
selection of seed points for the streamline data, and the

overall easy flow of interaction were major points repeatedly
emphasized by the combustion hcientists.

Discussion
Following our design study performed in the application
field, we reflect on the visualization insights gained. The
design and evaluation process was completed through tight
collaboration with combustion researchers. At its end we
conclude that a hybrid approach works best for the target
domain.

In the state-of-the-art practices in the target domain,
interviews with the domain experts indicate that glyph
visualization is nonexistent, aside from arrow glyphs. 2D
contour plots, iso-surfaces and streamlines are readily
available and popular, but are rapidly losing ground to
volume rendering. Volume rendering is very popular for
scalar quantities, in particular pressure and temperature, but
also for derived quantities like vorticity, divergence, curl or
swirl, although descriptor usage guidelines are nonexistent.
Animations of flow vectors, iso-surfaces and fluid particles
are common. Multi-views, although not linked, are routinely
used to spot correlations between multiple scalar or vector
fields.

Through our application development, we found that
the use of traditional tensor descriptors such as ellipsoid or
superquadric glyphs in the combustion domain is fraught
with legibility problems. Elegant visual abstractions which
capture the physical or mathematical aspects of the tensors
were not necessarily intuitive to the application-domain
practitioners. Increasing glyph complexity appeared to
further hinder the experts’ understanding of the data.

Glyph occlusion and clutter were additional major
concerns, given the density of the tensor fields. In both of our
dataset applications we found that the placement of glyphs
along streamlines was not particularly beneficial. When the
glyphs are evenly spaced throughout the volume, there is no
formal guarantee that they capture the important features of
the volume. The use of glyph packing26 may alleviate this
problem, but the legibility challenge outlined earlier remains.
From our study, we conclude that in the application-domain
glyphs are best used as details on demand, and when so, they
should be mapped to cross-cutting planes.

Streamlet representations were not applicable to the
combustion tensor data: due to the numerical range of the
tensor field, they were essentially reduced to the linear glyphs
explored earlier. However, the expert feedback indicates that
streamlines through the velocity field continue to be useful,
and that streamlines can be used as probes to highlight the
structure of the flow. In both dataset applications, we found
that interaction with these probes was far more important
to the domain experts than the actual complexity of the
streamline rendering. We also found, through our field
foray, that iso-surface-based renderings are falling into less
use in the application domain, and are being replaced by
volume-based renderings.

In terms of volume-based rendering, the challenge lies
in identifying appropriate visual descriptors for the tensor
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fields. In this work, we proposed three classes of visual
descriptors: velocity-gradient based, density-gradient based
and classification based.Many other descriptors are possible.
Each of the three classes we explored has complementary
strengths: the velocity-gradient descriptors, in particular
divergence, were best able to identify artifacts in the data;
the density-gradient descriptor was best able to identify
boundaries of interest; and the machine-learning descriptor
was able to identify regions of interest through the data.
Overall, we find that the proposition of relevant visual
descriptors requires a solid understanding of the science
behind the target domain.

Finally, interactivity and responsiveness of the visual
descriptors are found to be of significant importance; for
instance, basic interaction aspects are reported to make a
significant difference in the effectiveness of streamlines as a
probing tool. The overall use of volume renderings to provide
global contextwas deemedhighly relevant, while local probes
are still required for detailed information extraction. Clutter
and occlusion problems are shown to further benefit from an
info-vis mantra and from an interactive filtering approach.

CONCLUSION
In this article we investigated, through a case study
approach, the challenges posed by the application of
tensor visualization research to the domain of turbulent
combustion. In partnership with combustion researchers,
we characterized the target domain, and iteratively explored
the design space of tensor visual encodings through a
parallel-prototyping approach. We further identified three
sets of effective visual descriptors for volume rendering of
the tensor data: velocity-gradient based, density-gradient
based and classification based. We implemented a hybrid
prototype using these visual encodings, evaluated their
relative strengths on two examples of turbulent reacting
flow and reported feedback from the target users in
the application domain. The value of visualization as a
comparison and debugging tool is well documented in this
work.

In a further effort to bridge the gap between the tensor
visualization and combustion communities and to facilitate
the development of future visual benchmarking tests, we
described in this article the two large datasets we used for
validation. Finally, we analyzed the findings of our case study
in the context of the larger visualization community. We
summarized the design lessons learned through our collab-
oration with combustion experts, with particular emphasis
on the need for global/local visualization, uncluttered visual
encodings and fluid interaction. Given the prevalence of Big
Data across sciences, we hope that this work will serve as
a foundation for discussion and for future applications and
contributions.
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