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Abstract
Exploring vast spatial datasets often requires to drill down

in order to inspect details, thus leading to a loss of contextual
overview. An additional challenge rises if the visualized data is of
multivariate nature, which we encounter in various domains such
as healthcare, nutrition, crime reports, or social networks. Exist-
ing overview-plus-detail approaches do provide context but only
limited support for multivariate data and often suffer from distor-
tion. In this paper, we dynamically integrate star glyphs as insets
into the spatial representation of multivariate data thus providing
overview while inspecting details. Star glyphs pose an efficient
and space saving method to visualize multivariate data, which
qualifies them as integrated data representative. Furthermore, we
demonstrate the usefulness of our approach in two use cases: The
spatial exploration of multivariate crime data collected in San
Francisco and the exploration of multivariate whisky data.

Introduction
Multivariate data accompanies us in our day-to-day life.

Prominent examples represent data from healthcare, nutrition,
crime reports, or social networks, among others. We typically
use spatial representations in order to determine patterns and cor-
relations among dimensions. An example represents the explo-
ration of a huge set of malt whiskies: Each whisky is assigned
to the geo-location of its distillery and has several diverse taste
categories. The task can be either to seek correlations between
particular taste categories and geo-locations, or to find patterns
of whiskies for certain taste categories. The latter case can be
achieved by applying dimension reduction methods which project
the data to a lower dimensional space. When exploring such vast
amounts of spatial data, at some point we use zooming and pan-
ning interactions to focus on certain regions of interest to obtain
a detailed view. However, due to the limited size of the display
screen, zooming and panning interactions lead to an inevitable
loss of the contextual overview. Overview can be regained by
zooming out resulting in a continuous trade-off between overview
and detail. Jerding and Stasko argue that the limited size of the
display makes it difficult to create efficient global views [25].

Existing Overview-and-Detail and Focus-plus-Context ap-
proaches provide comprehensive methods that typically operate
in image space. Overview-and-Detail techniques attach a second
viewport to the visualization. Although overview is provided,
the user is forced to split his attention, which can result in in-
creased cognitive load [19]. In contrast, Focus-plus-Context tech-
niques integrate overview and detail, but use image-based distor-
tion which restricts the interface by means of zooming levels [36].

In this paper, we propose a novel data-driven Off-Screen vi-
sualization technique for spatial multivariate data. More specifi-

cally, we contribute a dynamic integration of star glyphs as effi-
cient visual insets for the representation of multivariate off-screen
data objects. To do so, we augment the viewport with a dedicated
border region including star glyph insets. A result of our approach
is depicted in Figure 1.

The remainder of this paper is organized as follows: First,
we discuss related work. Then, we introduce the design of our
approach and show the usefulness in two use cases, before we
conclude and outline future work.

Related Work
In order to preserve the overview of multivariate data dur-

ing exploration, we need to consider the potentials of both mul-
tivariate data visualization and overview preserving visualization.
Following, we discuss related work of these areas.

Multivariate Data Visualization
Visual analysis of multivariate data has the objective of al-

lowing the user to identify correlations and patterns among di-
mensions. Dimensions in multivariate data are not supposed to
be considered independently but simultaneously, because they
typically provide combined information that contributes to the
overall understanding of the data [33]. Various techniques have
been presented to visualize multivariate data. Prominent exam-
ples of geometric projections are parallel coordinates [22], An-
drew curves[1], or star coordinates [27]. Pixel-oriented tech-
niques include recursive patterns [28] and pixel barcharts [29].
However, aforementioned techniques are not optimal to be inte-
grated as space efficient inset giving a coarse overview of dimen-
sions; glyph-based techniques such as Chernoff faces [7] or star
glyphs [5] meet these requirements.

Integration of Overview and Detail
In order to allow efficient navigation and provide support

for data analysis, the integrated preservation of the contextual
overview is crucial. In this paper, the term context refers to the
overview of the multivariate nature of the data including informa-
tion about location and in some cases topology of the data. Fol-
lowing, we give a brief overview of integrated techniques, namely
Focus-plus-Context and Off-screen Visualization techniques.

Distortion-oriented Techniques
The pioneering approach of Apperley et al. [2] provides a

maximum focus region while all surrounding areas are distorted.
Variations of this approach apply the technique for example to
one-dimensional visualizations [32, 39]. Furnas [14] further intro-
duced the degree-of-interest (DOI) function as basis for the well-
known Focus-plus-Context systems [40, 4]. Additional Focus-
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Figure 1. Visualization of multivariate crime data collected from the official San Francisco Open Data repository [8]. The user first filtered the data and then

shows all crimes committed on Monday June 6, 2015. (1) The user drills down to street-level around the area of the Civic Center Plaza for further analysis.

(2) Via brushing and linking, the user can analyze (3) details of a certain area. In this case, the user selects some committed crimes along the main street of

San Francisco. Each axis of the star glyph corresponds to one crime category. For the selection, the categories assault, other offenses, theft, non-criminal, and

warrants are very prominent. (4) At the same time, aggregated overview of the surrounding is preserved using the very same glyph layout. When the user hovers

(marked in red) an inset, (3) the detail view is updated and (5) a word cloud is presented next to the inset. The font size of visualized categories corresponds to

the amount of crimes committed, respectively. Using the star glyph insets, the user can efficiently identify dimensions of interest.

plus-context systems can be found in a comprehensive review of
existing techniques, which was carried out by Cockburn et al. [9].
However, due to the image-based distortion, some weaknesses are
inevitable: Even on high-resolution images, the amount of zoom-
levels is restricted by the resolution of the visualization [36]. Fur-
thermore, distortion impedes the ability of precise judgment about
scale or distance [3]. Naturally, advantages and drawbacks are al-
ways task dependent. In this paper, we provide overview of mul-
tivariate data, this is why we aim at a data-driven approach which
dynamically adapts to zoom level and position.

Off-screen Visualization Techniques
Unlike distortion-oriented techniques, off-screen visualiza-

tions also distort distances to objects that lie outside the viewport
(focus region), but consider the data characteristics separately.
Besides the application of arrows, Zellweger et al. [46] went one
step further and introduced a family of visual proxies that point to
off-screen located objects: City Light cues and Halos [3]. While
City Light cues simply indicate the presence of any off-screen lo-
cated object, Halos intersect the display with an arc whose origin
is the location of the off-screen object. This way, distance can
also be perceived. However, Halo heavily suffers from overplot-
ting. Wedge [20] and HaloDot [18] were designed to improve
scalability. Wedge uses isosceles triangles instead of arcs, which
results in less overplotting. In contrast, HaloDot enhances Halo
and aggregates off-screen located objects. The relevance of the
aggregation is shown by thickness or transparency. Yet, different

object classes are not considered [17]. Games and Joshi [15] car-
ried on the concept of off-screen visualization and applied visual
cues to statistical diagrams. However, aforementioned approaches
lack of providing appropriate support for visualization of multi-
variate data and the preservation of visual topology of off-screen
located objects. The approach by Jäckle et al. [23] is based on
the concepts of EdgeRadar [21] and Ambient Grids [24] and in-
tegrates glyphs for the visualization of off-screen located objects
considering topology, data value, and uncertainty.

Besides the application to unconnected objects, various ap-
proaches have been presented for the application to node-link di-
agrams [11, 35, 36]. Ghani et al. [16] propose Dynamic Insets
for the exploration of large networks. The idea of insets is to
have a coarse overview of off-screen located objects of interest.
In our scenario, we aim at providing snapshots of off-screen lo-
cated multivariate data.

Insets for Overview Preservation
In the following, we discuss and describe design decisions

taken in order to provide integrated contextual overview. This
work is inspired by the approach of combining several visual-
ization techniques [45] to a system that addresses the problem
of limited screen real estate. We adapt the idea of aggregation
and integration of glyphs, which was introduced by Jäckle et al.
[23], and the use of insets to provide a data-driven snapshot of
off-screen objects proposed by Ghani et al. [16].
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Glyph Design
Many different techniques exist to visually represent mul-

tivariate data. Besides scatterplot matrices, parallel coordinate
plots, or pixel-visualizations are glyph-based visualization tech-
niques well-established alternatives. Their main advantages are
compact design and flexibility by means of layouting them on the
screen. This makes glyph-based visualizations a perfect fit for
off-screen visualizations. Glyphs can be integrated in different
basic visualization techniques and positioned independently be-
cause their reading performance is not influenced by the amount
of context information displayed in the background [34]. Follow-
ing, we first describe the derived glyph and its layout. Then, we
outline the integration of data aggregation into the glyph design.

Glyph Layout
Several data glyph designs do exist and hence it is crucial

to distinguish between three different mapping categories [44].
Firstly, many-to-one mappings, which support the intra record
comparison by mapping all data values to the same visual vari-
able. Well-established representatives are profile glyphs [10].
Profile glyphs linearly arrange dimensions and use position or
length encoding to represent respective attribute values. The sec-
ond category comprises one-to-one mappings. Such designs en-
code data values with different visual variables. A famous exam-
ple are Chernoff faces where face characteristics (e. g. angle of the
eyebrow, size of the nose, etc.) are adjusted based on the under-
lying data values [7]. This category offers a nearly endless design
space with the most flexible way of assigning data values to visual
features. However, since the attribute dimensions are represented
with different visual variables, a comparison of two separate di-
mensions is more difficult compared to many-to-one mappings.
The third group contains one-to-many mappings, which represent
data values redundantly using at least two visual variables. Col-
ored star glyphs [31], for example, make use of length and color
of data rays to encode the respective attribute dimensions. There-
fore, important dimensions can be visually boosted by assigning
more than one visual variable to this attribute.

Based on the chosen mapping strategy, different analysis
tasks are supported. Since we do not want to restrict ourselves
in the analysis process, we aim for a design which supports both
intra record and inter record comparisons. Besides detecting sim-
ilar data objects, we are also interested in the comparison of sin-
gle attribute dimensions. Hence, elementary tasks and synoptic
tasks should be supported by the data glyph design. This makes
many-to-one mappings an appropriate choice, although their de-
sign space is limited.

To derive the final glyph design, we first discuss the layout of
dimensions. Results from quantitative experiments suggest to use
circular designs rather than linear ones, because they facilitate the
detection of single dimensions [12]. The ranking of visual vari-
ables by Cleveland and McGill suggest to use position or length
for displaying the data value rather than color. In combination
radial length encodings are more efficient compared to circular
color encodings [37]. The most prominent design with length en-
coding and radial layout are star glyphs [42]. Figure 2 outlines
the three different existing variations to choose from: (a) First,
the common star glyph which uses data lines radiating from the
center of the glyph and are connected via a surrounding contour
line to create a closed shape. (b) Second, the whisker glyph using

(a)! (b)! (c)!
Figure 2. The three considered star glyph variations [42]: (a) The common

star glyph uses data lines radiating from the center; maximum values of the

data lines are connected and form a contour line. (b) In contrast, the whisker

glyph only shows data lines. (c) The sensitivity star glyph only shows the

contour line. Quantitative experiments suggest to use the whisker glyph to

improve similarity judgments [13].

the exact same encoding, however, the surrounding contour line is
removed. (c) Third, the polygon or sensitivity star glyph [6] that
displays the contour line only and thus hides the single data rays.

Results from quantitative experiments suggest to use the
whisker glyph without the contour line to improve similarity judg-
ments on multivariate data [13]. Additionally, the data rays can be
colored to avoid wrong data similarity judgments based on salient
shapes [31]. However, enormous amounts of dimensions impede
efficient color mappings.

Furthermore, we keep the size of data glyphs as small as pos-
sible. Labels are removed from the design in order to allow com-
pact representation. However, little research has yet been carried
out on the minimal size of glyphs. Because of this lack of guid-
ance, we decide to use a minimum size of 30x30 pixels for our
quadratic aspect ratio, which has been considered a convenient
size based on previous comments from expert users.

Data Aggregation
When visualizing vast amounts of data, at some point over-

plotting is inevitable. Star glyph insets require additional space
compared to pixel-based visualizations of single data objects.
This is why, we propose to aggregate off-screen located data ob-
jects according to the idea of Gonçalves et al. [18]: Off-screen
objects are binned with respect to the overlaying grid. The grid
size depends on the level of detail the user wants to see; the big-
ger the grid cell, the less detail is shown, which in some cases is
desired. For example, if the user wants to see a coarse overview
without calling for too much details. In accordance with the vi-
sual analytics mantra, the user can change the parameter settings
of the binning and adjust the visualization to her needs [30].

Function aggregate(D, isScale)
result←Map < Dimension,Value >
foreach data object O in D do

foreach dimension d in O do
result[d]← result[d]+O[d]

end
end
return isScale ? buildAV G(result,D.size) : result

End
Algorithm 1: Dimension-wise aggregation.
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We implemented two aggregation methods for the applica-
tion to star glyphs: the sum of values as well as the average of
values per dimension. Calculating either the average or the sum
value per dimension depends on the data. If the data dimensions
are assigned to a particular scale, as it is the case for whisky taste
categories, the average value per dimension expresses which taste
category is likely to occur in certain areas. In contrast, if the data
dimensions state countable numerical amounts, the sum of values
per dimension is the preferable choice. For example in crime anal-
ysis, dimensions such as theft or attack are absolute numbers that
describe an amount of committed crimes. Thus, we require total
crime numbers that occur in certain areas. Algorithm 1 shows the
implementation. Parameters are: the set of data objects D which
will be aggregated, and a boolean value isScale which determines
if the values are assigned to a scale. We then initialize an empty
map result that contains the dimension as key and the sum or av-
erage value as value. This map is used later to build the glyph.
We iterate all data objects, and for each object O, we iterate the
dimensions. For each dimension d, we add the value to the corre-
sponding dimension contained in the result map result[d]. Finally,
if the data is assigned to a scale, the average value per dimension
is returned, the already built sum per dimension otherwise.

We provide the user the extent of the aggregation through the
background color of the star glyph. We apply min−max normal-
ization to the amount of aggregated data objects among all bins,
and then derive the color value for the star glyph background, re-
spectively. We use a linear colormap from black to light blue,
whereas black means low and light blue high aggregation.

The star glyph is used in two variations: Either directly plot-
ted on the map, or the glyph is used as inset for off-screen objects
which is described in the hereinafter section. In this paper, we mo-
tivate the use of star glyph insets, which is why we intentionally
and solely apply the glyph to objects located off-screen. Using
our prototype, it is also possible to use the glyph for data located
inside the viewport (within the focus region).

Star Glyph Insets

viewport!

off-screen!
objects!

viewport!

star glyph insets!

(a)! (b)!
Figure 3. Schematic presentation of our approach. Panning and zooming

interactions move objects off-screen. In order to preserve the contextual

overview, data objects are mapped back to the border region of the display.

The use of a star glyph inset helps to maintain overview of multivariate data.

Zooming, panning, and parameter steering interactions have
one commonality: they are instruments used to explore the data
at hand. However, once the user zooms in to move from overview
to details according to Shneiderman [41], she loses the contex-
tual overview. That is why the aim is to maintain overview while
drilling down to details. Following the approach of Apperley et
al. [2], we use a rectangular viewport that also provides maximum
focus. To provide data-driven overview, off-screen visualization
techniques have been proven to be efficient.These techniques are
able to not only visualize up to full data topology, but also to con-

sider data characteristics such as its multivariate nature [23]. In
addition, the integration of off-screen data objects, clearly shows
dense and sparse data areas. As a result, we address the Desert
Fog problem [26], because the user is aware of empty areas and
consequently does not navigate there.

As described above, zooming and panning interactions lead
to a movement of data objects beyond the viewport (off-screen)
due to the limited size of the display screen. A schematic rep-
resentation of how data objects are mapped to the border region
is depicted in Figure 3. For each performed interaction, we dy-
namically update the off-screen visualization, because off-screen
located data objects permanently move and thus the indicated po-
sition requires update. Each data object is mapped to the border
region of the viewport and is visualized as star glyph inset. For
aggregated data objects, we first compute the aggregation values
per dimension and then visualize the star glyph as representative.
We use the same mapping strategy as proposed by Jäckle et al.
[23]: Assuming the user navigates from point to point, we draw a
virtual line between viewport center and off-screen located object.
Then, along this line the object is mapped to the border region of
the viewport. In addition, we adapt the idea of HaloDot [17], and
use transparency as indicator for the distance between off-screen
object and viewport, namely the relevance; objects located near to
the viewport are considered to be of higher interest than objects
located far apart. This is because it is likely that the user is inter-
ested in the surrounding of the area she is currently exploring –
once she drills down from overview to detail.

Figure 4. Towards preservation of data topology. For the attempt to pre-

serve data topology, we reserved a border region of 200 pixels and reduced

the size of glyphs to 20x20 pixels. Furthermore, only 86 data records are

considered. As we can see, data objects still need to be aggregated (in-

dicated by blueish color), and the sheer amount of small glyphs distributed

among the border region complicates efficient perception of dimensions.

Star glyph insets are space consuming and cannot be per-
ceived within the glimpse of an eye, compared to the simple visu-
alization of data points only. However, they provide an efficient
overview. Therefore, and contrary to the approach of EdgeR-
adar [21], we argue that for the use of multidimensional insets the
preservation of the full data topology is neither possible nor ade-
quately supports navigation. Preservation of full topology results
in potentially small glyph sizes, so that dimensions are not effi-
ciently perceivable, as depicted in Figure 4. The Figure highlights
the drawback of combining topology preservation and multivari-
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ate data – additional cognitive load is given by the fact that small
glyphs are distributed according to the position of off-screen ob-
jects among the border region of the viewport. The Figure shows
a small dataset consisting of 86 data objects. This effect inten-
sifies with an increasing amount of data objects. This is why we
rather increase the size of the insets and only show location of and
distance to data objects.

Interaction
Interaction is crucial when it comes to the analysis of mul-

tivariate data, especially if data is represented as glyphs. We im-
plemented two different interactions besides the possibilities to
zoom/pan and to adapt all kinds of parameters including color
coding, glyph size, border size, etc.

The first interaction is brushing and linking applied to ob-
jects located within the viewport. Figure 1 (2) shows the selection
of objects through a lens. Objects that are brushed, are aggre-
gated and the result visualized in (3). In this paper, we focus on
data located off-screen, which is why we do not further consider
interactions related to data visualized inside the viewport.

The second interaction refers to the visualization of star
glyph insets. To help users reading exact data values, we decided
to implement an enlarged version of the glyph in a detailed view
(see Figure 1 (3)). This visualization offers a closer look at data
values and adds labels to the dimensions. Since data glyph de-
signs are used more often for synoptic tasks in overview visual-
izations, such a close up helps to read data values more accurately
and, therefore, supports elementary tasks like direct lookups as
well. Once the user clicks on a star glyph inset, the detail view is
updated.

Floral 
Malty 

Fruity 
Body 

Sweetness 
Smoky Spicy 

Winey 

Figure 5. A word cloud visualization is presented to the user next to the

glyph representation when hovering it. The word cloud visualizes the dimen-

sions of the star glyph according to their normalized data value. The font size

of the words determines the importance of the corresponding dimensions,

this is, the bigger the size of a word, the higher the value of the dimension is.

When hovering an inset, a word cloud is visualized next to
the glyph. The visualization of a word cloud facilitates overview,
because important terms have bigger font sizes than unimportant
terms. Each term in the word cloud corresponds to one dimen-
sions of the data. Like in Wordle [43], each term is assigned a
weight. We derive the weight from the value in the glyph, which
is assigned to the term. Figure 5 shows an example for whisky
data. In this example, the whiskies are mostly floral, but not that
winey and spicy.

Implementation Details and Scalability
We implemented a fully web-based prototype that uses SVG

for data visualization. The use of SVG affects the amount of data
we can explore interactively, but already provides promising re-

sults. To increase the visual scalability, the visual representation
can be replaced with efficient representations such as WebGL,
among others. To improve scalability on the data processing side,
we use a quadtree as data structure and further use a hash table
for the aggregation of data objects. One limitation with respect
to scalability is the amount of considered dimensions. Increasing
the number of dimensions results in a reduced angle between data
lines in the star glyph.

Evaluation
In this section, we showcase the usefulness of our technique

in two different use cases. The first use case is crime analysis in
San Francisco and the second use case is exploration of whiskies
according to their taste categories. Both use cases are carried out
using multivariate data. For the visualization of the data we used
a dark matter tile server in order to provide maximum contrast.

Use Case: San Francisco Crime Analysis

Figure 6. Mapping of all committed crimes to the map of San Francisco for

the period of June 1st, 2015 to June 30, 2015. In total, the dataset consists

of 12480 committed and registered crimes.

The city of San Francisco offers collected crime data through
its open data portal [8]. We downloaded the data for the period of
June 1st, 2015 to June 30, 2015, which consist of 12480 commit-
ted and registered crimes. Figure 6 shows all locations of com-
mitted crimes visualized on a map. We can clearly identify crime
accumulations in the north eastern area of San Francisco. This
area is also known as tourist attraction. The dataset contains var-
ious crime categories ranging from larceny/theft, to vehicle theft,
up to assault and kidnapping. Figure 8 provides overview over
all 36 considered categories that we use as dimensions within our
star glyph inset.

This use case involves a user who wants to explore the crime
situation in San Francisco before planning her holiday. To do so,
she drills-down to the downtown area of San Francisco. In order
to highlight the results of our star glyph insets, we intentionally
do not show any visualizations related to data objects contained
in the focus region. Firstly, the user analyzes the entire dataset.
Secondly, she applies a time filter and analyzes the 6th of June.
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Figure 7. Overview preservation of committed crimes in San Francisco over a period of one month (June 1st, 2015 to June 30, 2015). The visualization shows

a cutout of the city center of San Francisco, near Union Square. At the same time, by inspecting and hovering the insets, the user can see that in the northern as

well as in the western directions, the category larceny/theft is very prominent. This is indicated on the one hand by the word cloud and on the other hand by the

star glyph inset, which clearly points out this single dimension. However, the eastern and southern areas are different. While the eastern area seems balanced,

the southern area shows more other offenses, assaults, and vehicle thefts.

Figure 8. Dimensions of the San Francisco crime dataset.

Findings
While exploring the downtown area of San Francisco, the

user is interested in surrounding areas to navigate to. Figure 7
shows the data for the entire month of June 2015. The combina-
tion of color and transparency provides great overview of the sur-
rounding areas. The user can clearly see, that crimes in the north
are in total nearer to her current position than crimes committed
in the south of the city. Also, the blueish colored background of
the star glyph insets in the south indicate a higher aggregation

level, thus revealing more committed crimes. In fact, the southern
area (e.g. South Market) of San Francisco is well known to have
high crime rates. This is also revealed by the inset word cloud
generated from the glyph beneath. Larceny/theft, other offenses,
assaults, and vehicle thefts are very prominent and salient dimen-
sions of the data. In contrast, the northern and western areas are
very salient with respect to larceny/theft. It cannot only be clearly
seen with help of the word clouds, but also the insets highlight
this very prominent dimension.

Then, the user applies a time filter and visualizes the crime
data for June 6th, 2015. Also, she slightly adjusts the zoom level
and pans to the area of the Civic Center Plaza. Figure 1 depicts the
snapshot of this situation. For that day, crime dimensions seem to
be a more distributed. However, larceny/theft still is salient in all
areas. In the eastern area other offenses stick out as outlier.

Use Case: Whisky Exploration
In this second use case, we make use of a whisky dataset

[38], which consists of 86 distilleries and 12 taste categories, re-
spectively. This use case involves a user, who explores the differ-
ent whiskies without particular analysis task at hand. Figure 10
shows the overview of all distilleries, distributed across Scotland.
Especially in the area of Dufftown, many distilleries seem to be
located, which is indicated by the high saturation of the magenta
color. Figure 11 gives an overview of all included taste categories.
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Figure 9. Visualization of multivariate whisky data. The user drills-down to town-level to see details in the area of Dufftown. Through interactions, she can

analyze details and explore the surrounding of the focus area. In the northern part, the user selects sherry-intensive whiskies – this can be identified by looking

at the star glyph which reveals whiskies are mostly malty, fruity, floral, and sweet. This is also shown in the detail view. With the help of star glyph insets, the

user can seek for taste distributions that she enjoys most, or she can even efficiently compare them.

Figure 10. Overview of 86 whisky distilleries located across Scotland. The

dataset [38] contains the exact locations of the distilleries as well as 12 taste

categories.

Firstly, the user explores whiskies on the map. Secondly, the user
applies Multidimensional Scaling (MDS) [33] to the data and ex-
plores the corresponding scatterplot for similar whisky varieties.

Findings
In the first exploration phase, the user explores the map of

Scotland for different whisky taste categories. Therefore, she
zooms the most promising area: Dufftown. Figure 9 shows the

Figure 11. Taste categories a whisky can satisfy.

result of the performed interaction. While having Dufftown in
the focus region, she can still explore the surrounding areas. The
blueish colored background of the star glyph insets indicate the
level of aggregation. In the northern part she selects the very blue
glyph. Both detail view and word cloud immediately confirm her
assumption based on the star glyph inset and reveal that 12 differ-
ent distilleries have been aggregated leading to an overall result of
mostly sherry-intensive taste categories: sweetness, floral, body,
fruity, malty.

At the same time, the user detects a whisky in the south that
seems very malty. It is interesting, that the neighbor star glyph
on the right has nearly the same shape. Also, the user detects
in the western area a star glyph that reveals more body-intensive
whiskies and in the eastern part a star glyph that reveals winey-
intensive whiskies.
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Figure 12. Application of Multidimensional Scaling (MDS) [33] to the whisky

data. While examining a cluster of diverse whiskies in the focus region, the

star glyph insets clearly reveal that in the northern part of the MDS scatterplot

the taste categories winey and body rule, whereas in the eastern part the

taste categories body, smoky, and medicinal protrude.

However, the user decides to seek similar whiskies and there-
fore applies MDS to the data. Figure 12 illustrates the result. The
result is a scatterplot that contains all distilleries mapped accord-
ing to their similarity value to each other. The user zooms to a
very diverse cluster as can be seen in the Figure. Star glyph insets
are generated and visualized for the northern and eastern areas of
the scatterplot. It is protruding that the star glyphs in the north
as well as the star glyphs in the east look very similar. By hover-
ing the respective glyphs, the word clouds reveal that the northern
ones are ruled by the taste categories winey and body. The eastern
glyphs are ruled by the taste categories body, smoky, and medici-
nal.

Concluding Remarks and Perspectives
In this paper, we presented star glyph insets for overview

preservation of multivariate data in two-dimensional space. We
derived a star glyph design backed up by several quantitative ex-
periments. Star glyphs are space saving and provide an efficient
overview of multivariate data. The star glyph is used as inset to
visualize off-screen located data, and hence to provide data-driven
contextual overview if and when the data space exceeds the avail-
able size of the display screen.

We proposed to either use single row or multi row insets.
The choice significantly depends on the available size of the dis-
play screen as well as the level-of-detail aimed at. In this paper
we argue, that due to the sheer amount of dimensions and amount
of data, full topology preservation results in additional cognitive
load. Also, evaluations of glyph choice and qualification to be
used as inset for off-screen visualizations have yet not been car-
ried out and poses promising work for future research. However,
we could show in our use cases that star glyphs support certain
analysis tasks and provide an useful contextual overview of mul-
tivariate data.
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