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Abstract 

This paper presents a simple yet effective approach to 
visualizing ensemble multivariate time series as 3D traces. 
Ensemble multivariate time series data are common in many areas. 
This type of data contains large amount of information which is 
often crucial to both knowledge discovery and decision making. 
Visualization can be employed to help the researchers quickly gain 
insight from the data. First, we project all multivariate data points 
to a 2D projection plane with a dimension reduction algorithm. 
Then we expand the data points of any ensemble member back into 
a trace in the 3D space spanned by the 2D projection plane and 
time.  The resulting 3D ensemble traces provide a holistic and 
consistent view of the original ensemble multivariate time series. 
These traces are useful for revealing differences between ensembles, 
identifying groups and outliers, and catching temporal trends. In 
addition, we interactively link the ensemble traces to a panel of 
single variable plots. The combined visualization of raw data plots 
and multivariate ensemble traces provide a unique perspective to 
patterns and trends. We studied 3 different dimension reduction 
algorithms, i.e., t-Distributed Stochastic Neighbor Embedding (t-
SNE), classic Multidimensional Scaling (MDS), and Locally Linear 
Embedding (LLE). We demonstrated our approach with two 
different datasets and evaluated our methods with domain experts. 

Introduction  
Time series data frequently arise in many areas. These data can 

have multiple attributes at each time point, known as multivariate 
time series data. Ensemble data are often simulated in scientific 
fields by varying parameters or initial conditions. As a result, 
ensemble multivariate time series, also referred to as doubly 
multivariate time series data [2], are increasingly more common. An 
example of such data is the physiological variables of multiple 
virtual patients over a period of time simulated with the HumMod 
model  [3].  

Another example would be emission produced by the electric 
power industry from various energy sources by states measured in a 
time period [4]. The different types of emission produced from 
different sources are the variables and such multivariate parameters 
are present for each state in the United States. The states form the 
ensemble. Such ensemble multivariate time series data can also be 
found in many other fields. 

This work was originally motivated by the need to make sense 
of the ensemble physiological simulations produced by HumMod. 
However, the problem of visualizing ensemble multivariate time 
series is a generic one. We had several criteria in mind for 
visualization design (listed below). None of the available methods 
are particularly effective for our purposes.  
 Intuitive time dimension representation. To identify temporal 

trends, a user must be able to follow the time dimension 
intuitively. That means little or no distortion or discontinuity in 

the time dimension. Methods that transform the time dimension 
or break it up will add to the cognitive difficulty. 

 Unified multivariate representation. The wealth of information 
contained in the multivariate time series lies not only in 
individual variables, but also the relationship between the 
variables. Placing these variables in separate plots, or even in 
several lines of the same plot, will require the user to mentally 
integrate them which is cognitively challenging and will not 
scale well.  

 Ensemble representation. On top of the multivariate time 
series, the ensemble data add to the complexity. Methods that 
work on a single multivariate time series might not work on an 
ensemble. An effective visualization must be able to 
distinguish between individual ensemble members and reveal 
the relationship between them at the same time.  

 Visual clarity. This is a primary goal for all visualization and 
certainly applies here.  
To date, line plot is the de facto standard for single variable 

time series visualization. It is clear, intuitive, and has less visual 
clutter. Therefore, we strive to find an analog to the time series line 
plot for ensemble multivariate time series. Ensemble traces are the 
result of this effort.  

Our central goal in this paper is to visualize ensemble 
multivariate time series data. Given design criteria listed above, 
current methods from ensemble visualization, multivariate 
visualization, and time series visualization cannot be 
straightforwardly extended to ensemble multivariate time series. We 
have experimented with existing techniques, i.e., star plot [5] and 
TimeWheel [6], on the data. Neither of these techniques provides a 
good and intuitive representation of the ensemble data (see more 
details in the Results and Evaluation section). We have also 
animated multivariate ensemble data along the timeline. However, 
users still need to mentally integrate information from all time points 
into a holistic view. And this can be a challenging task. Hence, we 
want to achieve several objectives under the central goal. First, we 
want to show patterns, trends and outliers in the data. Second, we 
want to see the relationship between ensemble members and the 
groups they form. Third, we want to be able to intuitively interpret 
the patterns and relations. Fourth, we want to predict a new sample’s 
behavior from existing data.  

Our solution is a simple one. We project multivariate data 
points excluding the time dimension into 2D points using a 
dimension reduction technique. These 2D points are then 
reassembled for each ensemble member in the time dimension, 
forming a group of 3D traces. The resulting 3D traces incorporate 
the information from all the variables and provide a summary of the 
original data in a holistic manner. In addition, we also allow users 
to selectively browse ensemble line plots of the single variable time 
series in the data. A user can select a group of 3D traces or 2D time 
series with brushing and the selected data will be simultaneously 
highlighted in multiple views. This enables the user to link the 
patterns identified in integrated 3D traces to those in individual 
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variables, hence facilitating the discovery and interpretation of 
patterns and trends. 

We experimented with three different dimension reduction 
techniques in this paper, i.e., t-Distributed Stochastic Neighbour 
Embedding (t-SNE) [7], classical Multidimensional Scaling (MDS) 
[8], and Locally Linear Embedding (LLE) [9]. We identified MDS 
as a suitable dimension method for our purpose.   

We applied our approach to two dataset. The first dataset is the 
simulated hemorrhage data of virtual patients from HumMod [3] 
software. The second dataset is the state wise total electric power 
generation from different sources and total emissions of CO2, SOx 
and NOx released from different sources of electricity between 1999 
and 2012. We pre-processed these data from the sources and made 
sure that there is no missing value [4]. 

To our knowledge, the ensemble trace representation of 
ensemble multivariate time series is novel. This method compared 
favorably to existing approaches for multivariate and ensemble time 
series visualization. First, the similarity in shape between the 
ensemble traces and the individual-variable line plots helps users 
intuitively understand and explore these traces. This similarity exists 
not only in their appearance, but also in their shapes. In fact, a user 
can control the similarity of the ensemble traces to the line plot of 
any variable by heavily weighting that variable (variable weighting 
is discussed in Weighted Dimension Reduction section). Second, the 
ensemble traces effectively incorporate the information from all 
variables, hence capable of exhibiting patterns and trends in any 
variable or combination of any group of variables. Third, in the 
linked view, the ensemble traces can serve as a summary of patterns 
from all variables, and the line plot panel can be effectively 
referenced from the ensemble traces by brushing, therefore 
facilitating the knowledge discovery and validation. Moreover, 
interactively weighting the variable provides another way to explore 
the data. Compared to alternative methods, the 3D traces’ simplicity 
in shape and visual mapping allow them to scale well with the 
number of variables and the number of ensembles. The 3D 
perspective allows the users to easily identify the fine details of the 
3D traces. 

The rest of the paper is outlined as follows: we first discuss the 
related work in the following section. Then we describe our 
methodology. We then discuss our results and evaluate it. Finally, 
we conclude the paper. 

Related work 
The multivariate time series data visualization is a challenging 

problem. One of the early works in this area is ThemeRiver [10], 
which is simple and can easily show trends and patterns across the 
time in the multivariate data. Kaleidomaps [11], CircleView [12], 
MultiComb[6], and TimeWheel [6] are visualizations for time-
oriented data that are based on the radial axes layout. One of the 
major issues with these visualizations using radial layout is being 
unable to represent data effectively with an increasing number of 
variables.  There are also 3D versions of TimeWheel [13] and 
MultiComb [13] but these visualizations have additional complexity 
and also share similar issues as their 2D counterparts. Other 3D 
visualizations that deal with multivariate time series data 
visualization include Time Tunnel [14] and Temporal star [15]. Both 
Time-tunnel and Temporal star are interactive visualization tools 
which use a central axis to represent time. However, these 
visualizations also have a radial layout arrangement and similar 
issues arise as mentioned above. 

A convenient visualization method for ensemble data is the 
small multiples method [16, 17] associated with linking and 

brushing operations. Spaghetti plot [18] is another approach to 
visualize ensemble dataset. Potter et al. [16] introduced a framework 
Ensemble-Vis to visualize and explore ensemble dataset by 
leveraging multiple coordinated views. Sanyal et al. [19] developed 
a tool named Noodles to visualize ensemble uncertainty which was 
modeled with the standard deviation. Unfortunately, Noodles is 
feasible for only single variable ensemble data. Recently, research 
on this topic advances from visualization to analysis. Thomas et al. 
[20] presented an interactive system to study off-shore structures in 
ensemble ocean forecasting dataset. Gosink et al. [21] proposed a 
method to characterize different types of predictive uncertainty in 
ensemble dataset based on the Bayesian model averaging. Hummel 
et al. [22] developed a Lagrangian framework for visual analysis of 
ensemble flow fields. 

Our approach visualizes ensemble multivariate time series 
data, which is more complicated as seen by the fact that little work 
has been performed in this area. Zhang et al. [23] used image plot to 
visualize this type of data, but problems and complications arise 
when the number of variables and ensembles increases. The data 
used by Dang et al. for visualization with TimeSeer [2] bears a close 
resemblance of the data type we have dealt with in our research. 
TimeSeer provides an interactive platform to visualize and 
organizing multiple multivariate time series data (doubly 
multivariate data series [2]) and it is good for dealing with high 
dimensional data. Also, it is good in detecting outliers in the time 
series data. However, TimeSeer has a sophisticated display with lots 
of details which may require user training for data exploration. 
Other works include techniques by Forlines et. al. [1] and Tominski 
et. al. [24], which uses space-time visualization. However, both of 
these techniques might not be able to instantly handle the data with 
higher number of variables and also it might be difficult for these 
techniques to identify groups of similar ensembles when the number 
of ensembles is high.  

Methodology 

Datasets 
To test our method, we have chosen two different datasets from 

two different fields. The first dataset is simulated hemorrhage data 
of virtual patients from HumMod software [23] . The second dataset 
is the electricity data that consists of state wise total electric power 
generation and total emissions of CO2, SOx and NOx released from 
different sources of electricity from 1990 to 2012. 

HumMod [3] is a human physiological simulation software. 
Using this software hemorrhage simulation was conducted in 399 
physiologically viable virtual individuals at 3 fixed hemorrhage 
rates: 37.5, 75, and 150 mL/min over 40 minutes. The simulation 
recorded 19 physiological parameters during this time period. The 
measurements were taken every minute for every virtual patient. 
The result of the simulation is a time series multivariate data of an 
ensemble population. We also considered the Hemorrhage target 
rate as one of our parameters. Therefore, we have a total of 20 
multivariate parameters. The measured physiological parameters 
during the simulation include SystemicArtys.SBP, 
SystemicArtys.Pressure, Breathing.RespRate, SystemicArtys.DBP, 
Breathing.TidalVolume, PO2Artys.Pressure, PO2Artys.Sat(%), 
Heart-Rate.Rate, CO2Veins.Pressure, BloodPhValues.ArtysPh, 
BloodPhValues.VeinsPh, BrainInsult.Effect, CardiacOutput.Flow, 
LeftAtrium.Pressure RightAtrium.Pressure, Brain-Ph.Ph,  
CardiacOutput.StrokeVolume, Brain-Flow.BloodFlow, Brain-
Fuel.Adequacy, and Hemorrhage.TargetRate. The result of the 
simulation is a time series multivariate data of an ensemble 
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population. For the visualization purpose, we uniformly sampled 
300 patients from 399 patient set. This selection reduces the number 
of ensembles for visualization, which eventually reduces clutter and 
also provides a good sample representation of the data. This also 
reduces the computation time of the dimension reduction algorithm.  

Our second dataset is electricity data. This dataset consists of 
state wise total electric power generation from different sources 
from 1990 to 2012. These sources include coal, hydroelectric 
conventional, natural gas, petroleum, wind, wood and wood derived 
fuels, nuclear, other biomass, other gases, pumped storage, 
geothermal, solar thermal and photovoltaic, and other sources. Also, 
this dataset contains state wise total emission of CO2, SOx and NOx 
from different sources during electric power generation. These 
sources include: coal, natural gas, petroleum, geothermal, other 
biomass, wood and wood derived fuels, other gases and other 
sources. There are a total of 37 different variables in the data. The 
details of these data can be found in U.S. Energy Administration 
website [4]. 

Ensemble Trace 
The generation of ensemble traces is a two-step process. The 

first step is to project data points to lower dimensions and the second 
step is to reassemble all the data points of an ensemble member 
along its time line.  

Assume our ensemble multivariate time series data have e ൈ
v ൈ t values, e is the number of ensemble members, v is the number 
of variables, and t is the number of time points. We first disassemble 
all v dimensional data points from all ensemble members and all 
their time points. This will give us a n ൈ v matrix D, where n=	e ൈ
t. The n rows comprise of the data points and v is the dimension of 
each data point. For example, in the hemorrhage study, we have an 
ensemble of 300 members; each member has 40 time steps; in each 
time step 20 variables are recorded for each member. Therefore, the 
matrix D is 12000 ൈ 20. 12000 data points come from 300 (number 
of ensemble members) multiplied by 40 (time steps). 

The first step is to reduce the dimension of each of the n data 
points to some manageable dimensions for visualization. The 
dimensions will be feasible for visualization if they are between one 
and three. In the time series data, the time dimension has a special 
meaning, and we want it to be preserved in visualization for showing 
temporal trends rather than mixed together with other variables. 
Therefore, we reserve one visual dimension for time, and have to 
choose between one or two dimensions for all other variables. 
Projection to two dimensions has less projection error than to one 
dimension. Therefore, we chose to project the high dimensional 
points excluding time to two dimensions.[25] 

The second step is to reassemble all the data points of an 
ensemble into a trace in a 3D space spanned by the 2D projection 
plane and the time dimension. We place the projected 2D points into 
the 3D volume based on their 2D locations and time stamp, and link 
the multiple data points of the same ensemble member with line 
segments between adjacent time points, resulting in a polyline we 
call an ensemble trace.  

Figure 1 shows an example of the ensemble traces for 300 
patients in the hemorrhage simulation. We can observe that at the 
beginning of the simulation (time=0), all patients share the same 
parameters, and as the hemorrhage progresses the ensemble traces 
diverges into different paths, which we can clearly see in the figure. 

The diverging patterns are clearer when viewed in an interactive 3D 
display. 

 We allow users to assign weights to variables in the dimension 
reduction technique to emphasize the importance of certain 
variables. In addition, we employ the hierarchical clustering 
algorithm to cluster ensemble traces into distinct groups. And we 
allow partial ensemble traces to be embedded in the visualization for 
prediction.  

Dimension Reduction 
Dimension reduction technique maps v dimensional points of 

the data to a lower dimension k. There are numerous dimension 
reduction techniques. In this paper, we studied three different widely 
used dimension reduction methods, which are t-SNE, LLE and 
classical MDS, to find out a suitable method for our purpose. LLE 
and t-SNE are nonlinear methods, whereas classical MDS is a linear 
method. The overarching goal is to find out which of these 
techniques is able to capture the overall structure of the data and 
make sense in lower dimensional space. Apart from this, we also 
consider computational efficiency as a factor in the selection of 
dimension reduction algorithms. Before we apply the dimension 
reduction algorithm to our data points we normalize the values of all 
the variables in the range of 0 and 1 to bring them into the same 
scale. 

t-SNE (t-distributed Stochastic Neighbor Embedding) [7] is a 
probabilistic technique used to visualize high dimensional data by 
shrinking it to lower dimensions (2D or 3D) based on SNE 
(Stochastic Neighbor Embedding) [26]. t-SNE tries to maintain the 
similarities between data points while composing low dimensional 
representation. This technique is capable of preserving local 
properties as well as global properties of the original high 
dimensional data. While computing low dimensional points of the 
data, t-SNE minimizes the Kullback-Leibler divergences of joint 
probabilities between high dimensional and low dimensional 
representation. The use of student’s t-distribution and symmetric 
version of SNE cost function are two important features of t-SNE 
which sets it apart from SNE. Student’s t-distribution is used to 
compute similarity between points in low dimension where t-SNE 
cost function has a simpler gradient, which is easier to optimize.  [7] 

LLE is a nonlinear dimension reduction technique which tries 
to preserve the local properties of the data in lower dimensions [27]. 
The LLE algorithm begins by stating the number of neighbors per 
data point k, which is the input of the algorithm. Then in the next 
step, after identifying k neighbors of the data points, optimal weights 
are computed by minimizing the reconstruction error given by a cost 
function, which are used for the reconstruction of the original data 

 
Figure 1. Visualization of hemorrhage data of patients for 
dimension reduced normalized hemorrhage data for 300 
patients using ensemble traces. (x,y) is the reduced 
dimension which is plotted against time. 
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points as accurately as possible. After this, the weights computed in 
second step are used to reconstruct the lower dimensional data 
points that best reconstructs the original data points by minimizing 
the embedding cost function [9, 28]. 
  Classical MDS is a linear dimension reduction technique that 
maps v dimensional points of the data to a lower dimension k while 
trying to preserve the pairwise distances between the points [27]. 
The input of MDS includes a distance matrix and the target 
dimension. There are many choices for computing the distance 
matrix between n data points, including Euclidean, Manhattan, 
Canberra, etc. We empirically tested Euclidean, Manhattan and 
Canberra distances in our visualization. The resulting visualization 
using these distance matrix was similar. However, we found that 
Euclidean distance showed slightly better divergence of ensemble 
traces. Therefore, we decided to choose to compute the Euclidean 
distance between any two multivariate points. 

In this study, to compute the dimension reduction in a 
reasonable time, we uniformly sample ensembles from the ensemble 
population.   

Weighted Dimension Reduction 
By normalizing the values in all variables, we assume equal 

importance among variables. This is often not true. For example, in 
the hemorrhage data, a physiologist may be more interested in easily 
measurable variables in a clinical setting and their patterns, or they 
may place more emphasis on vital physiological parameters like 
heart rate. For this reason, we allow users to assign weights to the 
variables they deem important. The importance of the variable is 
determined by the users’ prior knowledge and interests. We add 
weights to the data points after normalization and before computing 
the Euclidean distance matrix between the data points. After 
computing the Euclidean distance matrix we run a dimension 
reduction algorithm which will provide 2D representation of our 
original data points with user-defined weights on different variables. 

Shepard Plots 
Shepard plot is a scatter plot that maps the distance between 

any points before dimension reduction to the distance after 
dimension reduction. If a dimension reduction is able to completely 
preserve the distances, then the points on the Shepard plot will be 
on the x=y line.  More spreading of the points in the scatterplot can 
be interpreted as more error in the dimension reduction process. We 
use Shepard plot to show how good or bad the lower dimensional 
representation is of the higher dimensional points. The plots are 
provided to the users to make them aware of the projection error in 
the data exploration process. This method is suitable for visualizing 
the projection error in classical MDS but it may not be suitable for 
t-SNE and LLE. For t-SNE the lower dimensional coordinates are 
probabilities and not distances, so low dimensional coordinates 
obtained from t-SNE cannot be used to compute projection error 
[29]. LLE is a non-linear method and local approach which tries to 
preserve the local geometry of the data [9, 30, 31] and may not 
perserve global geometry. Hence Shepard plot may not work for 
LLE  [25].  

Clustering 
Users often want to find similar ensemble members, or very 

different ensemble members. Ensemble traces may run together in 
part or all of the time period, forming groups. A user can examine 
the grouping behavior of the ensemble traces directly in the 3D 
view. In addition, we also provide automatic clustering of the 
ensemble traces. We empirically select the hierarchical clustering 
algorithm with Ward’s criterion [32] and we compute the distance 

matrix with the Euclidean distance. The resulting clusters can be 
viewed with different colors.  

The decision to choose the hierarchical clustering method and 
the Euclidean distance is from our initial empirical testing results. 
We also experimented with the k-means clustering method, the 
Manhattan distance and Dynamic time wrapping distance. 

The time series data of the ensembles must be transformed and 
organized to compute the distance matrix with Euclidean distance. 
To illustrate this lets consider an ith ensemble ܧ with t points that 
form time series data. Each of these t points has a dimension d. We 
organize these data into a single vector	 ܸ 	in the following way. 

ܸ ൌ ሺ ܺଵଵ, ܺଵଶ, … ܺଵௗ, ܺଶଵ, ܺଶଶ, … 
ܺଶௗ, . . … , ܺ௧ଵ	, ܺ௧ଶ, . . . ܺ௧ௗሻ                            (1) 

The Euclidean distance is then calculated as the Euclidean norm of 
the difference between any two vectors Vi and Vj: ฮ ܸ െ ܸฮ. 

Partial Trace Embedding 
We provide the capability of embedding partial ensemble traces in 
the visualization. This is convenient when the data for only part of a 
time period are available for an ensemble member. For example, in 
the hemorrhage simulation, for a new virtual patient that needs to be 
diagnosed or triaged, only part of the 40 minutes simulation may be 
available. By embedding the new patient in the ensemble traces of 
other patients, a visual prediction can be made based on which group 
this patient belongs to. The physiological progression of this patient 
may be predicted by the behavior of other patients in the same group. 
To test this approach, we randomly select 4 patients from the 
hemorrhage data and we truncate their time series so that we have 
only the first 60% of the time points.  We then embed these patients 
with our other patients with complete data and visualize all with 
ensemble traces. We can predict the path of a partial ensemble 
member with the group it coincides with partially. This technique 
was especially suitable for our hemorrhage data because ensembles 
with same bleeding rates clustered into different groups and these 
different groups can be visually identified. The results are shown in 
Results and Evaluation section. 

Single Variable Plot 
The 3D ensemble traces provide a holistic view of the 

underlying data. But if the users want to go in detail and explore 
underlying reasons behind the patterns, a single variable time series 
plot provides the user the opportunity to view the raw data in 
addition to the ensemble traces. We allow the users to select the 
variables they want to view and place the plot of each selected 
variable in a panel. In each single variable plot, all ensemble 
members are shown as individual lines.  

Figure 2 shows a panel of single variable plots for four selected 
variables. The data is same as in Figure 1. 
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Due to the nature of dimension reduction, there will almost 
always be distortions in the ensemble traces. In this case, the 2D 
view will play a crucial role in complementing the 3D plots because 
there is no distortion in 2D plot and all information is preserved, 
even only for a single variable.  

Linked Interaction 
To allow users to effectively explore the visualization, we 

provide standard 3D rotation and zooming interactions for ensemble 
traces. In addition, we provide the brushing interaction which allows 
the user to select the ensemble traces in the 3D view and time series 
in the 2D plots. Moreover, if both 2D and 3D windows are opened, 
then brushing in one view will be used to update all the 
visualizations, allowing users to highlight ensembles in both 2D and 
3D views. This is known as linked interaction. To reduce visual 
clutter, our interface also provides the option to view only the 
highlighted polylines in both 2D and 3D plot, which allows the user 
to focus on the selected data.  

The linked interaction becomes more effective with other 
features within our visualization such as zooming and rotation in 3D 
plots. They help the user to visualize ensemble traces in a convenient 
way by brushing the ensemble traces either from different angles or 
from enlarged view. 

The linked interaction helps the user make sense of the 3D plot 
and ultimately understand the patterns in the underlying data. Figure 
3 shows the three groups of ensemble traces identified with 
brushing. These 3 groups represent the three different ensemble 

populations having 3 different hemorrhage rates as shown in Figure 
10. 

Comparison to Other Methods 
Aigner et al. [33] and their TimeViz website 

(http://survey.timeviz.net/) provide a good survey of current 
methods for time oriented data. We have researched current methods 
and experimented with several of them. In this paper, we will discuss 
TimeWheel, star plot and Wakame[1] and compare them with our 
visualization.  

Figure 4 shows the visualizations of the hemorrhage data with 
TimeWheel. For TimeWheel, we plotted 6 variables for 300 patients 
for all time points. The resulting visualization is cluttered with many 
lines intersecting each other. The relationship between variables and 
individual time series are difficult to discern. Moreover, the 
visualization fails to accommodate all parameters easily as the 
number of parameters increases. This is true for other visualizations 
that uses radial layout for visualization of multivariate data, e.g. Star 
plot shown in Figure 6.  

 
 
Figure 3. Brushing produces three groups of ensemble traces generated 
using MDS that are separated by the hemorrhage rates. 

 
Figure 4. Visualization of hemorrhage data using TimeWheel 

 
 

Figure 5: Stacked area chart for 3 patients with 5 parameters from 
hemorrhage data  

 
Figure 2. Visualization of selected 2D plots of Diastolic BP (top left), 
Respiration rate (top right), Heart rate (bottom left) and Cardiac output 
flow (bottom right) for hemorrhage data. 
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Figure 5 shows the stacked area chart which is similar to 
ThemeRiver [10]. The ThemeRiver type of visualization is effective 
for showing aggregated effects of multiple variables over time, but 
the relationship between variables and individual time series is 
difficult to discern.  

Figure 6 shows one our experimental studies of multivariate 
time series data visualization of ensembles using a star plot. The star 
plot visualizes the time series data of multiple patients. The time 
slider is used to navigate through time and study the temporal 
changes. The starplot displays the variables value at one instance of 
time. We found that the star plot’s radial layout and the use of time 
slider is not effective in visualizing our data. The radial layout does 
not scale well as the number of variables increases. The use of time 
slider was also not very effective because there are many data points 
in our data and it is difficult to follow all the data points with the 
time slider [34]. 

Figure 7 shows an example of Wakame visualization design 
with an example of a prototype system taken from Forlines et. al. [1] 
paper. Wakame is a 3D object formed by stacking radar chart that 
grows up vertically with time and each Wakame can represent 
multivariate time series data. Figure 7b shows a prototype system 
that uses Wakame visualizations to display multiple multivariate 
time series data, i.e., sensor data’s recorded for different rooms. The 
weakness of this visualization lies in the difficulty in comparison 
and identification of similar ensembles as their number increases. It 
is also difficult to accommodate parameters as its number increases 
because its design is based on radar chart. 

Ensemble traces compare favorably to the available methods, 
including the three shown in Figure 4, Figure 5, Figure 6 and Figure 
7. One particularly important advantage of ensemble trace is its 
simplicity, and the resulting easy interpretation. 

Results and Evaluation 
 We applied our method to the two datasets described in 

the Dataset section. Two physiologists provided empirical 
evaluation for the hemorrhage data results.  

As shown earlier in Figure 1, the ensemble traces for the 300 
patients simulated in a hemorrhage experiment were generated. We 
notice the branching of the polylines in a three dimensional space. 
In this image, the time-dynamic interplay between heart rate and 
mean arterial blood pressure are shown.  Physiologically, these 
factors reflect the integration of the baroreceptor reflex loop that 
uses heart rate and contractility to counter low blood pressure.  In 
the acute setting, this is the primary mechanism by which humans 
maintain their blood pressure.  By tracking both heart rate and blood 
pressure against one another, one can determine the effectiveness of 
the baroreflex system.  If heart rate is rising while blood pressure is 
falling, that suggests that the compensatory limits of the baroreflex 
have been exceeded and cardiac decompensation is approaching.  
While it is typical, in an emergent situation to show each of these 
variables against time, the picture is clarified by increasing the 
dimensionality of the data.  In this example, it is clear that the 
baroreceptor reserve is disappearing as the curves make their way to 
their peak.  

Figure 2 shows a panel of user-selected single variable line 
plots for the same data.  These images more closely represent the 
current standard of data visualization for a working physician.  In 
this case, the physician must commit effort into integrating the three 
traces.  This takes away effort that could instead be devoted to 
managing the patient’s care. 

 Figure 8 and 9 shows the ensemble traces generated using t-
SNE, LLE and classic MDS using normalization and without 
normalization of the hemorrhage data. The results with 
normalization show the divergence of traces more prominently in 
the visualization as we can see from Figure 9c. LLE fails to display 
ensemble traces effectively both in the case of with normalization 

 

Figure 6. Visualization of hemorrhage data of patients using star plot 

    
(a)         (b)                        (c) 

Figure 8. Ensemble traces generated using (a) t-SNE (b) LLE (c) classic 
MDS without normalization with 300 ensembles (patients) 

   
(a)         (b)                        (c) 

Figure 9. Ensemble traces generated using (a) t-SNE (b) LLE (c) classic 
MDS with normalization with 300 ensembles (patients) 

 
Figure 10. Ensemble traces colored by different bleeding rates (green- 
37.5 mL/min, red -75 mL/min and blue -150 mL/min) 

          
Figure 7. (a) Wakame visualization design [1] (b) Wakame 
visualizations of sensor data’s recorded for 11 rooms [1] 
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and without normalization with 300 ensembles as seen in figure 8b 
and 9b. In the case of t-SNE, we see curves more scattered in space 
(Figure 8a and 9a) compared to the other two methods. However, 
we found that the running time of t-SNE is longer compared to other 
methods on hemorrhage data with 300 ensembles in our case. The 
ensemble traces generated by classic MDS with normalization have 
more pronounced divergence and clearer ensemble paths than 
without normalization as seen from Figure 9c and Figure 8c 
respectively. In our case of hemorrhage data, the MDS results 
revealed the patient groups well and was quicker to compute 
compared to t-SNE. The resulting ensemble traces generated using 
classic MDS were more organized and meaningful in our case than 
compared to t-SNE. Moreover, the Shepard plot for hemorrhage 
data for MDS from Figure 15 reveals that lower 2D and 3D 
representations of the data points are comparable with a reasonable 

projection error. Comparing all the resulting visualizations, we 
conclude that classic MDS is more effective and suitable in our case 
than LLE and t-SNE. Also, we see that normalization plays a crucial 
role in dimension reduction.  

We studied the ensemble traces by coloring it on the basis of 
hemorrhage rate and survival/death of the patients at the end of the 
simulation. We see that figure 10 and 11 show that some inherently 
different groups of the patients are visually separated by the 
ensemble traces. Figure 10 shows the ensemble traces colored by the 
hemorrhage rate. The three different colors represent three different 
bleeding rates as shown in the figure. It is clear that the ensemble 
traces form bundles separated by different hemorrhage rates. Note 
that, especially in the 75 ml/min case, patient behavior bifurcates 
into two dissimilar bands.  This reflects the effects of different 
physiologies on the decompensation process, and reflects the type 
of awareness that a physician must keep when treating patients. 
Essentially, early decompensators must be recognized and treated 
quickly, while late decompensators can have their care safely 
postponed.  Figure 11 shows the patients who died (blue traces) and 
the patients who survived (red traces). Most of these two groups of 
patients are separated in their regions. However, there is a group of 
patients with similar physiological responses in the first half of the 
simulation that bifurcate in the second half of the simulation. This 
bifurcation pattern is particularly important in a clinical setting since 
these patients need to be further evaluated for treatment. 

Figure 12 shows the hierarchical clustering results with 4 
clusters. Note the similarity between the patterns in Figure 10 and 
Figure 12. In this case, unsupervised clustering reveals the main 

 
(a) 

 
(b) 

 
(c) 

Figure 14. Ensemble traces showing state wise total electric production 
and Total emission (CO2, SO2 and NOx) from different sources (a) 
Selected ensemble outliers in 3D plot (b) 2D plots for the ensemble with 
outliers selected in 3D plot (2D plots is for Total Electric power generated 
from coal and petroleum; and CO2, SO2 and NOx generated from power 
station using coal and petroleum as fuel] (c) Outlier States displayed in 
the visualization interface 

 
Figure 11. Ensemble traces showing surviving patients and dying 
patients at the end of simulation 

 
 

Figure 12. Ensemble traces showing 4 clusters of ensemble traces

 
(a)     (b) 

Figure 13. Prediction of path of unknown ensemble Traces (Red-Known 
ensemble and Green – Unknown ensemble) (a) partial path with 
incomplete data (b) actual path with complete data 
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reason behind the three different groups of responses among 
patients. 

Figure 13 demonstrates the utility of the ensemble trace for 
temporal prediction. Figure 13a shows three patients with partial 
time simulations (green traces) and all other patients with full time 
simulations. It is clear that each of the three green traces belongs to 
its own group. Prediction can be made that each trace will likely 
follow the trends within its group in the future. Figure 13b shows all 
the patients with full time simulations. It confirms that the three 
patients indicated by green indeed follow the patterns of their 
respective groups. 

It is well known to trauma physicians that there are no 
statistical differences in heart rate, blood pressure, or oxygen 
saturation status in patients who are about to enter hemorrhagic 
shock and patients that are not [35]. Various systems exist that 
assign an index to a patient’s hemodynamic status in order to inform 
physicians of their current level of risk. These indices generally 
cannot be deconvoluted into specific information about the 
interacting systems, and therefore cannot aid treatment. In situations 
where patients require close monitoring, physicians follow two 
dimensional plots of variable versus time, with a series of decision 
trees that determine their next action. For instance, low pressure and 
high heart rate is bad, low pressure and low heart rate is good, etc. 
By visualizing more variables simultaneously, the “ands” and “ors” 
of the decision process can be reduced to observing the trends on the 
ensemble traces.  By reducing the cognitive load of the physician in 
observing patient status, working memory is freed for the task of 
treating the patient, or for managing more patients.  This will also 
flatten the learning curve by reducing the number of observations 
required for understanding patient status by trainee physicians. 

 Figure 14 shows the ensemble traces and several individual 
variable plots for the electricity data. From the ensemble traces, one 
can easily identify several traces that are far away from the majority 
of the traces. These are likely outliers. After brushing them with blue 
color, we can further examine the behavior of the individual 
variables of the blue traces. We use a text box in our visualization 
which displays the states of the highlighted ensemble traces in the 
visualization. This is shown in Figure 14c. We see that New York, 

Texas, Florida, Pennsylvania and California are the outlier states 
indicated by ensemble traces highlighted in blue in Figure 14a.  
Upon further examination in single variable plot as shown in Figure 

14b, we find that they are indeed outliers in a number of variables, 
but not in others. For example, in visualization shown in Figure 14, 
the outlier states have higher total electric power generation from 
natural gas as well as total CO2 emissions from natural gas. This 
case shows the effectiveness of the linked view for not only 
discovering knowledge but also finding out the underlying causes. 

Figure 15 and 16 shows the Shepard plots for the classic MDS 
results of the hemorrhage data, and the electricity data respectively. 
There are three Shepard plots generated for each data with the 
number of dimensions set to 1, 2, and 3 respectively. Not 
surprisingly, the plots are increasingly less scattered with higher 
projection dimensions, indicating less projection errors. We note 
that there is a very noticeable difference between 1D and 2D, while 
the difference between 2D and 3D is less noticeable. These plots 
prove the advantage of generating ensemble traces in 3D instead of 
in a 2D plot.  

 Figure 17 shows the ensemble traces from the MDS of the 
weighted variables. 17a to 17e show the results of weight changes 

from 100 to 1 for heart rate, and from 1 to 100 for diastolic blood 
pressure. All other variables are weighted by the default 1. From 
these images we can see a gradual change of shape in the ensemble 
traces influenced by the weights on the variables. The ensemble 
traces will likely exhibit patterns from the more heavily weighted 
variables, and less likely from the lightly weighted variables. 
Variable weighting gives the users an important tool for exploring 
the multivariate aspect of the data. 

 
(a)   (b) 

 
(c) 

 
(d)   (e) 

 
Figure 17. Visualization of weighted traces from hemorrhage data (a) 
Heart Rate=100 (b) Heart Rate=75, Diastolic BP=25 (c) Heart Rate=50, 
Diastolic BP=50 (d) Heart Rate=25, Diastolic BP=75 (e) Diastolic 
BP=100 

 
                                   Original distance 

(a)        (b)   (c) 
Figure 16. Shepard Plot for State wise electric data [Total electric 
production and Total emission (CO2, SO2 and NOx) from different 
sources] (a) k=1 (b) k=2 (c) k=3 using MDS 
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                                   Original distance 

(a)             (b)    (c) 
Figure 15. Shepard Plot for Hemorrhage data (a) k=1 (b) k=2 (c) k=3 
using MDS 
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Conclusion 
This paper presents a simple yet effective method for 

visualizing ensemble multivariate time series data. Our method 
utilizes classical MDS to project all multivariate data points from all 
time steps and all ensembles to 2D points, and then reassemble these 
points along the time dimension to form a group of ensemble traces. 
We applied this method to two datasets and demonstrated the 
effectiveness of the method. Two domain experts confirmed the 
effectiveness of the ensemble traces in visualizing ensemble 
multivariate time series data.  
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