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Abstract 
This research is motivated by a long-standing problem of 
ineffective heuristic initial selection of a class of models, and its 
structures in modern data mining, machine learning, and other 
fields. Such heuristics usually are due to insufficient prior 
knowledge to select a class of models, and inability to represent 
visually and losslessly the complex high-dimensional data to 
explore the data for a model class selection. For instance, lossy 
visualization with different 2-D projections requires an unrealistic 
review of a vast amount of these projections and the abilities to 
reconstruct from them the n-D data structures. To make the 
selection of a class of models faster and more efficient in this 
paper new closed-contour-coordinate displays are proposed and 
explored both mathematically and experimentally. Such displays 
losslessly map all attributes of each n-D data point into a separate 
2-D graph/figure. This allows using the unique power of human 
vision to compare in parallel the hundreds of features of these 
graphs, and proportionally speed up the selection of an 
appropriate class of models. This paper includes results of visual 
data mining for real data sets, including the experimental results 
of visual feature extraction using this approach. It expands our 
previous results demonstrated on simulated data and shows the 
radical advantages of these coordinates vs. parallel coordinates 
for data dimensions from 20 to 200. 

1       Introduction 
       Challenges. A common approach for developing predictive 
and optimization models for real world tasks is selecting a class of 
mathematical models, and then identifying their parameters using 
available data.  The prior knowledge of the field, task and data 
typically is uncertain, insufficient or confusing to make this 
selection on the solid scientific basis. For instance, using prior 
knowledge for a data mining supervised classification task a 
person may state that attribute x1 is three times more important 
than attribute x2. Does it mean exactly three times or about 3 
times? What does it mean “about three times”? Does it mean that 
the weighted sum model 3x1+x2 will express correctly this prior 
knowledge for correct classification of n-D points?  As a result of 
this prior knowledge uncertainty selection of the class of models is 
rather an art than science. One of the major difficulties for 
scientifically sound selection of the class of models is that we 
cannot see the structure of data in multidimensional space by a 
naked eye, which is critical for identifying the model class.  
 As a result we cannot make sense of such Big high-
dimensional data and cannot select a correct class of predictive 
and/or optimization models for such n-D data. In contrast we 
often successful in model selection with 2-D or 3-D data that we 
can observe with a naked eye. Thus in the multidimensional case 
for data mining we are in essence guessing the class of models in 
advance, e.g., linear regression, decision trees, SVM, linear 
discrimination, linear programming, SOM and so on. This is often 
is hidden when mass media claim that Data Mining/Machine 
Learning (DM/ML) methods take out guesswork.  DM/ML 
methods take out guesswork only relative to wild guesses without 
using any data systematically.  Therefore we deliberately use the 
“guesswork” term instead more common “scientific” wording  

“research on model class selection” to unhide the guess essence of 
this activity. 
 The guesswork is not limited by selecting a class of models 
but also selecting a set of internal components within each class, 
e.g., selecting a type of kernel functions in SVM, k in the k-
Nearest Neighbors method, the number of hidden layers in Neural 
Networks,  the procedure to choose the next splitting attribute in 
Decision Trees and so on. 
       Finding the optimal set of attributes from an n-D dataset 
analytically for a given data mining/machine learning method, in 
the worst case, requires testing 2n subsets of attributes. This is not 
feasible even for relatively small n. Therefore we guess smaller 
subsets of attributes to be tested. It is done by using multiple 
heuristic methods to make the task computationally feasible.         
       The guesswork in the model class selection is a long-time open 
problem that can be traced for millennia from Ptolemy’s model of 
the Sun and planets. Ptolemy did not have tools to see the larger 
universe to propose a better model class.         
       Today the guesswork often is equivalent to using methods that 
are simply available in some software tools, e.g., with random 
check of lossy 2-D or 3D displays of n-D data. Thus, often we put 
the task at hand into the Procrustean bed of specific methods, 
which were not designed for this task and its context, but just are 
handy. The most logical and beneficial approach seems to be the 
development of methods specifically for a given task. However, it 
is often much more difficult than using the available software and 
respectively requires more time, effort, and investments. It may 
require going far beyond the current research approaches, and even 
the change of the whole research paradigm.  
       The overall goal of this paper is to propose a visual analytics 
approach to decrease the guess work and make the selection of the 
predictive model more scientifically rigorous, task effective and 
faster for the same performance. Specifically we focus on the data 
mining/machine learning supervised and unsupervised learning 
tasks of classification and clustering of n-D data. The common part 
of model selection for these tasks is identifying the discriminating 
features. These features can be the initial attributes of n-D data or 
complex combinations of them. Therefore this paper focuses on 
visual data mining task of finding discrimination features using 
lossless closed contour visual representation of n-D data.   
 What is the benefit of such visual data mining to be used 
alongside traditional computational data mining approaches (e.g., 
finding similar points by their distance in the high-dimensional 
space)? While distances are a backbone of many Data 
Mining/Machine Learning algorithms, they suffer from the same 
deficiency of model guessing discussed above. It is just a specific 
form of model guessing.  The common guess is the standard 
Euclidian distance with equal weights of all attributes. With an 
infinite number of weighted Euclidian distances, which one should 
be used, and how to justify any of them? Next how to justify the 
class of weighted Euclidian distances having multiple other classes 
of distances? Why should we be limited by this class? All these 
questions are open questions in Data Mining/Machine Learning for 
decades. The justification of the guess is commonly substituted by 
the later claim that a particular model guess gave a high accuracy 
of classification or prediction. Unfortunately, it does not help to be 
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successful with the different data next time. This explains the need 
to go beyond traditional DM/ML methodology, and the Visual 
Data Mining (VDM) is a promising one, to approach this 
fundamental challenge, which is critical for both theory of data 
mining and applications.    
       The next question is how Visual Data Mining can actually 
help to decrease or eliminate guesses?  The idea is to mimic its 
success with 2-D data, which is well known for years.  Consider   
2-D data shown in Figure 1. The common guess without looking at 
this figure is to try a linear discrimination function to separate the 
blue and red points. It will obviously fail, while a quick look at 
these data in Figure 1, immediately gives a visual insight of a 
correct model class of “crossing” linear models, with one line 
going over blue points, and another one going over the red points.  
This example also clarifies to what extent we can and should guide 
a viewer to search for specific visual features, e.g., crossing lines.        
       When we have not seen similar data before, we likely have no 
prior knowledge of data features. In this case the guiding can be a 
guess of the visual features at the same level as for a class of 
analytical models discusses above. The whole motivation of our 
VDM is to decrease guesses and substitute them by lossless 
observations on n-D data in 2-D exploiting unique human abilities 
of recognizing 2-D visual patterns. Respectively, naïve attempts to 
build a unified “consistent approach” to extract features visually 
based on guesses of the real data structure will fail due to lack of a 
scientific basis for such guesses.  

  
Figure 1. Two “crossing” classes that cannot be discriminated by a single 
straight line 
 
       We advocate more rigorous and practical ideas to build a 
unified “consistent approach”:  
(1) Exploiting 2D-nD math links -- establishing and using 2-D 
graph representation of specific mathematical n-D structures;  
(2) Deep structure analysis in 2-D – analyzing lossless 2-D visual 
representation of an n-D point as a graph in 2-D instead of lossy 
representation of an n-D point as 2-D point that has no internal 
structure which limits the analysis to 2-D point clouds; 
(3) Exploiting perceptual abilities --  selecting visual displays of 
n-D points as 2-D graphs (forms) derived from psychological 
studies of human visual form perception (Gestalt laws and others).  
 This approach does not guess unknown structures of given   
n-D data to be found, but attempts to use human abilities to detect 
some structures visually in specific visual representations of n-D 
data in 2-D. In this paper we focus on closed contours dictated by 
Gestalt laws. As a result only features of n-D structures that a 
human can detect in those 2-D representations will be found and 
some other important features will not be discovered due to 
inappropriate 2-D representation of them for the human for a given 
time. Respectively the major concern is on ensuring that the class 
of visual representations is large enough to enable human 
recognition of as many as possible real n-D structures. 

     This approach is motivated by extreme power and flexibility 
of parallel visual perception of 2-D forms, which allows 
simultaneously comparing hundreds of attributes of a high-
dimensional point. It means that instead of one 2-D projection as in 
a simple lossy technique we can analyze, say, 100-D data 
relationships.  
       The success in exploiting these abilities in feature recognition 
depends on multiple factors such as previous experience, allotted 
time, order of presentation of the forms, a set of forms, locations of 
features on the form, specific AND or OR combination of features, 
projective and affine transformation of the form, “noise” in forms 
and in inter-relationships between them, their place in pattern 
hierarchy, and others.  Due to such ultra-complexity, even after 
over 200 years of experimental research of form visual perception, 
psychological studies have estimated for extraction only of simple 
features and their attributes (figure size, orientation, concavities, 
etc.) for simple figures with a few features. Moreover, usually 
these results are correct only for a tested set of figures and the 
extension for another set could be questionable.  
        Thus, there is no available “universal” model of form visual 
recognition, which could answer our practical question needed for 
Visual Data Mining: “What is the set of form features that can be 
visually revealed on a certain set of complex figures for a certain 
time?” Such a model would be in fact, a model of human vision 
and brain. Note that, 50 years ago, John von Neumann said that 
evidently, brain model is not simpler than brain itself. So, if we 
want to use vision as the most powerful pattern recognition system 
for visual analytics and visual Data Mining, we have to 
experimentally test most prospective displays for some interesting 
n-D data structures. Gestalt laws seem to be the only common 
information about form perception, to allow us to select displays.    

2       Approach 
 We propose to decrease the guess work by developing and 
exploiting lossless visual representation of n-D data in 
combination with analytical techniques. Visualization, visual 
analytics and visual data mining techniques with multidimensional 
data have been a subject of intensive research for years [4-6,11-
14]. However many difficult problems are still open.  

Principal components (PCA) in 2-D are lossy. The first two 
principal components of each n-D point do not contain all 
information that is contained in the complete n-D point. Recently 
we developed a large class   of lossless methods to represent n-D 
points in 2-D  [1,3,7,8] called General Line Coordinates (GLC) 
that include new Collocated Paired Coordinates (CPC) as well as 
well-known Parallel Coordinates and Radial (star) Coordinates.       

The GLC allow coordinates go to any directions and be 
collocated. We had shown that several tasks including analysis of 
Challenger disaster data, World hunger data, and semantic 
meaning shift in jokes benefit from this approach [1,3,7-9]. 
Freeware [10] implements some of these methods. The current 
version of this freeware has three versions: standalone, web-based, 
and Excel-plugin. The approach detailed below is based on 
selecting discrimination features using lossless closed contour 
visual representation of n-D data.  In concordance with the Gestalt 
laws, the closed contours such as stars in Radial Coordinates show 
the essential perceptual advantages over polylines in the Parallel 
Coordinates (PC), bar charts, pie charts, etc.   

Shape perception features. Humans are able to detect, 
compare, and describe multiple figures by using hundreds of their 
local features such as concave, convex, angle, and wave, and 
combine them into a multilevel hierarchy  [1,3].    
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Figure 2. Examples of  n-D points as closed contours in 2-D: (a)  6-D point x=(1,1,2,2,1,1) in CPC Radial Coordinates with non-orthogonal Cartesian mapping, (b) 
16-D point (1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2) in CPC Radial Coordinates with Cartesian encoding, (c) CPC star of a 192-D point in Polar encoring, (d) the same 192-
D point as a traditional star in Polar encoding.  

 
Each feature includes many attributes, e.g., size, orientation, 

location, and others. A term “holistic picture” denotes an image 
together with its description, which includes image statistics, 
textures, integral characteristics, forms, and coloring. Next, the 
holistic concept is appearing at multiple levels of image 
perception. First the image is considered as a set of “spot clusters”, 
and relations between them as an overall structure of the image. 
Then each spot cluster is considered with the  same aspects where 
elements are “spots”, and the structure represents relations between 
these “spots”. Next each “spot” is viewed at the holistic level in the 
same way, and at the levels of its elements. At these levels the 
features that are perceptually important include symmetry, 
elongation, orientation, compactness, convexity/ concavity, peaks, 
waves, sharp angle, inside/outside, etc.  

Why do we focus on closed contours?  It is based on Gestalt 
laws of human perception and 2-D organization of real world 
figures [1-3, 8, 19]. Almost century ago psychologists many times 
experimentally revealed fundamental Gestalt Laws of form 
perception and recognition by a human vision [19]. According to 
these laws a figure that possesses a closure, symmetry, similarity, 
proximity, and continuity will be detected faster in the presence of 
noise [2,19], their forms will be recognized faster and more 
accurately, and a common pattern will be specified better.   
        In accordance with these facts close contours (stars for short) 
are more effective for feature selection because: 
• a star represents each n-D data point by a continuous, closed 

2-D holistic figure, while Parallel Coordinates produce open 
“elongated” polyline, which is not percept as a closed figure; 

• a star shows many invisible on Parallel Coordinates axial and 
central symmetries in the figure which facilitate detection 
similarities with other stars; 

• Parallel Coordinates disrupt proximity due to discontinuity at 
the ends. 

• Humans much easier detect similarity of different turns in 
stars than in Parallel Coordinates.  

       Gestalt Laws were verified for quite simple and natural 
(common) figures with a few features. Therefore in [1, 3] we 
experimentally confirmed the listed advantages for artificial 
figures with complex 2-D closed contours in comparison with open 
polylines in Parallel Coordinates. Traditional stars such as shown 
Figure 2c provided 2-3 times faster class or feature detection than 
polylines in Parallel Coordinates for data dimensions up to 100. 
CPC stars additionally extended dimension n up to 200. It was 
shown for n-D data simulated as hyper-tubes. Here we explore and 
verify such advantages for new General Line Coordinates displays 
and sets of real data from UCI Machine Learning repository. 

For essentially better use of form perception for visual 
analytics we proposed in [3,8] a special type of collocated 

coordinates with Polar encodings non-orthogonal coordinates. In 
this paper we expand it to Cartesian encoding in non-orthogonal 
coordinates.  

Figures 2 shows examples of 6-D, 16-D and 192-D points 
represented in 2-D as closed contours in Radial Collocated 
Paired Coordinates. For short, below we call these 
representations CPC stars and call these coordinates as CPC 
Radial Coordinates.   

A 6-D point x=(x1,x2,x3,x4,x5,x6)=(1,1,2,2,1,1) with non-
orthogonal Cartesian mapping is shown in Figure 2a in  CPC 
Radial Coordinates. It is split to three 2-D pairs with the 2-D point 
(x1,x2)=(1,1) located in the first sector in coordinates (X1,X2), point 
(x3,x4)=(2,2) located in the second sector  in coordinates (3,X4), and 
point (x5,x6)=(1,1) located in the third sector in coordinates 
(X5,X6). Then these points are connected sequentially to form an 
oriented graph.  As a result a 6-D point is represented losslessly 
not by six 2-D points as in Parallel Coordinated but by three 2-D 
points, i.e., two times less 2-D points.   

Respectively in general CPC Radial Coordinates use n/2 2–D 
points instead of n 2-D points and dramatically increase the 
abilities to visualize higher-dimensional data losslessly. In the 
mathematical terms, it is a theorem of half size that follows 
directly from the Radial CPC representation algorithm.  

Theorem (half size). Any n-D point to be represented in the 
CPC Radial Coordinates requires n/2 2-D points for even n and 
(n+1)/2 for odd n.     
        As Figure 2 shows, in Radial CPC representation coordinates 
X2 and X3 are collocated. In the same way, X4 and X5 are 
collocated as well as all other Xj,Xj+1 are collocated including X1 
and X16.  In general these CPC stars are generated as follows: a full 
2π circle is divided on n/2 equal sectors. Each pair of values of 
coordinates (xj, xj+1) of an n-D point x is displayed in its own 
sector as a 2-D point. In the polar mapping this point is located at 
the distance 𝑟𝑟 = (𝑥𝑥𝑗𝑗

2+𝑥𝑥𝑗𝑗+12)1/2 from the star center, which is a 
Euclidean length of the projection of vector x on the plane of these 
two coordinates, with the angle α of the ray to this point from the 
sector start proportional to the value of xj.   
       In this way we get n/2 points and connect them by straight 
lines (or arrows) to generate a star. This is a polar representation of 
all 2-D projections of x on plane. It is a lossless display forming a 
single connected figure without crossing lines. It satisfies all 
Gestalt Laws providing an effective application of form perception 
capabilities.          
       Other versions of this polar representation are produced when 
radius r represents xj and angle α represents xj+1, or vice versa. 
Alternatively, each pair (xj,xj+1) can be encoded in the (Xj,Xj+1) 
coordinates in non-orthogonal Cartesian mapping as show in 
Figure 2a. 
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(a) (b) (c) 

Figure 3. (a) 34-D point in collocated coordinates, (b)  X coordinate from (a) is mapped to the square and Y coordinate from (a) is mapped to the lines orthogonal 
to sides of the square, (c) X coordinate from (a) is mapped to the circle Y coordinate from (a) is et mapped to the lines orthogonal to the perimeter of the circle.   
 
        Figure 3 shows how to make closed contours for non-radial 
(Cartesian) collocated paired coordinates introduced in [7], where 
coordinates (Xj,Xj+1) are located orthogonally as in the Cartesian 
coordinates (X,Y), and  where all odd coordinates are collocated in 
X, and all even coordinates are collocated in Y. Note that in the 
same way polylines in Parallel Coordinates can be represented as 
closed contours. We will call this class of coordinates as Non-
Radial Closed Contour (NRCC) Coordinates.  
         The advantage of such closed contours shown in Figure 3 
relative to traditional stars and CPC stars is that they do not 
occlude the points near the center, because all points are located 
outside of the circle or a square. Closed contours in Figure 3 also 
improve visibility of some coordinates relative other coordinates in 
comparison with the polar mapping of CPC Stars for high-
dimensional data.     
        To be able to apply mapping of the X coordinate to a square 
or a circle shown in Figure 3 the lines in Figure 3a should not go 
backward. It is provided by ordering of all odd coordinates of n-D 
point x in the ascending order or by rescaling all odd coordinates to  
get this ascending order property. Below we present a theorem  
showing that this process guarantees that lines of the graph will not 
cross and will not go backward.  This theorem is based in the 
following algorithm called odd ordering algorithm: 

Step 1. Represent all nodes of n-D point x as a sequence of 
pairs (x1,x2),(x3,x4),…, (xn-1,xn), e.g., (0.0), (1,0), (0,1), (1,1), (0,0).  

Step 2. Order all nodes of the graph based on its first 
coordinate in ascending order, e.g.,  (0.0), (0,1), (0,0), (1,0), (1,1), 
i.e., (x1, x2, x5, x6, x9, x10, x3, x4, x7, x8) and display a new CPC 
graph. This is equivalent to ordering of odd coordinates of an n-D 
point x. Figure 3a shows the result of applying of this algorithm to 
some n-D data point.   

 Theorem (planarity). The Odd ordering algorithm produces a 
planar CPC graph such that each edge is located on the right from 
the previous edges or on the same vertical line as the previous 
edge.   

Proof. Let (xi,xi+1) and (xi+2,xi+3) be two consecutive nodes of 
a CPC graph for an n-D point x after applying the odd ordering 
algorithm to x. As a result xi ≤ xi+2, i.e., each next edge of the CPC 

graph is located on the right from the previous edge or on the same 
vertical line as the current node. This location of the next node 
does not allow the next edge and further edges to cross the current 
edge and previous edges that are all on the left from the next edge. 
This means that if xi = xi+2 the next edge is on the same vertical 
line as the previous one.  
 The next algorithm is the Complete odd ordering algorithm 
where after odd ordering, all nodes with equal first coordinate  are 
ordered in ascending order relative to its second coordinate, e.g.,  
(0.0), (0,0), (0,1), (1,0), (1,1), i.e., (x1, x2, x9, x10, x5, x6, x3, x4, x7, 
x8).  
      The Complete ordering algorithm orders all coordinates of x 
in the ascending order, e.g., for (0,0,1,0,0,1,1,1,0,0) the order is 
(x1, x2, x4, x5, x9, x10, x6, x7, x8)= (0.0,0,0,0,0,1,1,1,1).  

Corollary. The planarity theorem is true for both the 
complete odd ordering, and the complete ordering algorithm.  

Proof. Both orderings satisfy the requirements of odd 
ordering required for the planarity theorem.    
 Different n -D points may have different orderings that avoid 
self-intersecting forms. Therefore for meaningful comparison we 
compare only 2-D forms for n-D points that have the same 
ordering.  
     We analyzed several real datasets. Some datasets have the same 
orderings practically for all n-D points. Some datasets have large 
subsets with the same orderings especially when strict ordering is 
relaxed by allowing violation of the ordering within some 
threshold.  
      For the datasets that are extremely diverse in terms of orderings 
we propose use original non-radial CPC graphs [7] without this 
reordering, or use Radial CPC Stars discussed above (see Figure 2) 
that have no self-crossings.  
      All the proposed versions of Collocated Paired Coordinates 
provide new visualizations, which show an n-D point in a way 
which could be especially beneficial for the naturally paired data, 
and could be easily interpretable.  
      All CPC representations have two times fewer break points on 
the contour of the figure than the traditional stars, which is 
significantly decreasing the complexity of forms.  
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(a) Black graph -lossless representation in KGRC. 
Red point -- lossy representation in KPRC 

(b) Left- lossless representation of point x in “Comb” 
Zigzag Coordinates, .Right - Zigzag-based Coordinates, 

(c) Lossless representation of point y in 
Circular Zigzag Coordinates. 

Figure 4. Examples of n-D data displays in alternative distance-based  representations: (a) for 16-D point x=(1,1,2,2,1,1,2,2,1,1,2,2,1,1,2,2), (b) (c) for 16-D point y 
that is close to point x 
. 
       It effectively doubles the representable data dimensions up to 
at least 200 dimensions for CPC stars [3] as Figure 2c illustrates. 
The expansion of the proposed approach for dimensions n up to 
1000 is as follows: grouping coordinates xi of x by 100-150 and 
representing them by separate or collocated colored stars, and/or 
mapping some xi into colors.  Lossy reduction of n can be applied 
after visual analysis of these lossless displays, which can reveal the 
least informative attributes. Another reduction is based on a 
priori domain knowledge.   
 To avoid occlusion each star can be displayed in its own 
coordinate system located in a separate cell. While this solves the 
occlusion issue, it creates another issue. This issue is switching 
gaze from one star to another one. It takes time, requires 
memorizing the first star before looking at another one, which 
complicates the comparison of stars 
       One of the solutions for this issue is considering one star as a 
base, and overlaying other stars with it one after another. The color 
of the overlaid star will differ from the color of the base star. The 
sections of two stars that are practically identical can be blinked or 
shown in a third color. The subject can use a mouse click to 
indicate that two stars are similar and potentially from the same 
class. An experimental study is needed to see whether the time to 
discover a pattern will shrink. 
       Related work. The radial arrangement of n coordinates with a 
common origin is used in several 2-D representations of n-D data. 
The first one has multiple names (e.g., star glyphs) [18], the name 
Radar plot is used in Microsoft Excel.  It is based on the same idea 
a parallel coordinates with points on coordinate axes connected by 
a polyline. In addition points xn and x1 are connected to make a 
closed contour (“star”). In this paper we call this lossless 
representation of n-Da data as the Traditional Star Coordinates 
(TSC).  
 Other visual representations of n-D data that are also called by 
their authors Star Coordinates (SC) [15, 20] are reviewed below. In 
addition we have Cartesian and Polar versions of the lossless CPC 
Star coordinates that we introduced and defined above.  
        To distinguish all of them we will use the following names 
and abbreviations: Graph Radial Coordinates (GRC) for lossless 
SC from [20] and Point Radial Coordinates (PRC) for lossy SC 
from [15,20].  In fact lossy SC in [15] are the same as lossy SC 
proposed in [20].  
 Note that our CPC Star Coordinates are graph-based, i.e., also  
Graph Radial Coordinates, therefore we denote Graph Radial 
Coordinates from [20] as KGRC to distinguish them from CPC 
Star Coordinates. Similarly several point-based Radial Coordinates 
exist, therefore Point Radial Coordinates from [20] are denoted as 
KPRC. 

 In KGRC a 2-D graph of an n-D point x=(x1,x2,…,xn) is 
created by connecting the consecutive edges. The first edge has 
length x1 and is located on the first coordinate X1, starting from 
origin and ending on point x1 on X1. The second edge starts at the 
end of the first edge and is going parallel to the second coordinate 
X2. It has length x2. Similarly the edge j is going parallel 
coordinate Xj starting at the end of edge j-1. In general this graph 
is not a closed contour.    To make it a closed contour we can add 
an edge connecting the last node with the origin node. See an 
example in Figure 4a. In lossy KPRC only the last node is used to 
represent n-D point x=(x1,x2,…,xn). In the example in Figure 4a it 
is a red dot. In this example coincidently the graph not only starts 
in the origin but also ends in the origin.  
      In general in KGRC the n-D point x is represented by lengths 
consecutive edges with directions of edges reproducing directions 
of respective coordinate.  This description of it gives us an 
opportunity to design the generalized KPRC using our General 
Line Coordinates. Respectively with GLC coordinates can have 
any directions and locations. For instance, coordinates can be 
located in different zigzag arrangements one after another as 
shown in Figure 4bc. They produce different lossless 2-D 
representations of n-D data that give more opportunities to 
discover visual pattern by different people for the same n-D data.   
 In the lossy point-based KPRC from [15, 20] the coordinates 
of the last node L=(L1,L2) are weighed sums of x1,x2,…,xn,  
L1=w1x1+w1x2+…wnxn, and L1=u1x1+u1x2+…unxn.  These sums are 
many-to-one mapping of n-D points to 2-D points and therefore are 
lossy representations. In particular any scaling of 16-D point from 
Figure 4a will produce the same 2-D point, i.e., the origin. In [15] 
it is defined as a sum of vectors drawn along of each coordinates 
with respective lengths of xj. In this example, each vector has the 
opposite vector. As a result the sum of these vectors is the zero 
vector which leads to the origin. While this visualization is lossy 
and respectively incomplete, it has important positive properties 
such as low occlusion and representing some integral information 
about the all attributes of an n-D point.  
      While the words “stars” and “radial” are present in the 
alternative visualization techniques such as the Radial 
Visualization (RadViz) [16, 17], and the already discussed Star 
Coordinates [15],  they are radically different approaches.  Both of 
them are lossy, representing each n-D data point by a single 2-D 
point.  They lose a large part of the information of this n-D point, 
because of the many-to-one mapping of the attributes of an n-D 
point. In contrast our Stars are lossless, because they represent 
complete information of each n-D point by a graph. RadViz and 
lossy Star Coordinates from [15,20] can show clouds of points and 
roughly some attributes of this clouds (sizes, elongation, and 
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localization in data space). Moreover, these clouds will be 
meaningful mostly for compact classes and if they do not occlude 
each other. Thus the point-based approach has significant 
limitations being oriented mostly to visual classification and 
clustering tasks with relatively simple compact data classes. Due 
to absence of internal structure of a 2-D point in contrast with a 2-
D graph the abilities to extract deep structural information from 
point clouds is practically impossible. In essence it prevents deep 
visual analytics from the very beginning of visual data 
representation.       
 In our approach, we attempt to maximally use the unique 
capabilities of the human vision system to extract the deep 
structural information. It allows detecting essentially nonlinear, 
non-compact structures in the n-D data space, and to understand 
their properties much better than lossy displays, such as RadViz, 
lossy Star Coordinates, projections, and others, that simplify the 
user’s visual task by removing deep structural information.   Thus, 
we have two opposite approaches: lossy and lossless for visual 
knowledge discovery.   

3       Algorithm and Experimental Results  
3.1 Closed contour lossless visual representation  
 Figure 5 and 6 show, respectively, traditional and CPC stars 
for 5 classes: healthy (black), and 4 diseases (colored) [data from 
UC Irvine Machine Learning Repository, Heart DB Hungary]. This 
dataset includes 14 attributes selected by a cardiologist from 47 
registered attributes.   
        In Figure 5 some diseases have visible differences from 
healthy patients such as more fragments of rectangles and different 
symmetry axes. This first visual clue is a guide for the next 
analytical steps that check them on the whole dataset to provide 
confidence in the discovered pattern.  
        These figures also show that CPC stars are more compact than 
traditional stars. It is visible in Figure 6 where all not black cases 
are more “horizontal” and black cases are mostly vertical with 
Northwest orientation.  
       The difference between classes is less evident in traditional 
stars. CPC stars allow getting better patterns  and finding them 
faster.  Figure 7a shows a traditional star for an n-D point p from 
the black class. The traditional stars from Figure 5 that are close to 
p were found visually and are presented in Figures 7b-e from each 
colored class. Similarly Figure 8a shows the CPC star for the same 
point p and Figures 6b-e present respective close CPC stars from 
each colored class. The overlay of stars a and b from Figure 7 is 
captured in Figure 9 showing real closeness of these closed forms.   

3.2 Feature Extraction Algorithm  
        Below we describe the algorithm for extraction of 
discrimination features using the data explained above.  We start 
from an arbitrarily n-D point p1 from class C1 (e.g., black class), 
and find the n-D point p2 in class C2 (e.g., red class), which is most 
similar to p1 using a lossless closed contour representation of 
points in 2-D. See Figure 7, where black Figure 7a represents p1 
and red Figure 7b represents p2 for Figure 5. Then we search for 
the n-D points in both classes, which are most similar to p1 and p2. 
These points have been marked by stars in Figures 5 and 6. Next 
we evaluate distribution of these points between C1 and C2 classes.  
In Figure 3 it is 13:4 (76.5% in C1) and in Figure 6 it is 14:3 
(82.4% in C1).     
Respectively the algorithm steps are:  
1. Randomly select an arbitrarily n-D point p1 from class C1 

2. Find all the n-D points in both classes that most similar to p1 
and p2.  

3. Evaluate distribution of these points between C1 and C2 
classes. 

4. Remove these points from the dataset.  
5. Select another point in C1 from the remaining C1 points and 

repeat the visual search for this point as we did for p1 and p2. 
This process continues until all points from C1 and C2 are 
processed.  

6. Enhancing visual patterns to improve separation. In the case 
of points p1 and p2 this is finding features that differentiate 
them.   

7. Formalizing found visual patterns to be able computing class 
of new objects without a human expert who needs to analyze 
visual patterns.    

 Below we discuss step 6 in more details. Consider p1 and p2 
as shown in Figure 7ab. The upper line in the black case p1 is 
going down, but in the red case p2, it is horizontal. Next we test this 
visually discovered property on its ability to separate better those 
17 cases. We have two cases with horizontal line in each class C1 
and C2 among 17 cases that are similar to p1 and p2. Thus this 
feature is not a good feature to improve the separation of these 17 
cases.  Another visual feature must be found.  
 Having CPC star representation we can try to find separation 
features in CPC stars. We can see in Figure 8b (red case) a very 
short line on the right, which is almost vertical. This line is present 
in all 3 red cases and is not present in any of the 14 black cases that 
we try to separate. Thus, this is a perfect feature to improve the 
separation of 17 very visually close cases with 100% accuracy.   
 Next we turn to Step 7 to find an analytical form of that visual 
feature.   Denote the start and end points of that line as ws and we. 
Their distance d(ws,we) serves as a discrimination feature   

 

                     If d(ws,we) > d then class C1 else class C2,               (1) 
 

where d is a distance threshold computed from Figure 8b. Let’s for 
simplicity of notation assume that we started the graph in Figure 8 
from this point ws. In this case our start and end points are 
 

       ws1=f(x1,x2), ws2=g(x1,x2),      we1=f(x3,x4), we2=g(x3,x4)      (3)                                     
 

where x1-x4 are first four original n-D coordinates of an n-D point 
that we consider. Here f and g are functions that are used to map 
x1-x4 to CPC star coordinates as we presented in section 2. Thus 
formula (1) will be rewritten as with use of (3):  
 

      ((ws1- we1)2 
+ (ws2- we2)2

)
1/2 

 > d  then class C1 else class C2        (4) 
 

   ((f(x1,x2)-f(x3,x4))2
+ (g(x1,x2)-g(x3,x4))2)1/2  > d  

           then Class C1 else Class C2                     (5) 
      Discovering (5) demonstrates the power of visual analytics, 
which combines visual and computational methods in Visual Data 
Mining.  Discovering (5) purely analytically without a visual clue 
would be extremely difficult. We would need to guess somehow a 
class of models   that includes (5). What could be the base for such 
a guess? It is hard to expect prior knowledge of this kind. In these 
particular data, we definitely did not have such prior knowledge. 
Next event if the guessed class will include (5) it is not necessary 
that (5) will be a winning model on the given training data.   
      How general is this algorithm?  Why is it not an ad hoc one?  
Steps 1 and 4 are quite general for any training dataset with the 
classes of n-D points identified.   The success in Steps 2, 3, 5 and 6 
depends on 2-D representation of n-Data, perceptual abilities of the 
viewer, allotted time and amount of data. The step 7 is also quite 
general and its success depends on success in previous steps and 
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on mathematical skills of the analyst. So far experiments with CPC 
Stars show that all these steps are doable successfully for real data 
providing a consistent framework for visual analytics in Data 
Mining. Further research and experiments are needed to specify 
steps 1-7 more and data types where this algorithm will be 
efficient.  It includes training data miners in visual features search. 

 3.3 Comparison with Parallel Coordinates  
        Figure 10 shows the same data in Parallel Coordinates as in 
Figure 6. We do not see a separation pattern between the classes in 
it, but a separation pattern is visible in CPC stars in Figure 6.  
       The difference between Traditional Stares, CPC stars, and 
Parallel Coordinates is even more visible in Figures 12 and 13 in 
the higher dimension (n=170). Figure 12 shows traditional 170-D 
stars in the first two rows: musk chemicals (first row, black), and 
non-musk chemicals (second row, red). Respectively the third and 
fourth rows in Figure 12 show CPC 170-D stars from the same 
dataset: musk chemicals (third row, black) and non-musk 
chemicals (forth row, red). A specific pattern on the right of each 
star is visible on rows 2 and 4, which represent non-musk 
chemicals. Multiple other distinct features can be extracted from 
Figure 2, which can assist in separating the two classes. In contrast 
in Figure 13, 4 points from the black class, and 5 points from the 
red class is very difficult to identify and separate from other 
features. 

4.   Prospects for higher data dimensions 
 The above advantages of CPC stars vs. traditional stars and 
parallel coordinates are even more essential for data of higher 
dimensions. We presented these three representations (Figures 
12,13) for musk learning dataset from the UCI machine learning 
repository.  It is an example of very practical design models of 
drugs and other chemicals without expensive experimental tests, 
such as clinical trials of the targeted properties. In these data each 
instance is described by their 170 physical, chemical, structural, 
etc. properties and its target attribute (musk class or non-musk 
class). 
 Although CPC stars show the same information in each cell as 
the traditional stars, they are better for visual analysis because they 
have: (1) less density of form features, (2) bigger sizes, (3) better 
separability, etc.  In contract, Parallel Coordinates are unacceptable 
for such large data dimensions, while the stars above allow 
comparing data with hundreds of attributes. Open polylines in 
Parallel Coordinates of the same n-D data points as shown in 
Figure 13 are practically indistinguishable. These advantages of 
closed contours are consistent with Gestalt Laws making the need 
in new extensive user studies not necessary because we already 
conducted such studies on some data in [1,3] and abilities to rely 
on extensive previous experiments elsewhere that verified Gestalt 
Laws viewed as most universal information about form perception 
for display choice independently on specific data properties.  

5.       Conclusion 
The new Visual Data Mining technique based on Closed Contour 
coordinates is proposed in this paper. The experimental results for 
the visual feature extraction from the multidimensional data using 
this technique show that it is a promising method for the visual 
analytics and the visual data mining. Advantages of the proposed 
visual data mining technique relative to the Parallel Coordinates 
have been shown.  This technique also can be applied in 

cooperation with the analytical Data Mining methods to decrease 
the heuristic guesses in selecting a class of Data Mining models.    
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Figure 5. Samples of 14-D data from 5 colored classes represented by closed contours (stars) in traditional Radial Coordinates. 17 stars mark similar forms  found 
in the black and red classes (13 in black class and 4 in red class).  The found pattern is dominant in the black class (76.5% accuracy). Red stars mark most similar 
forms found  in  these opposite classes.   

 
Figure 6. Samples of 14-D data from the 5 colored classes represented by closed contours (CPC stars) in CPC Radial Coordinates. 17 stars mark similar forms  
found in black and red classes (14 in black class and 3 in red class).  The found pattern is dominant in the black class (82.4% accuracy). Red stars mark the most 
similar forms found in these opposite classes.    
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Figure 9. Overlay of stars a and b from Figure 5. 
Figure 8. Closest CPC stars from 5 classes from Figure 6  

 
 
Figure 10. Samples of 14-D data from 5 colored classes in Parallel Coordinates.  
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Figure 11.  Similar Parallel Coordinates curves from Figure 10.
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Figure 7. Closest traditional stars from 5 classes from Figure 5 
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Figure 12. Traditional 170-D stars: class “musk” (first row, black) and class “non-musk chemicals” (second row, red). CPC 170-D stars from the same dataset: 
class “musk” (third row, black) and class “non-musk chemicals” (forth row, red). 

 
 
 
 
 
 
 
 
Figure 13. Nine 170-dimensional points of two classes in Parallel Coordinates. 
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