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Abstract
Interactive visualization and analysis of the class boundaries

is important because it tells us how and why the classes differ.
However, the problem of modeling the boundary of classes of ar-
bitrary size, shape and density is challenging. The boundary of a
class should not be limited to the points/shape which encloses the
points within the class but it should be, the points/shape which en-
closes the region of influence of a class. The “region of influence”
refers to the space around the class where any point lying within
the region is likely to be classified to the class based on a nearest
neighbor classifier. We have developed interactive boundary vi-
sualization toolkit for classified datasets which provides insights
about the classifier model used on the dataset. Our algorithm
first generates a candidate boundary set for each class based on
reverse k-nearest neighbors approach and extends this boundary
iteratively through the region of influence of the class. Further, we
present these boundary points enclosing the region of influence as
a linear approximated shape using triangulation techniques. We
show experimental results on 2D and 3D datasets.

1 Introduction
Boundary detection techniques play an important role in

post-classification analysis. Class boundaries contain overlapping
patterns of different classes and there is need to visually present
these boundaries to reveal the type and extent of overlaps that
occur between classes. Boundary points exhibit a subset of pat-
terns that straddle the two classes and provide interesting charac-
teristics about the inter-class relationships. Visualizing the class
boundaries is relevant in learning how and why these classes dif-
fer and to have an insight of the knowledge used by the classifier
in separating them. Visualization techniques [12] are an intuitive
way to study class characteristics in the data by revealing class
boundaries, exposing inter-class gaps and providing visual cues to
analyze classification results. They also allow developers of the
classification model to be more engaged in the reasoning about
the classification model via interaction techniques.

Algorithms like BRIM [1], BORDER [24], Concave-Hull
[17] provide set of points that are located at the margin of densely
distributed data such as a class but do not consider the inter-class
relationships in boundary detection. Techniques like SVM [22]
outline the broad separation between the classes but it is difficult
to visualize where and how the overlap of class properties that ex-
ist between two classes. Visual interpretation of SVM results [3]
do not reveal factors or data points that are relevant in separation
between two classes. Melnik [15] suggested the use of connectiv-
ity of decision regions in extracting qualitative information about
the classification model where the connectivity is obtained by em-
phasizing on the regions where changes in the class label occurs.
[25] proposed DBPS algorithm to retrieve data points on the de-
cision boundary of the classes to get insight about the classifier
and SOMDBV algorithm to visualize those boundaries in a 2D

SOM map [13]. The boundary retrieved from DBPS algorithm
contains only a set of points with no notion of shape represented
by them. These algorithms do not assist in the retrieval of regions
with different amounts of connectivity between different classes.

The region between the classes are likely to have influence
and there is need to visually separate these regions containing dif-
ferent amount of influence from these classes. Therefore, our
work is an extension of the idea of detecting the shape of class
boundaries and followed by stretching these boundaries through
the region of influence based on kNN information. This represen-
tation of class boundaries aids the ability to simultaneously visu-
alize the separate and overlap of regions of influence of the differ-
ent classes in the labeled dataset. Representation of overlapping
classes boundaries using the triangulated objects helps to retrieve
the regions in the space where inter-class relationships occur. The
difference between the shape of the class boundaries proposed
in above stated methods [1, 24, 17] and ours is that we incorpo-
rate the information provided by a kNN classifier in generation
of class boundaries so as to visualize the direction and amount of
spread of the class properties surrounding the class points. Unlike
SVM, our approach stands on nearest-neighbor based approach
and considers all the minimal decision criteria characterized by
the neighborhood support set. Class boundaries based on region
of influence presented in our work are not tight fitting class bound-
aries which makes them even more important when classes are
close enough or overlapping.

In this paper, we extend the traditional definition of class
boundary to “region of influence” which means any point within
the region of influence of the class will be affected by the class
properties as depicted by nearest neighbor (NN) classifier. The
extent of the region of influence of a class is computed using the
decision boundary modeled by NN classifier. The reasons of us-
ing NN classifier for the computation of regions of influence are :
(i) it keeps the decision boundary closer to the class points. (ii) it
is independent of actual distance values hence it gives a realistic
expanded region of class influence. (iii) Thornton [21] demon-
strated that many of the UCI repository datasets [16] contain data
points that exhibit neighborhood properties.

In our approach, for each class an initial candidate boundary
point set is generated from the classified dataset based on the re-
verse kNN property, then extended through the region of influence
and finally presented using triangulation based techniques. We fo-
cus on the analysis of labeled data using visualization of bound-
aries based on regions of influence. The visual presentations of
regions of influence has various applications in prediction-based
systems, market analysis and location-based services.

The paper is organized as follows : Section 2 describes our
proposed method of extraction and representation of regions of
influence in detail. Section 3 presents the interactive visualization
toolkit developed as part of our work along with experimental
analysis of various real and synthetic datasets. Finally, conclu-
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sions as well as future work is presented in section 4.

2 Regions of Influence Visualization
Given a D-dimensional dataset X = {x1,x2, ...,xN}, N is the

number of data points, xi = (xi1,xi2, ...,xiD) containing set of M
classes, C = {c1,c2, ...,cM}.

Definition 1 : k-nearest neighbors The k-nearest neigh-
bors (kNN) of point p are the set of k points from dataset X
which are closest to p based on a distance metric dist(), denoted
as kNN(X , p).

Definition 2 : Reverse k-nearest neighbors The reverse k-
nearest neighbors (kRNN) [14] of point p are the points xi ∈ X
that have p as one of their kNNs, denoted as

kKNN(p) = {xi|xi ∈ X , p ∈ kNN(X ,xi)} (1)

where kNN(X ,xi) is the set of k nearest neighbors of point xi in
dataset X based on some distance metric dist(). The kRNN prop-
erty provides a view of the data distribution around the point and
estimates the density of points around a point relative to itself.
Therefore, the number of kRNNs vary based on this implicit den-
sity estimation captured by the points.

Figure 1: Steps for generation of Regions of Influence visualiza-
tion.

Fig. 1 provides a simplified view of the steps involved in the
development of class boundaries based on regions of influence.

2.1 Removal of noisy data
The first step of the process is pre-processing the dataset to

eliminate the noisy data points. This step needs to be performed
before the extraction of initial class boundaries based on kRNN
because in a non-uniformly distributed dataset, the boundary de-
tection is sensitive to noisy data. In this step, we find k-nearest
neighbor points (kNN) of each point in the data and calculate their
number of reverse k-nearest neighbors (denoted as kRNN-value).
For each point xi, its kRNN-value represents the number of points
which look upon xi as one of their kNNs. The points with kRNN-
value less than noise-threshold are filtered as noises. Very low
kRNN-value of a point suggests that the point lies isolated with
respect to other class points and hence could be removed from
the data. These points possess very less neighborhood properties
of their class and hence there is need to pay further attention to
explore the possibility of their incorrect labelling.

2.2 Generation of candidate boundary set (CBS)
Candidate boundary set is an initial set of class boundary

points retrieved using reverse k-nearest neighbor definition speci-
fied above. For the generation of initial boundary set of a class
ci, denoted as CBSi, we calculate intra-class kRNN-values for
all points in the class by limiting the computations of k-nearest
neighbors within the points belonging to the same class. In this
step, intra-class kNN algorithm is performed to compute each
point’s k-nearest neighbors lying within the same class and the
output information is stored in kNN-files. Now for each point in
the class, its intra-class kRNN-values are calculated and points
with kRNN-value less than rBoundary threshold are filtered and
extracted as candidate boundary-set of the class. These candidate
boundary sets (CBSs) consists of tight boundary points that exist
at the edge of the dense group (class) of points. These boundary
points provide an initial estimate of the influence region of the
class.

However, the complexity of naive kNN algorithm is O(N2)
and the complexity of naive kRNN algorithm is O(N3), which
would be the bottleneck in all the computations specified above.
We use I/O optimized GORDER (or the G-ordering kNN) tech-
nique [23] in all the kNN and kRNN calculations to make our
system more efficient. Gorder is a block nested loop join that
includes sorting, join scheduling, and distance computation filter-
ing that results in reduction to both I/O and CPU costs in kNN
and kRNN queries [23]. Our implementation for computation of
kNN and kRNN queries of all points in the dataset is similar to
Gorder kNN join described in BORDER technique [24].

2.3 From candidate boundary set to region of in-
fluence

The third step is the extension of generated CBS of each
class through the region of influence using kNN knowledge.

Definition 3 : (Region of influence around class) The re-
gion around the class ci where any point lying within the region
is likely be classified to the ci based on a neighborhood-based
classifier. This notion of influence region represents subset
of class features that exist even beyond the candidate class
boundary. The region is parameterized based on distances from
points contained in the class.

Definition 4 : (Majority kNN class of a set of points)
Consider a point-set S containing a set of d-dimensional points,
the class which is most common among kNNs of all the points
contained in S is referred as majority kNN class, denoted as
ma jKNNClass(S). The computation of the most common class
is done using majority voting as described in Algorithm 1.

Definition 5 : (Hyperplane) A d-dimensional hyperplane
is represented as

∑
0≤i<d

aixi +ad = 0 (2)

where x0 to xd−1 are Cartesian point coordinates and
(a0,a1, ..,ad) are coefficients subject to constraint that at
least one of a0 to ad should be non-zero. In 2D, equation
of hyperplane represents a line while in 3D it represents a
plane. A hyperplane separates a d-dimensional space into two
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Algorithm 1 Majority kNN Class
Input
S : point-set S containing a set of D-dimensional points from
dataset X.
voteCount initialized to 0 for each class ci

1: for each point p in S do
2: for each point pi in kNN(X , p) do
3: increment voteCount of cluster which pi belongs to

by 1;
4: end for
5: end for
6: return Cluster with maximum voteCount

halves positive and negative, which can be specified as per our
convention. Given a set of d-dimensional points S (size(S) = d),
it is possible that a unique hyperplane can be determined that
passes through them. For our convention, we refer to the points
involved in hyperplane construction as vertices of the hyperplane.

Definition 6 : (kNNShift of a hyperplane) Consider a hy-
perplane h constructed from a set of d-dimensional vertices. Let
S be a point-set containing vertices of h and their centroid and
minDist be the minimum distance between any pair of points
in the noise-eliminated dataset. If all points in S are shifted
along the orthogonal direction of the hyperplane by minDist
until the majority kNN class of S changes. Fig. 2 provides a
simple demonstration of kNNShift of a 3D-hyperplane h where
its vertices are shown as red colored points. In the figure,
class-A represents group of white-colored points and class-B
represents group of black-colored points. Dotted arrows in
the image connect vertices of hyperplane to their respective
kNNs (k = 2). Initially, majority kNN class of hyperplane h is
class-A (as voteCount(A) = 6 and voteCount(B) = 0). When
h is shifted along the normal direction by minDist, for the
new hyperplane h′ (consisting of projected vertices from h) the
majority kNN class changes from A to B (as voteCount(A) = 1
and voteCount(B) = 5). This change is referred as kNNShift
of h. The notion of kNNShifts provides a limit to the spread of
region of influence around a class.

Figure 2: Iterative kNNShift of a hyperplane h.

Algorithm 2 describes the steps involved in spreading each of
the class boundaries through the region of influence characterized
by kNN-classifier. Let ROIi stores the set of hyperplanes which

enclose the region of influence around class ci, it is initialized to
/0. Firstly, we select the point p with minimum kRNN value from
the CBS of class ci (denoted as CBSi). Let point-set S contain
point p and its kNNs within CBSi (intra-CBS kNNs, denoted as
kNN(CBSi, p)), such that size(S) = (k + 1) ≥ d. We construct
a distinct set of hyperplanes H from S. (Note : H contains all
possible non-coplanar hyperplanes that can be constructed using
the point-set S. H can contain maximum of (k+1)Cd hyperplanes).
Points with least kRNN value lie at the fringe of the dense regions
of class, thus hyperplanes constructed using these points help to
extend the boundary in different directions.

Algorithm 2 Extending the CBS through region of influence
Input
CBSi : CBS of class ci.
minDist : minimum distance between any two pair of points.
Output
ROIi : Region of influence around class ci as a set of hyperplanes.

1: ROIi← /0;
2: while CBSi 6= /0 do
3: p← point with minimum kRNN-value in CBSi;
4: S ← point-set {kNNi(CBSi, p)∪ p} and size(S) = (k +

1)≥ d;
5: compute a set of distinct hyperplanes H from S;
6: for each hyperplane h in H do
7: if h satisfies constraints I and II then
8: P← {vertices(h)∪ centroid(vertices(h)) };
9: normal← orthogonal direction of h pointing from

positive to negative half-space;
10: Cur← P; Prev← /0;
11: while ma jKNNClass(Cur) is ci do
12: Prev←Cur;
13: Cur← shift point-set Cur along normal of h

with minDist;
14: end while
15: if Prev 6= /0 then
16: h′← hyperplane containing points in Prev;
17: ROIi← ROIi∪h′;
18: end if
19: end if
20: end for
21: CBSi←CBSi \S;
22: end while
23: return ROIi

We then perform filtering on H to reduce its size, based on
the orientation of points in the CBSs with respect to hyperplanes.
Hyperplanes which do not satisfy both the constraints I and II are
removed from H.

I : Hyperplane should divide the points in CBSi unequally
into two half-spaces based on their orientation. The half-space
containing more points from CBSi is referred as positive half-
space while other half-space containing less number of points
from CBSi is referred as negative half-space.

II : The negative half-space with respect to hyperplane (as
defined in I) should contain at least k points from CBSs of other
classes so that there exist a possibility of kNNShift.
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The orthogonal direction of each hyperplane in H is, point-
ing from their positive half-space to negative half-space (as de-
fined in I). Each hyperplane h in H is shifted along the orthogo-
nal direction with distance minDist iteratively until kNNShi f t is
encountered, as demonstrated in Definition 6. The set of hyper-
planes h′ (projected just before the kNNShift) are retrieved and
stored in ROIi and the points in S from CBSi. The algorithm is
executed until all points are removed from CBSi, that is for class
ci, the algorithm runs for d size(CBSi)

k+1 e steps. These steps are per-
formed independently for each of the classes. Intra-CBS kNN and
kRNN values are pre-computed before the execution of algorithm
2 using GORDER technique to optimize its performance.

2.4 Representing regions of influence using tri-
angulation

The region of influence around a class is formulated as a
set of hyperplanes consisting of d-dimensional vertices. For vi-
sualization purposes, 2D-hyperplane can be presented as a line-
segment and 3D-hyperplane as a triangle. However, presenting
the region of influence as a set of disconnected line-segments or
triangles is a crude display of “shape” of class boundaries. Hence,
we produce a linear-approximation of the shape represented by
these unorganized hyperplanic equations, using alpha-shapes [5].
Alpha-shapes is a Delaunay-triangulation based technique which
provides a linear-approximation to unorganized spatial point-sets.
Different family of shapes can be easily derived based on param-
eter settings of the constant α . We use efficient algorithms [4]
to produce alpha-shapes to outline the shape represented by the
regions of influence of the classes. In alpha-shapes, it is difficult
to determine the best value of α that produces neither too crude
nor too fine a shape for the classes boundaries. To avoid the need
of setting different values of α for different classes, we find the
smallest value (using binary search) such that all vertices of the
hyperplanes either lie on the boundary or inside of the triangu-
lated alpha-shape.

Therefore, the representation of class boundaries as alpha-
shapes contains a set of triangulated facets in case of 3D (or line-
segments in case of 2D) based on the value of α found above.
Regions of influence around classes developed in our work can be
overlapping. In order to understand what exactly causes the over-
lap, we use triangle-triangle intersection algorithms [19] to de-
tect and visualize the overlaps that appear. Once the triangulated
objects enclosing the region of influence around the classes are
formed, the toolkit (which will be described next) allows to detect
and visualize the intersections between different class boundaries
representing regions of influence. To reduce the computational
complexity of finding the intersections, we use fast OpenGL im-
plementation of axis aligned bounding box technique [20]. These
intersections between the triangulated class boundaries enables us
to visualize connections between classes with ease.

3 Interactive Visualization Toolkit
We implemented a toolkit (Fig. 3) as part of our work which

allows users to interact and manipulate the visualizations obtained
from the process described above. This type of interaction is crit-
ical for the search of interesting characteristics about the classifi-
cation model (or clustering technique [8, 9, 11]) used on the la-
beled dataset. The toolkit contains features which allow users to
alter the visualizations based on feedback on different parameter

Figure 3: Interactive visualization toolkit for exploring regions of
influence based class boundaries.

settings for (i) noise threshold, (ii) rBoundary-threshold and (iii)
value of ’k’ in all kNN computations. It presents two different
visualization for regions of influence, (1) using crude presenta-
tion as set of hyperplanes and (2) using triangulated alpha-shapes.
Another interaction technique available in the toolkit is to select a
component of the boundary (a facet of the alpha-shape or a hyper-
plane) and highlight the set of candidate boundary points which
contribute to its creation along with the direction of spread (Fig.
4 (c)). This helps developers of the classification model to rea-
son why certain shape or extent of the class boundary appear in
these visualizations. Users can also extract mathematical equa-
tions of the hyperplanes or facets of the triangulated alpha-shape
to perform further analysis of the classification model.

3.1 Experimental Analysis
We performed experiments on various real and synthetic

datasets using the toolkit to show the effectiveness of our algo-
rithm in handling classes of arbitrary size, shape and density. And
to visualize nature and characteristics of the classifier (or clus-
tering technique) used on the labeled dataset in seperating data
points into different sets. Fig. 4 shows results on 2D dataset (240
instances) containing 2 clusters - red cluster (r), green cluster (g),
generated using flame clustering method [6]. While the proce-
dure of generation of clusters is ’black-box’ to us, we ran our al-
gorithm to generate cluster boundaries. The regions of influence
retrieved from the process shows an overlap (Fig. 4(e)). Points
lying within the overlapping region (marked blue in fig. 4(e)) are
likely to show subset of properties from both the classes and also
suggests there is a possibility that these points were likely to be
incorrectly predicted by the original classifier. While understand-
ing the flame clustering procedure [6], we found that the points
lying in the overlapping region of influence were classified using
local-neighborhood approximation of fuzzy memberships. How-
ever, other points were cluster supporting objects (CSO) with full
membership to represent one cluster. Hence, generation of cluster
boundaries using regions of influence helps us visually understand
the characteristics and nature of the classifier used on the dataset.

Fig. 5 shows results of boundary visualization extended
through region of influence for the 2D dataset consisting of
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Figure 4: (a) Original clustered FLAME dataset. (b) CBS (high-
lighted) of both classes. Circled blue points are filtered as noise
(very low kRNN values) and removed from the dataset as they
possess minimal neighborhood properties. (c) Representation of
regions of influence around red class as set of hyperplanes. (*)
Zoomed version of the squared box in image (c). Based on the
selected hyperplane, toolkit shows the original hyperplane along
with the direction of shift. (d) 2D alpha-shape representation of
class boundaries for both classes. (e) Highlighting only the over-
lapping region of influence and points contained within the over-
lap (blue).

7 uneven-sized clusters (connected via narrow bridges between
them) retrieved from aggregation clustering [7]. However all 7
clusters are of spherical shape but with different sizes, density
and orientations, cluster boundaries based on regions of influ-
ence have different amounts of extension for each cluster along
different directions. This visualization reveals regions where the
connectivity of their influence (inter-cluster relationships) occurs.
There exist minimal overlap between regions of influence of the
clusters suggesting that the algorithm used properly seperates
points into different clusters. [7] demonstrates that aggregation
clustering performs better than any of the clustering algorithms
on this dataset.

We also conducted our experiments on Iris dataset from
UCI repository [16] (Fig. 6, 7, 8, 9). The dataset is 4D
consisting of 150 instances - 50 in each of the three classes,
Setosa (St), Versicolour (Vc) and Virginica (Vg). We performed
principal component analysis (PCA) [10] to reduce the number
of dimensions to 3. As the visualization (Fig. 6) suggests there
exist collisions between the 3D facets of triangulated alpha-shape

Figure 5: (a) Original clustered aggregation dataset. (b) Clus-
ter boundaries bounding regions of influence as a set of hyper-
planes. (c) Cluster boundaries showing only one side of the lin-
ear approximated alpha-shape. Black rings highlight the regions
of maximum connectivity of regions of influence of different clus-
ters.

boundary, hence we performed collision detection algorithm to
capture their counts. The collisions graph (Fig. 6(b)) shows that
the number of collisions between St-Vc were 76 arising from 34
and 42 distinct facets of St and Vc respectively while between
Vc-Vg were 145 arising from 54 and 47 distinct facets of Vc and
Vg respectively. Collisions between Vc-Vg boundary are nearly
double that of St-Vc boundary while arising from similar number
of distinct facets of the alpha-shape suggesting that St class is
well separated with little contact with Vc class, while other two
classes are more connected along their boundary. Using the
toolkit we can interactively explore the points within the classes
causing collisions between their regions of influence. Table 1
shows the processing time taken (in seconds) for the computation
of regions of influence as set of hyperplanes for the experimental
datasets discussed above, with value of rBoundary-threshold=5.

Table 1: Processing time for the computation of Regions of in-
fluence as set of hyperplanes for different datasets (rBoundary
threshold = 5)

Dataset value of k Processing Time (Sec)

Flame 4 1.55

Size = 240 5 1.68

Dimension = 2 6 1.87

Num of classes = 2

Aggregation 4 2.77

Size = 788 5 2.91

Dimension = 2 6 3.22

Num of classes = 7

Iris PCA 4 2.05

Size = 150 5 2.37

Dimension = 3 6 2.83

Num of classes = 3
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(a) (b)
Figure 6: 3d PCA of IRIS dataset. (a) (Topview) All class boundaries (St (red), V c (green) and V g (blue)) as 3D alpha-shapes. (b)
Graph showing number of collisions between classes along with the number of distinct facets of the alpha-shape which caused collisions.

3.2 Evaluating classifiers
Our toolkit can also be used to evaluate the prediction ca-

pability of a classifier using class boundaries based on regions of
influence. We performed repeated random sub-sampling valida-
tion (also known as Monte Carlo cross validation) [18] on Flame
and Iris dataset for different values of rBoundary-threshold. In
each run, dataset was divided randomly into training-set (x%) and
testing-set (100− x)% where x can be specified in the toolkit.
Then,

1. A value for rBoundary-threshold was selected in the toolkit.
2. Class boundaries based on regions of influence were gener-

ated using the training-set for different values for k.
3. For each point in testing-set, (i) its class-label was predicted

based on its orientation and distance with respect to the
trained regions of influence of all classes and (ii) then vali-
dated with its actual class-label.

4. Based on selected value for rBoundary-threshold in step 1,
the toolkit finds and fixes the value of k which provides max-
imum accuracy for all the test points.

These steps were performed for 20 runs with random splits
and average error rates were calculated. Obtained class-wise er-
ror∗ and combined error† rates in making correct predictions of
the points in testing-set using trained class boundaries based on
regions of influence are listed in Table 2. The table only shows top
3 values of rBoundary-threshold with maximum average accuracy
for the dataset split. The data shows that even for the smaller size
of the training-set (x≤ 50) majority of the test points lie within the
region of influence of their class. Different values of thresholds
provide different error rates for the classes due to difference in

∗class-wise error rate are % of incorrectly predicted test points in each
class.

†combined error rat is the overall % of all incorrectly predicted points
in the testing-set.

their topologies in terms of density, size and orientation etc. The
toolkit allows to interactively explore the cross-validation setup to
find optimal values for thresholds such that regions of influence
provides the best estimate to the spread of class boundaries (with
minimal combined error rate) and also highlights the test points
in each class that are incorrectly predicted.

Thus the visualization toolkit presented in this paper enables
interactive classification boundary visualization to explore the
characteristics of classifier used on the dataset.

Table 2: Performance of class boundaries based on regions of
influence for Flame and Iris tested with random sub-sampling
cross-validation with 20 runs for different values of rBoundary-
threshold. Highlighted values in the table shows the minimum
combined error for a setup.

Dataset(*) rBoundary- Class-wise error Combined

threshold (class-label = error%) error%

Flame 3 r = 15.56, g = 4.37 8.50

(25 / 75) 4 r = 6.08, g = 8.30 7.67
5 r = 3.67, g = 10.76 8.39

Flame 3 r = 3.91, g = 7.79 5.67

(50 / 50) 4 r = 2.68, g = 5.24 4.83
5 r = 2.53, g = 6.83 5.91

Iris 4 St = 0.27, Vc = 20.63, Vg = 11.92 15.16

(25 / 75) 5 St = 0.23, Vc = 17.94, Vg = 7.27 9.69

6 St = 0.31, Vc = 15.62, Vg = 5.42 7.88

Iris 4 St = 0.00, Vc = 4.37, Vg = 9.27 7.50

(50 / 50) 5 St = 0.00, Vc = 1.27, Vg = 5.77 3.61
6 St = 0.00, Vc = 2.19, Vg = 4.82 3.89

(*) training / testing(%)
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(a) (b)
Figure 7: Representation of regions of influence around class Setosa (red) using (a) set of hyperplanes and (b) alpha-shapes. The
boundary possess a linear alpha shape suggesting the class is linearly separable from other two.

(a) (b)
Figure 8: Representation of regions of influence around class Versicolour (green) using (a) set of hyperplanes and (b) alpha-shapes.
Since the class lie between two classes, the alpha shape representation of the class encapsulates all the points in the class. The closed
form of alpha-shape is only obtained for this class.
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(a) (b)
Figure 9: Representation of regions of influence around class Virginica (blue) using (a) set of hyperplanes and (b) alpha-shapes.

4 Summary and Future-work
Class boundary visualization based on regions of influence

presented in this paper assists in comprehending the nature and
characteristics of the classification model and visualizing the re-
gions of connectivity between different classes. The visualization
toolkit also enables analysis and evaluation of class boundaries
via interactive techniques. The idea of visualizing the regions of
influence around classes allows us to study the spread of the class
features even beyond tight enclosure of class given by points in
the class. Study of high-dimensional class boundaries is beyond
the scope of this paper. Our intent is to present an interactive vi-
sualization toolkit which would take any type of 2D/3D dataset
(lower dimensional mappings like principal component analysis
[10], multi-dimensional scaling [2], self-organizing maps [13] or
feature projections of high-dimensional data) and provide class
boundaries visualization based on regions of influence. We plan
to provide an interface within the tool to compare and study ef-
fects of these procedures on high-dimensional class boundaries.
We also plan to allow the toolkit to visually compare the type
and quality of different clustering algorithms on a dataset. Future
work also includes effective representation of collisions detected
between two triangulated class boundaries.
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