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Abstract
LiDAR data is a significant resource for identifying similar

geospatial features in urban planning, land use analysis, emer-
gency response, and other applications. Traditionally LIDAR is
analyzed through manual process, which is a very challenging
task due to the need to identify similarities over a growing size
and complexity of data. To alleviate this challenge, we designed
and developed a GPU-powered visual image analytics system to
handle this operation at large scale. Our system encodes human-
freeform-LiDAR selection into 2D images through an autonomous
image analysis process that matches selected areas of interest. To
ensure the system’s practicality in handling hundreds of stitched
LiDAR patches, we have scaled up our algorithms through a se-
ries of parallelized GPU processing, analyzing, and encoding
methods. We conducted informal user studies to assess the utility
and usability of the system.

Introduction
LiDAR, a remote sensing technology, has become a crucial

instrument for us to extract and monitor up-to-date, accurate ge-
ographic information about areas of interests. Professionals in-
volved in a variety of industries and applications (like disaster
management) are increasingly utilizing three-dimensional sources
of information to create photorealistic 3D visualizations, extract
3D features and export products to geospatial tools to help un-
derstand geospatial features in both urban planning [5] and emer-
gency responding [7].

Especially in emergency management and disaster response,
LiDAR presents a more effective data source to locate weak
points. For instance, Kwan et al. [12] used about 50 million Li-
DAR points to identify blockages in the transportation network
caused by Hurricane Katrina. Whereas, Clasen et al. [6] further
examined the potential areas where LiDAR data can be used for
disaster and emergency planning, including understanding how
slope of the terrain affects landslides, analyzing tree maps for fire
disasters, and more importantly finding suitable areas for rescuer
deployment and helicopter landings.

Zerger et al. [21] examined the current technical limitations
with GIS in emergency situations. They discovered that existing
systems were unable to provide details in real-time due to limited
processing power and the size of data. Database queries were
extremely time consuming and unsuitable for real-time planning.

While the utility of LiDAR can be significant, analyzing it
effectively over a larger area still imposes a significant challenge.
Based on our collaboration with North Carolina Department of
Transportation, we observed the following challenges:

• Scale - Due to the nature of LiDAR it can grow exponen-
tially when examining larger spatial regions, at higher reso-

lutions, and at different points in time. The files can be hard
to manage; even loading and viewing them can be a prob-
lem. Collecting different sources of data, processing them
with a myriad of different tools, and converting LiDAR co-
ordinate systems can also be quite time-consuming. Kwan
et al. [12] used a data set of about 50 million LiDAR points,
but they do not mention the scalability of their work and how
quickly it takes to process.

• Interactions - There is a need for being able to analyze and
manage LiDAR data in realtime. Otherwise, it’s difficult to
do comparative feature analysis or disseminate the results to
responders. There is a need for interactive tools for analysis
and searching to solve these problems.

• The lack of searchable content. To be able to fully and ef-
fectively analyze the LiDAR data, the system must support:
finding areas of similar elevation; finding buildings of sim-
ilar size or type; finding road networks and their structures
(e.g., bridges, embankments, ditches, etc.). In addition one
should be able to find special relationships such as roads
near areas of high vegetation; roads near coastal areas.. . .

To alleviate these challenges and make LiDAR analysis more
interactive and effective, we present a GPU-powered visual image
analytics system that processes, analyzes, searches LiDAR data at
scale. Our system encodes human-freeform selection into 2D im-
ages through an autonomous image analysis process that matches
selected areas of interest. By leveraging the ability of users to
create meaning and relationships in the data, our approach be-
comes the starting point for assisting them in understanding these
datasets for a multitude of problems. Our work focuses on how a
user can be helped to identify features and find similar ones via in-
telligent searching amongst millions and millions of LiDAR data
points.

As an example use case a severe hurricane hits a coastal area
causing significant damage as well as changing the coastal land-
scape. Any previous LiDAR data would not be accurate, there-
fore new LiDAR would have to be collected and analyzed. Res-
cue teams would need to find appropriate areas for operations and
safely landing helicopters to provide relief. In order to find such
areas in newly mapped LiDAR data it would take an exhaustive
amount of time. Our process and tools aim to solve these issues
by allowing users to search LiDAR data sets in a free-form man-
ner to find features. First using our process we can analyze any
new LiDAR data sets very quickly using our GPU architecture.
They can then use our visual analytics tool to find the most suit-
able location for their needs.

The rest of the paper is structured as follow: in section 2 we
discuss in depth why we choose to use image analysis and the
benefits of using that approach. We cover the computational and
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space complexity of an image analysis approach. We also discuss
how it ties in with visual analytics and the overall goal of incor-
porating a user’s knowledge to drive the analysis. In Section 3 we
present our method for encoding details from LiDAR data into a
2D image. We discuss the algorithms that we used in the con-
text of GPU computing as a means to accelerate user interactivity.
Our Visual Analytics system is presented in Section 4; we present
use cases an informal user study in Section 5. We wrap up with
conclusions in Section 6.

Related Work
In this section we discuss our motivation for tackling this

problem and why we have chosen image analysis and how that
plays into our larger goal of allowing real time interaction and
analysis of LiDAR data. Since our approach is multidisciplinary,
we cover the recent work in both image analysis with relation to
LiDAR visualizations. For example, Richter et al. [15] examined
a novel use of improving LiDAR visualization using GPU accel-
eration and out of core rendering. Butkiewicz et al. [4] explored
the combination of visual analytics and LiDAR to detect temporal
changes in a city environment. The authors looked at finding the
differences between different time periods of LiDAR data using
the 3D geometry created from a LiDAR point cloud. Using the
computed geometry provided more accuracy than a point cloud
using a grid approach with nearest neighbor and outputting that
as a 2D image. In our approach we create 3D geometry to pro-
vide more accuracy and details, but we return to using 2D images
by encoding the geometry back into an image. We do this for
several reasons that we discuss in Section 3.

Butkiewicz et al. [4] did not mention anything about scala-
bility since they compared unique spatial regions in time and did
not compare any deltas between regions. This resulted in a much
smaller number of overall comparisons. Our approach allows a
user to analyze two different regions regardless of time. The au-
thors concluded that there is still much work to be done in the area
of algorithms for handling issues of matching or issues with users
not being able to define filter metrics. Blaschke et al. [2] surveyed
the existing research in image analysis for remote sensing; they
outlined some of the benefits to using image segmentation.

A lot of work has been done on classification in LiDAR data
and extraction of specific features like buildings, as described by
Hermosilla et al. [10], who utilized image thresholding using two
specific values. The first threshold value is the minimum height of
a particular building and the second value indicates the presence
of vegetation. Their results were quite strong, using image thresh-
olding, but this was only when the thresholding values were ad-
justed to the specific type of environment in the LiDAR data. We
expand on this work in several ways. Firstly, we add more thresh-
olding values by converting a LiDAR point cloud into a RGB im-
age from a triangulated 3D mesh. During this process of creating
a new image from the LiDAR point cloud, we encode high quality
information about unique traits, but more importantly we encode
them in a way that they are properly adjusted so thresholding can
be done more efficiently and with a clearer understanding of the
result. We discuss this in detail in Section 3.

Why Image Analysis?
Our data set consists of about fifty Digital Surface Model

(DSM, ground elevation plus all features, such as buildings, on

Figure 1. Timing results using three different metrics. The first is a sin-

gle thread CPU implementation. The second is a multi-thread CPU imple-

mentation. Lastly, is our implementation with a GPU. The benchmark was

performed on a 3.5 GHz 6-Core Intel Xeon E5, and a GTX 960 Nvidia GPU.

it) LiDAR patches along the coast around Wilmington, NC. Each
patch is made up of X, Y, Z locations that denote the geographical
position and the elevation of the terrain at that position. Each
patch in the data set contains between 1 million and 4 million
points. In total we have approximately 100 million points.

To ensure the real time interaction and analysis of LiDAR
data, we turn to research in image analysis. Primarily, we utilize
image analysis to handle both the space and time complexity of
LiDAR data and automation. Image analysis allows us to search
very quickly amongst massive data sets.

We are also using image analysis because the area of digital
image processing/computer vision is well-established with good
techniques for handling images and finding unique features. Since
we compute the resulting image this allows us complete control
over the output making image analysis an even better choice.

Space and Time Complexity
LiDAR data is complex and very large. So doing real-time

interaction can be difficult. But, converting the data to an image
and rendering it makes it easier to handle. Using images is also
a great means of storing the resulting data after processing. In
most cases the resulting image is dramatically smaller in memory
footprint than the original LiDAR data used to produce it. We are
essentially compressing the original data while adding even more
information.

Using our data set we have multiple raw patches with four
million points. The memory footprint of one of those patches is
about 200MBs. Converting it to an image not only adds more
information but dramatically decreases the size by almost a factor
of one hundred to 2MBs through the use of lossless compression.
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Since the image size is fixed that means it will scale very well.
We ran three benchmarks using different core combinations

to evaluate the scalability and performance of the algorithm for
use in interactive applications in figure 1. To tightly control the
benchmark tests we used the same LiDAR patch, containing ap-
proximately one million points and had the application load it
multiple times based on the number of patches being tested.

Automation
Automation is an important tool in analyzing large data sets

because it helps a user focus on what matters. It delegates the
complexities and challenges of the data to the computer, while let-
ting a user focus on the decision making process. Semi-automated
techniques while quite useful still require lots of existing data and
training sets to get meaningful results. This can be time consum-
ing not just in teaching a system, but collecting the data in the first
place. Current work in deep learning used for recognition requires
millions of tagged images in order to effectively train a model.

We achieve automation by intelligently selecting specific
values so that we encode enough information at each pixel. The
better the information we can encode into the resulting image the
more accurate results we can achieve. We encode high quality
sources of information, then we can use image analysis techniques
to quickly compare different sections without requiring user train-
ing.

Algorithm and Methods
In this section we will detail the overall design and methods

we used for our system. The first part covers how we encode
unique details into an image, what those unique values are, and
how we calculate those unique values. The second part covers
the actual system implementation and the technologies we use to
build the system.

Process and Encoding Values
In this section we detail the process of taking a LiDAR point

cloud and transforming it into a custom image with specific RGB
values in which we have encoded unique details. The first step of
the process is taking the point cloud and generating a triangulate
continuous mesh using Delaunay triangulation. We then compute
specific values using these triangles. We used prior work done in
visually encoding unique attributes from [17], Composite Density
Maps for Multivariate Trajectories. This paper developed a flexi-
ble architecture for visually analyzing attributes that might reveal
patterns. The authors were able to easily modify and calculate at-
tributes and composite them into images in order to find unique
patterns. In our work we propose three attributes that we believe
were the most helpful in our analysis use cases, but the system is
flexible enough that additional analysis techniques could be intro-
duced or added to provide a new dimension of understanding or
pattern analysis. Along a similar thread Kewei et al. [13] devel-
oped a statistical method for calculating a descriptor for stream
lines and vector fields in order to do clustering and comparisons.
For our work we propose a method by which we vectorize cer-
tain properties of LiDAR data in order to create an image while
encoding more information. Another approach by Thompson et
al. [19] developed a new representation called hixels that provided
a compact and information rich format, but added scalar-value un-
certainty. We use pixels as our storage medium to provide a more

compact form and easy to use with image analysis techniques, but
in doing so it does provide some uncertainty by utilizing a scalar
values.

As part of our implementation we process and load each
patch independently. To do this efficiently, we must manage the
data in parallel fashion using OpenCL/OpenGL and other high
performance technologies. We’ve placed all of our visual encod-
ing operations onto the GPU using a GPU quad tree with a mixed
approach using spatial hashing for our specific problem. As we
discuss later we do this as part of the analysis step to save mem-
ory and computation. We begin by constructing the quad tree and
spatial hash of all the triangles within the mesh. After we have
completed this operation we pass these parameters into the GPU:
triangle indices, vertex positions, vertex color, quad tree, hashed
cells, and visualization parameters. Due to the synergy between
GPU computation and rendering technologies we send all this in-
formation together because we can then instantly render the tri-
angle data with the computed color data since it already exists
on the GPU. This saves a significant amount of time due to the
slow nature of copying data to and from system memory to GPU
memory.

Quad Tree/Spatial Hashing Construction
We use a mixed approach combining spatial hashing with a

quad tree. We start off as usual recursively subdividing triangles
in 4 quadrants storing each quad in a heap array for direct inges-
tion by the GPU. Once we subdivide to a point where a quadrant
contains 20 or less triangles we stop. Since GPU languages are
C based we had to be very careful with how we represented data
on the GPU. Memory is limited and there are limits to the size
of buffers that can be allocated, so large amounts of data can’t be
crudely stored. [9]

At the 20 triangles or lower point a spatial hash cell is created
that contains an index to each of those triangles from the global
list of triangles. Then this cell is added to a global array and the
index of its location is stored in that leaf quadrant. This produces
an in order heap of just the triangles collected in the cells based
on the leaves in the quad tree. As the recursion cycles back from
the leaves to the root, a cell index range for each quadrant is built.
This is possible because the leaves are in order. So at any given
quadrant in the tree all the triangles can be accessed in roughly
in roughly O(n) time because everything is indexed into an array.
We use 20 triangles as the cut off point for a spatial hash cell be-
cause there is some memory overhead to maintain each cell. Since
GPUs are limited in memory we chose this cut off point specif-
ically for our setup. Lowering the cut off point would decrease
the computation time since each triangulated patch is on the or-
der of a few million triangles, but it would increase the memory
overhead.

Local Normalized Elevation
We compute the normalized height of each vertex of each

triangle based on it’s surrounding triangles. This allows for very
easy comparison of a specific region of the resulting image with
any other area in the image. Computing the normalized height is
the hardest part of all the values we encode. Since we are normal-
izing the elevation to values between [0.0,1.0] it is very sensitive
and difficult to quantify if there is a gradual slope in the terrain.
For example suppose there are two buildings with the same height
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at two opposite ends on a LiDAR tile and there is a gradual slope
in the terrain between them. Normalizing the elevation will result
in one building being drastically higher then the other when both
buildings are the same height.

Our work focuses on using just DSM LiDAR. We do not di-
rectly calculate the DTM (that is, the ground terrain surface with-
out buildings or other features) from the LiDAR data to create
the nDSM (normalized digital surface model, or the elevation of
all objects on a flat surface) It is calculated by finding the differ-
ence between DTM and DSM. Doing so would require another
computational step and require more memory. Instead we do nor-
malization as part of the analysis process. We looked at several
approaches. The first was the normalizing approach described in
the previous paragraph, but this produced undesirable results. As
mentioned buildings of the same height were being miscalculated
due to variances in overall elevation. The second approach was a
brute force comparison using a defined radius to find nearby tri-
angles, but due the massive size of the data this operation was ex-
tremely slow and far from ideal. The third approach was sampling
a large set of random triangles. This approach actually produced
decent results and was quite fast, but it did not always work.

We then explored using a quad tree and using the minimum
and maximum of the leaf nodes in the tree. This worked, it was
fast, but it did not handle cases of very flat areas. For example our
data covers a coastal region with a wide mix of elevation types
from water to downtown cities. The normalized elevation for the
water areas was heavily miscalculated. To fix this issue we in-
clude one more step. In order to account for variances in gradual
terrain slope we use a statistical approach to measure the vari-
ance compared to the minimum and maximum elevation of the
entire LiDAR patch. We do this by first selecting a specific trian-
gle and iterating to the lowest quadrant containing it in our quad
tree. If the variance in elevation does not meet a specific deviation
from the elevation of the entire LiDAR patch then we step up in
the quad tree to the parent and do the calculation again until we
eventually get to a quadrant that contains enough variance. This
iterative approach is similar to the method described in [8], but
instead of iteratively using smaller and smaller windows we use
the quad tree to find the best defined area for normalization.

The normalized height is the single most crucial value that
we encode for doing any analysis. It also drives the rest of the
values we encode. Since we select a region with enough statistical
variance in elevation we use that region to calculate any compari-
son analysis that we encode. This value will eventually be stored
as the red channel in our final rendered image.

Surface Normal and Slope
The surface normal is the vector of the plane created by the

triangle. We have to encode this three dimensional vector to a one
dimensional value. We do this by taking a uniform directional
vector and compute the dot product of it and the surface normal.
This creates a one dimensional value between 0.0 and 1.0 that
gives us the slope of the surface. This calculation is the same
as computing the light intensity on a given surface using a direc-
tional light. The idea is straight forward any surface with a steep
slope with relation to the directional light will have lower inten-
sity. Computing the slope of the surface allows us to very easily
distinguish steep surfaces like buildings and trees. This value will
eventually be stored as the green channel in our final rendered

image.

Navigation Mesh and Drive-ability
During our initial work for determining values, we found it

difficult to detect a road network using all the previous methods.
Our initial analysis was for LiDAR patches in coastal regions. We
found that due to the nature of the elevation of the ground, very
minimal building placement, and vegetation it can be difficult to
reliably detect roads from some types of LiDAR.

One option is to use existing road vector maps; while this
would produce the best results it is not always feasible. The points
in time when the LiDAR was collected and when the road vector
maps were created can be different. Analyzing the differences
between different periods in time, especially in rural and under-
developed areas would require collecting older road vector maps
and might not be possible in all cases. We wanted a consistent
solution based on the LiDAR itself.

The solution we explored was generating a navigation mesh
based on the geometry of the resulting triangulated LiDAR
data [11]. We explored navigation mesh creation using an image-
based approach with LiDAR in [1]. But, the work they presented
was done in city landscapes and there is no mention of rural envi-
ronments or any such results. In addition, most navigation mesh
research aims to produce a simplified graph network for perform-
ing path planning. Our goal is not to produce an optimized graph,
but to create an estimation metric for determining a road net-
work. Therefore, we are not concerned about the complexity of
the graph since we have no plans to perform path planning.

We use our GPU computing workflow to complete this pro-
cess. The first step operates on all the triangles independently
in the 3D LiDAR data. It finds the best node size in the quad
tree to perform the local normalized height. It calculates the local
normalized height for that triangle, the dot product of the surface
normal with a directional vector, the area of the triangle. Lastly
it flags the triangle with a single bit value if it fits the criteria for
being drive-able. As part of the navigation mesh creation process
we discard triangles with surface normals too steep for a road. We
also discard triangles that are too small for a car to pass on.

We use the quad tree nodes to estimate a navigation mesh.
Areas of high elevation change will most likely not have suitable
geometry for connecting together into a navigation mesh, there-
fore we can minimize our search within those nodes and limit the
amount of computation that has to be done. In order to compute
an estimated road network we use a modified kernel density esti-
mation using the quad tree as the range in which to do the local
search and each triangle as a cell. In the local search we deter-
mine how many driveable triangles are connected with a particu-
lar triangle to form a continuous path. This process runs on each
triangle in the mesh in parallel on the GPU. Since most of the cal-
culations performed are vector operations the GPU is suited well
for this task.

This results in an estimated network that a car can physi-
cally drive on. While not completely accurate, it estimates a reli-
able road network that can be easily encoded into an image that is
based on the LiDAR data itself.

Image Analysis + Search
After processing a LiDAR patch and calculating the encoded

values, we store each attribute as a color for each vertex of each
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triangle in the triangulated mesh. We then use this color data and
render the triangulated mesh to an image. The encoded values
represent each color channel in the image. The red channel con-
tains the calculated normalized height of the 3D geometry. The
green channel contains the dot product of the normal for the 3D
surface and a static directional vector. Lastly the blue channel
contains an approximated road network. As part of the rendering
process we use a fixed orthographic projection and scale across
all the LiDAR patches to maintain a constant pixel to meter ra-
tio. For the purpose of our work we constrain the image size to
2048x2048 pixels using 72 DPI and a bit depth of 24 RGB. In this
case we chose a bit depth of 24 while this gives us up to 16 mil-
lion different color combinations in some cases this might not be
enough detail. This flexibility allows us to control many aspects
of the image and the memory footprint. If we are trying to process
and analyze large numbers of LiDAR patches to where storing all
the resulting images would require too much space, we can adap-
tively reduce the size of the image through either the bit depth or
image size. If we want to compare just a few patches and there is
ample space, we can increase the image size and bit depth to give
more accuracy.

Once a set of LiDAR tiles has been converted to images they
can be used to search using image analysis. We use techniques
that have already proven very effective and they are extremely
fast. The first step of our process is using image segmentation
through thresholding. This initial phase can be done extremely
quickly on a GPU and it instantly isolates regions that share sim-
ilar values with a region a user is looking for. The entire goal
of how we encoded attributes into images was for this step of
thresholding. The process of encoding values into the RGB spec-
trum had to be meticulous because thresholding is very sensitive.
The next step after thresholding is boundary analysis and blob ex-
traction we also perform this on the GPU in order to achieve the
up-most speed in searching. We perform blob extraction through
marching squares [14]. The marching squares algorithm is em-
barrassingly parallel and fits well into our GPU workflow. Lastly
we calculate an image histogram for each blob to further analyze
later. Each histogram for each blob can also be calculated on the
GPU depending on the size of the blob. We combine all of these
steps into a continuous process whereby we keep as much infor-
mation as possible on the GPU to minimize data transfer from
host to device and vice versa. This allows us to very quickly find
results from searches on very large datasets in realtime. Using a
similar hardware setup for the encoding process and 1024 x 1024
image sizes we are able to search approximately 52 processed Li-
DAR patches per second.

Application
In this section we describe the visual analytics tool that we

have developed using our techniques. In order to do searching
and finding we use thresholding and image segmentation. A user
first makes a selection for some type of feature (for example a
building). We determine the most frequent color in that user’s se-
lection. Using this RGB value we then threshold all existing pro-
cessed LiDAR images. Since we have encoded meaningful infor-
mation into the processed images, using thresholding is a highly
effective technique for finding areas of similar value based on the
user’s selection.

Figure 2. One of the coordinated views. This view is the global view that

shows a heatmap weighted by the similarity of the results. It also shows the

bounding box for the the zoomed in detail view.

Figure 3. One of the coordinated views. This view is the zoomed in de-

tail view that allows users to make selections. The blue rectangle is a user’s

selection over a building structure to search for similar features. Higher inten-

sities of red indicate areas of higher elevations. Higher intensities of green

indicate steep slopes. Higher intensities of blue indicate areas less likely to

be roads.

Interface
We present to the user two coordinated views. We followed

the guide lines for Multiple View Coordination in [16]. One view
is a global fixed view that provides a complete overview of all the
LiDAR tiles in figure 2. The second is a zoom in detail view that
allows a user to navigate around and zoom into specific areas in
figure 3. Together the views are connected. In the global view
a bounding box represents the view bounds and position of the
zoomed in view. Below the coordinated views is a scatter plot that
displays all the similar feature results calculated from a selection
in figure 6.

Interaction and Analytics
We provide the user with two selection tools. The first is a

bounding box selection and the second is a lasso tool that is sim-
ilar to what is in most image editing software applications. Once
a user makes a selection we isolate that part of the image and run
modified k-means clustering on the selection to extract the four
most dominate colors as well as the radius of the clusters that we
use to control the range of thresholding. Due to its nature k-means
does not produce the same results each time by choosing random
seeds. This is significant because thresholding is very sensitive to
small changes; different clusters from the k-means could result in
quite different results. We explored solutions presented in [20].
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Figure 4. The detailed list view, which shows the sorted results of a search.

Each cell contains a ranking and an image of the feature that was found.

Figure 5. The detailed feature view, which shows the histogram comparison

and the bounds comparison. Below it shows a detailed break down of the

histogram for that feature. At the top is a locate button that allows a user to

locate the feature directly in the LiDAR patches.

Figure 6. An example scatter plot showing a selected subset of data from

a search. The subset of data selected is represented by the highlight green

points. The points in grey are unselected and filtered out.

Figure 7. Histogram comparison function.

Ultimately to fix this problem we ended up seeding each cluster
using the same values each time based on the RGB channels. This
produces the same results each time for the same selection.

Using each color we threshold the image using the GPU to
speed up the process. Then we run boundary analysis and blob
extraction. As previously mentioned we perform these operations
on the GPU as well using marching squares. Each blob is then
further analyzed and compared to the original selection through
a histogram comparison and a bounds comparison. We plot each
feature that is found in a scatter plot.

Along the x axis we plot how similar in width and height a
specific feature is. A value of 1.0 would mean the feature is ap-
proximately the same size. A value of 2.0 would mean the feature
is approximately twice as large as the user’s selection and a value
of 0.5 would mean the feature is about half the size of original se-
lection. Along the y axis we plot the histogram comparison. We
compute this value by creating a color histogram for the original
selection and all of the results found. We then use the function in
Figure 7 derived from OpenCV [3] to compute the correlation be-
tween two histograms. This metric ranges from 0.0 to 1.0 based
on correlation. where 1.0 means the feature and selection have
strongly similar histograms.

Within the scatter plot we display the max, mean, and min-
imum values from the resulting analysis. We also allow users to
filter results further by sliding adjustable clipping lines that nar-
row results.

Any selection made in the scatter plot is then reflected in the
detailed list view in Figure 4 and the global view in Figure 2. We
used prior techniques to visualize spatial uncertainty that we have
found effective in [7]. We incorporated glyphs to represent how
similar a feature is to a user’s selection. The glyph is represented
as a circular ring that is added on top of the global view. The more
complete the ring is the higher the similarity exists between that
feature and the selection. A user can then further click on this
glyph in the global view to reveal a detailed view of the feature in
Figure 5.

We also incorporated a heatmap to quickly visualize hotspots
as seen in Figure 2. We use a kernel density estimation that is
weighted using the histogram similarity. In this way users can
quickly focus on regions with the highest similarity of results.
Lastly, we provide a concentrated list of the narrowed results from
the scatter plot ranked by similarity in Figure 4. From this list
users can select a specific feature that was found and visually ex-
amine it in Figure 5. They can locate it directly from the global
view to find its origin. Also a user can create a new search using
that feature to further refine what they are looking for.

Case Study and Results
In this section we discuss the case study we ran and details

of the three different tasks performed by participants. As part of
our case study we followed previous methods described in [18].
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We selected 10 participants for an informal evaluation of the tool
having them complete 3 basic tasks that focus on the visual ana-
lytics portion of our application. The participants in our evalua-
tion were equally balanced between male and female. Their ages
ranged from college age to senior citizen age. The professional
background of our participants also covered a wide range from
engineering to medical professional.

We set up three tasks ordered as to how a prospective user
would use the application. In the first task we focused on discov-
ery, exploration and selection. In the second task we took the prior
selection from task 1 and built upon it by asking the participant
to analyze the results of their selection. This included evaluating
the spatial analysis results and detailed results. In the last task we
asked participants to use the interactive tools to further drive the
analysis by narrowing their original selection and analyzing the
results from those interactions.

At the end of the session we followed up with participants
with a questionnaire of 12 questions, 3 for each task and 3 detail-
ing the overall usage of the tool. Each task had 3 questions with
numerical scales to rank a particular sub-task. The final 3 ques-
tions ranked the overall learning experience and ease of use. The
questionnaire also included a descriptive question asking which
feature or function was most helpful to accomplish a task.

Task 1
In the first task we covered navigation and zooming as well

as the use of the box and lasso tool. Initially we asked participants
to navigate and focus on a particular building. We located for
them on the global view a particular area of interest and asked
them to navigate and focus on that region. We wanted to measure
how easy it was for a participant to pick up the application and
navigate to an area of interest. Secondly, we had them use both the
box and lasso tool to make a selection around the area of interest.
These two operations are the core of initiating the analysis of our
tool so being able to very quickly navigate to areas of interest and
make selections is vital to the analysis. All of the participants
highly ranked the ease of use for navigating and focusing on a
particular region.

Task one result averages, ranked from 1 to 7. 1 being very
difficult and 7 being very easy.

How easy was it to use navigating and zooming 6.5
How easy was it to use the box selection tool. 6.625
How easy was it to use the lasso selection tool. 6.125

Task 2
In the second task we had participants analyze the results of

their prior selections from task 1. We first started by asking them
to read from the scatter plot of results and detail for us the over-
all metrics of the results. This included identifying the complete
range from the smallest result returned to the largest, as well as the
least similar result to the most similar. We also asked them to tell
us what the mean value was for each metric. The goal of this task
was to get participants to analyze the results of their selection by
evaluating the results returned in the scatter plot and doing visual
analysis. As part of the visual analysis we had participants use the

heatmap to locate regions and then had them perform basic inter-
action with the annotations to find results with spatial context.

We asked participants to use the heatmap overlay to tell us
where there are areas of similar features. We then had the par-
ticipants navigate to those areas. Next, we asked participants to
switch from the heatmap overlay to the annotation overlay. We
then asked participants to select one of the annotations in the
global view in the region they had just navigated to and exam-
ine the result.

As part of our evaluation we had participants rank the ease of
use in using the scatter plot, understanding the scatter plot results,
using the heatmap and interacting with the annotations. All of
these subtasks were ranked highly for ease of use and understand-
ing. The heatmap function was also listed as the most helpful
function for accomplishing tasks.

Task two result averages, ranked from 1 to 7. 1 being the least
helpful/intuitive and 7 being the most helpful/intuitive.

How intuitive was the scatter plot and under-
standing the results.

5.875

How helpful was the annotation overlay in ex-
amining results.

5.625

How helpful was the heatmap in locating re-
sults.

5.75

Task three result averages, ranked from 1 to 7.

How easy was it to locate buildings of similar
size

6.0

How helpful is the detailed list of ranked results. 5.625
How easy was it to locate a result on the map. 6.25

Task 3
In task 3 we asked participants to use their prior selection

from task 1 to narrow down the search results to find buildings of
similar size with the most similarity to their selection. We then
asked participants to locate the top three similar features for us on
the map using the detailed results table. This final task built upon
the two previous tasks by first requiring navigating and selecting
a region of interest. Then, from task 2, the participant analyzed
the overall results of their selection in both the scatter plot and
spatially.

We started by telling participants that we wanted to find fea-
tures within a specific size range with the most similarity. This
required the participants to interact with the scatter plot results by
filtering out all the results below and above certain values, in this
case to find features of a certain size and with the most similarity.

Once an interaction occurred in the scatter plot, it is updated
to the detailed results table that sorts all the results based on their
similarity metric. Participants then used this table to select the top
three features that were most similar. Using the detailed view they
were able to then locate and point out where these features were
on the LiDAR patches.
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Future work and Conclusion
We will start first by discussing the shortcomings. During

our research we very quickly discovered that there is no single
method for solving our problem; it is multi-faceted. One of the
key areas of our method is encoding values. Since our encoded
values are based on a triangulated mesh any artifacts or errors
produced by the triangulation will percolate into the analysis. If
the values are too ambiguous and do not provide enough detail,
then trying to do further analysis or extracting other features is
extremely difficult. We discovered this in trying to extract a road
network. The encoded values we were using were too ambiguous;
we had to come up with another metric and therefore we chose to
use a navigation mesh. We also recognize that our solution is
not a complete solution for all possible use cases for analyzing
LiDAR data, but we believe that our approach is flexible enough
to incorporate new analysis techniques that can be embedded into
the final encoded image.

Overall for all three tasks, we received strong positive rank-
ings on the follow-up questions we asked. At the end of the ques-
tionnaire we asked three general questions about the overall sys-
tem. The first question asked participants to rank the ease of use
for the application. The second question asked participants how
similar they thought the results were to what they had originally
selected. Last, we provided an open-ended question asking par-
ticipants what they thought was the most helpful feature. We re-
ceived high ranks from our participants for the overall ease of
use in using the interface, carrying out the tasks, and understand-
ing the analysis results. The participants also thought they results
they found were very similar to what they had originally selected.

Final question result averages, ranked from 1 to 7. 1 being the
worst and 7 being the best.

How would you rate the overall ease of
use of the interface.

6.0

How similar do you think the results are
from a selection.

5.625

What was the most helpful function. Heatmap

As we mentioned in our prior work section, previous work
done in this area found thresholding to be extremely accurate and
efficient for these types of tasks. But it was prone to user input
error, it required fine tuning the thresholding values, and only op-
erated on two thresholding values. We have improved upon these
issues by first removing user input error. The range that is selected
for thresholding comes directly from the user. We allow them to
extract this information from the processed LiDAR tiles them-
selves using a modified k-means algorithm that we discuss later
in the application section. By using the processed data as input
to search any existing processed tiles we can control for any user
input errors in searching. This also solves the second issue of fine
tuning the thresholding values. Using a k-means algorithm we
are able to select the best range to use for thresholding. We have
added another dimension of detail to do thresholding, but more
importantly we have meticulously performed pre-processing and
analysis on the LiDAR tiles to generate high quality information
that has been encoded into the image. Lastly our process is flexi-
ble in that many variables can be changed to account for specific

use cases. The image size, bit depth, and the encoding processes
of mapping information to the RGB channels in the processed im-
ages can all be modified to fit certain criteria.

We explored the possibilities of using machine learning for
classification and matching, but ultimately that required an ex-
tensive training set of data. The goal of our effort was to find a
scalable, unsupervised approach that leveraged human analysis in
an interactive tool for large data sets. Our solution is not bullet
proof and is not immune to false positive results being generated,
but that is where we bring the user in for understanding.

As future work we see this being a great addition to the tool.
Allowing the user to remove bad matches and refine a data set
based on his or her selection. We see potential in machine learning
to utilize these selections made using the application that would
allow for easy tagging and filtering. As the system is used it can
learn more about what a particular user is looking for and con-
tinually build up a repository of knowledge that can be applied to
later analysis or future predictions. In this way the tool could be
a means by which a data set is created that could be used for deep
learning.

Due to the nature of LiDAR it can grow exponentially when
examining larger spatial regions and different points in time. The
size of LiDAR datasets keeps growing. Sensors are collecting
more and more data. The files can be hard to manage; even load-
ing and viewing them can be a problem. It can be time consuming
collecting different sources of data, processing them with a myr-
iad of different tools, and converting LiDAR coordinate systems.

In this paper, we present and discuss a concept and the im-
plementation of a system that is capable of analyzing and visu-
alizing LiDAR data in real-time. We also tackled three major is-
sues: scalability, interaction, and the ability to search effectively.
LiDAR data by nature can be massive, hard to manage, and visu-
alize. We utilized GPU computing and image analysis to achieve
our goal of real-time interaction and analysis. As part of our GPU
processing step we independently analyze each patch of LiDAR
data to encode values into a 2D image.

We implemented our concept into an interactive visualiza-
tion tool that allows users to easily and efficiently explore, find
areas of interest, and analyze those areas. We incorporated sev-
eral interactive tools for managing and organizing the data. Using
the tool we ran an informal case study evaluation our system with
10 participants. Each participant performed a series of tasks that
examined how easy the system was to use in navigating, explor-
ing, and selecting areas of interest. Next we had each participant
analyze the results of their selection through the use of a scatter
plot and spatial analysis. In the last task we had participants iso-
late the data looking for specific features. Overall the participants
for each tasked ranked the system very well. They found it re-
sponsive, easy to use and understand. They were also confident
in the ability of the system to return similar results. Through the
results and efforts of our work we believe we have accomplished
what we set out to originally do.

This work was supported in part by the U.S. Department of
Homeland Security VACCINE Center under award no. 2009-ST-
061-CI0002.
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