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Abstract
With the increasing availability of data from various do-

mains such as health care, finance, social networks, etc. there is a
need to provide analytic tools that are more accessible to lay peo-
ple. In this paper, we present a software tool which can be used to
aid inexperienced users in understanding high dimensional data.
To facilitate the understanding of such data, we place special em-
phasis on how the data is presented, using the “Three Experts”.
The Three Experts display shows the results of three different di-
mension reduction techniques, similar in notion to seeking several
expert opinions on a particular topic. This will help the user to
discern between pertinent structures in the data, and those result-
ing from distortions inherent in dimension reduction. The second
emphasis is on providing the ability for users to insert and manip-
ulate new points within the data, as well as observe high dimen-
sional trajectories to convey positional displacement of points.
Observing these changes will enable the user to develop an ac-
tionable intuition for the data in question. These methods could
be used in any field where high dimensional numeric data needs
to be analyzed, with potential benefits for both novice and expert
users.

Introduction
The continued proliferation of complex data sets across vari-

ous domains has created a demand for both automatic and human-
in-the-loop methods that can be used to extract actionable infor-
mation. As the amount of accessible data continues to increase,
so will the demand for new and improved methods with which to
process this data. For most high-dimensional data sets, domain
experts can make use of various software tools which enable the
observation, inspection, and analysis of such data. Visual data
mining tools with interactive presentation and query capabilities
allow domain experts to quickly examine complex data by inter-
acting with multivariate visual displays. In addition, researchers
are realizing that visual feedback has a role to play in the data
mining process, as well as the analysis of the results. The abil-
ity to create a good mental model of how high dimensional data
is structured is essential if end users expect to develop a sound
understanding of the data. Unfortunately, many of these software
tools are intended for use by professionals who are likely already
familiar with high dimensional data. However, there are many sit-
uations in which users, who are otherwise unfamiliar with high
dimensional data, could benefit from exposure to, and exploration
of, such data.

In this paper we present a software tool designed to help
make high dimensional data understandable to users who are in-
experienced or unfamiliar with such information. This is done by
providing a simplified visual analytics platform to enable explo-
ration of, and interaction with, a particular data set in a controlled

fashion. There are two novel aspects to this software: the “Three
Experts” display and the ability to insert and manipulate new data
in a directly observable way.

The Three Experts display provides the user with three views
of the data. These views show the differing results of three dif-
ferent dimension reduction techniques. Because a user may not
be familiar with high dimensional data, much less dimension re-
duction techniques, these views are meant to act as ”expert’s in-
terpretation” of the data. Most feature extraction based dimension
reduction techniques work by emphasizing some measurable re-
lationship between points to transform the data into a form which
can be represented using fewer attributes (dimensions). However,
because of this transformation the resulting data may exaggerate
particular features, while understating others. So while the overall
structure of the data will remain intact, there will likely be some
features which are unique to the particular transformation used.
By comparing the Three Expert views, a user can quickly be-
come cognizant of which features (such as groupings, spacings,
or outliers) are consistent among the views, and which are not.
While a user inexperienced with high dimensional data would be
more concerned with consistent overall structure, an knowledge-
able user will be able to identify smaller features indicative of data
worth further investigation.

The second important aspect of the software is the ex-
ploratory features made available to the user. These exploratory
features allow the user to gain an intuition for the data by directly
observing the effects of their interactions through the dimension
reduction techniques. To this end, the user is able to create a
new data point, based on attribute values specified by the user.
Once created, the user can observe the new point’s position within
the data set. In addition, the user can view the movement of this
unique point resulting from manipulation of the point’s attribute
values. Finally, the user is also able to create trajectories which
help to show the changes necessary to re-position a point.

The main motivation for this research is in the field of health
care. Such a system could enable doctors and patients to deter-
mine potential courses of prevention or treatment of a condition,
based on the specific attributes of the patient. Moreover it would
allow a patient to view their position, as a new point based on
their unique attributes, relative to others with a similar condition,
spanning a range from afflicted to healthy. The user can then ma-
nipulate attribute values, which represent aspects of their health
and lifestyle, and see how these changes affect the position of
their data point relative to the original data set. Furthermore, by
using the trajectory feature, the patient would be able to observe
the combination of changes necessary for them to reach a targeted
desirable state of health.

The remainder of the paper is organized as follows: Prior
work done in several related areas is discussed in section 2. Sec-
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tion 3 discusses the main interface design considerations and pro-
vides an overview of the software. Section 4 offers a short case
study by demonstrating potential usage with a well known data
set. Section 5 addresses some shortcomings as well as areas for
improvement, and section 6 provides concluding remarks.

Previous Works
Humans are not directly capable of visualizing information

or structured objects in more than three dimensions without some
form of abstraction or manipulation. In an effort to overcome this
hindrance much research has been done to make higher dimen-
sional data visually perceivable and understandable. The use of
glyphs [1] can be used to provide a notion of higher dimensions,
but are imprecise and only serve to convey a few additional di-
mensions. Techniques such as parallel coordinates [12] and star
coordinates [13] work reasonably well but can suffer from clut-
ter and compaction when a larger number of dimensions is being
used. Scatterplot matrices [3] are another viable alternative, but
they too can become unwieldy with a high number of dimensions,
especially to a novice user.

When dealing with high dimensional data (as opposed to
structural objects or shapes), the high number of attributes can
make working with, or visualizing, the data an unwieldy and re-
source intensive task. It should be noted that the term “attribute”
is representative of a corresponding dimension within the data. To
transform the data into a more amicable form, some form of di-
mension reduction is often used. Sometimes this involves feature
selection, where selected features are kept while others are ex-
cluded, creating a subset of the most indicative attributes. Another
form is called feature extraction. As the number of dimensions
increases, so does the likelihood for measurable relationships be-
tween the various attributes.

Many such dimension reduction methods exist [2] [8]. Each
method is designed to take into account some particular measur-
able aspect of the data in question, and are often better suited
for particular kinds of data. Our current software implementa-
tion makes use of Principal Component Analysis [6], Independent
Component Analysis [4], and Multi-Dimensional Scaling [14],
which are discussed further below. However, regardless of the
method used, some aspects of the data will be emphasized, while
other will inherently be lost. The meaning of the emphasized and
lost information depends on the particular method used. With our
software we hope to provide a straight forward method to high-
light these discrepancies by providing a visually qualitative com-
parison.

There are many software packages available which facilitate
visual data analysis for high dimensional data. Examples of these
include Tableau [18], Microsoft Business Analytics [16], ggobi
[9], and XmdvTool [5]. Research in how to effectively visualize
and interact with high dimensional data is still ongoing. For ex-
ample, “ClusterSculptor” by Nam et.al. [17], which allows for in-
teractive tuning of clustering parameters, principal components,
and other aspects of the data. Another method, called Visual
Hierarchical Dimension Reduction (VHDR) [20][19], works by
grouping similar dimensions to create a hierarchy. Lower dimen-
sional spaces can then be produced based on the clusters derived
from the hierarchy. Throughout the process the user is able to
modify most steps of the process if desired. However, these sys-
tems do not allow for the insertion and interaction with user spe-

cific data points, nor do they provide an interactive way to show
the changes necessary to displace various points within the data.

User Interface Design
The main goal of this project was to create an interface which

will enable an otherwise inexperienced user to gain an intuitive
understanding of high dimensional data. To achieve this requires
the proper balance of exposing the user to the complexity inher-
ent within the data, and taking care not to overwhelm them with
intricate details. The user will likely not benefit from exposure to
the procedures used to process and present the data. However, if
the user is to gain an actionable intuition for the data, controlled
exposure to the defining aspects of this complexity is imperative.
Finding the appropriate balance between shielding and exposure
is what makes this task challenging.

With this in mind, we formulated the following functional re-
quirements as necessary to properly facilitate the exploration and
interaction with of high dimensional data. These requirements
are a) provide three visual interpretations of the data, each us-
ing different dimension reduction techniques; b) show the relative
distributions of the data on a per attribute basis; c) allow the cre-
ation and modification of new user specified data points; and d)
allow the creation of trajectories to demonstrate the changes nec-
essary to displace a point from its current position, to a new user
specified target position. These four functional requirements work
together to enable controlled exploration of, and interaction with,
the data. Each helps provided information about the salient fea-
tures of both the individual attributes, and the data set as a whole.

Figure 1: The basic software architecture. Black lines indicate
the data flow within the program, red lines indicate user selections
(dashed lines are optional), and blue lines indicate modifications
to the data set. The data is processed using three dimension reduc-
tion techniques, which are displayed as three “Expert Interpreta-
tions”. The user has three forms of interaction: Point selection,
which is linked to the Attribute Info histograms; Point Creation,
which inserts a new point into the data set; and Trajectory cre-
ation, which shows the changes necessary to displace a point to a
desired target position.

In general, the interface is broken into four distinct group-
ings of components. These groupings are consistent with the four
functional requirements stated above. An example of the default
interface can be seen in Fig. 2. In this figure, the three data dis-
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Figure 2: The default user interface. The Iris data is being shown according to three different dimension reduction techniques. The bottom
tab shows a histogram indicating the distribution of attribute values. The “include attribute” check boxes allow the user to dynamically
toggle attributes being considered. A selection of points in the data set is shown in red. The histograms below are linked to the selection
and show the distribution of the attribute values for the selection.

plays showing the expert interpretations are seen in the top right.
These displays are always visible to the user, regardless of the
actions being taken. The bottom consists of a tabbed pane with
each tab labeled according to a particular task or form of infor-
mation it shows. The default visible panel shows the basic infor-
mation for each attribute present in the data. The interface itself
has been constructed with components which should be familiar
to anyone who has used a computer. There are no custom inter-
face components, thus helping to promote a baseline affordance
for new users, who will not need to spend extra time learning new
interface components. The following sections will provide more
discussion of the various functional requirements, as well as their
implementation details.

The Three Experts
Once a data set of interest has been loaded, the user is shown

three “expert interpretations” of the data. These interpretations
correspond to three different dimension reduction methods: Prin-
cipal Component Analysis (PCA), Independent Component Anal-
ysis (ICA), and Multi-Dimensional Scaling (MDS). Since the user
will likely not be familiar with (or interested in) the methods used,
the representations are instead referred to as “expert interpreta-
tions”. This choice of nomenclature is used to suggest the no-
tion of seeking a second or third opinion by consulting alternative
experts in a particular field. The three specified methods were
chosen because of their perceived popularity when low dimen-
sion (in our case 3D) visualization of higher dimensional data is

required. In addition, each method uses a fundamentally different
technique, discussed below, in order to achieve the desired reduc-
tion in dimensions. While these three methods are in the current
implementation, other dimension reductions could be used as de-
sired. Regardless of the methods used, any form of dimension
reduction will have the implicit side effect of distorting of the
data.

Therefore the purpose of presenting the results of three dif-
ferent dimension reduction methods is to help mitigate potential
misconceptions about the data as a result of the distortion (e.g.
bias of an expert). Observation of the similarities and differences
between the three views will show the user how open to inter-
pretation various structures are. Each form of dimension reduc-
tion works to represent the data in a 2D space while retaining its
important characteristics, but each uses an alternate approach by
considering different aspects of the data. For example, PCA seeks
to preserve variability, ICA attempts to uncover maximally inde-
pendent sub-components inherent in the data, while MDS works
to maintain the distances between each point. More details about
these methods are provided below.

With Principal Component Analysis (PCA) [6] one is able to
combine potentially correlated attributes into fewer linearly un-
correlated attributes, called principal components. These prin-
cipal components serve as the new orthogonal axis of the lower
dimensional representation, and can be ranked according to the
variability present along each newly defined axis. In addition, the
resulting principal components are represented by the weighted
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contributions from the original attributes. While information loss
is inherent, because the principal components are rankable, the
trade off between this loss and the reduction in dimensions can be
optimized.

Independent Component Analysis (ICA) [4] [10] attempts to
determine the latent independent factors which together comprise
the data being analyzed. ICA is often used to separate linearly
mixed sources (sometime called blind source separation). The
technique attempts to estimate the original signals when the given
input is a result of mixing multiple independent data sources.
While PCA is constrained by the need for the components to be
orthogonal, ICA’s constraint focuses on the independence of the
underlying structures. This results in components which max-
imize their statistical independence and non-Gaussianity from
one another. Like PCA, the resulting independent components
are also formed by weighted contributions from the original at-
tributes. The particular implementation used was the FastICA al-
gorithm [11].

If one is primarily concerned with visualizing the data, and
less concerned with the formation of an underlying representative
model, then Multi-Dimensional Scaling (MDS) [14] is a possi-
ble solution. The goal of MDS is to provide a low dimensional
visual representation of data which maintains the distances ob-
served among the points in higher dimensions. To achieve this,
MDS uses a function minimization algorithm which evaluates dif-
ferent configurations of points in an attempt to minimize the dis-
parity in distance between the original and lower dimensional rep-
resentations.

The third method, Multi-Dimensional Scaling (MDS) [14],
produces a representation of the data in a lower dimension that
maintains the relative distances observed among the points in
higher dimensions. That is to say, MDS aims to place each point
in a lower dimensional space such that the relative distances be-
tween each point is preserved as much as possible. To achieve
this, MDS uses a function minimization algorithm which evalu-
ates different configurations of points in an attempt to minimize
the disparity in distance between the original and lower dimen-
sional representations. Because the algorithm only considers the
distance between points, there are several important factors to be
aware of. As the axes of the resulting lower dimensional repre-
sentation are not scaled, they become arbitrary, and may change
as the data changes. Because of this, the orientation of the re-
sulting display is arbitrary, and may also change as a result of
changes in the data set. In addition, while the formation and spac-
ing of larger distances between clusters will be well represented,
the tighter spacing of points within clusters will be less accurately
represented.

The resulting Expert Interpretations should be able to cap-
ture the most salient structures, but will likely differ in the rep-
resentation of smaller features. This allows the user to visually
filter the structures within the data. If similar clusters, shapes, or
spacing, are present in the majority of views, then it serves as a
good indication these structures are inherent in the data and may
be worth investigating further. However, if there is a seemingly
indicative cluster, spacing, or outlier present in only one of the
views, then it is more likely an artifact of a particular dimension
reduction technique, and not a feature present within the data. To
a more experienced user this may hold particular value. Such a
deviation may be indicative of a unique circumstance which will

have a different meaning depending on the dimension reduction
technique used for that particular Expert Opinion.

Data Inspection
Two of the key functional requirements for this user interface

were the ability to view the distribution of the data, as well as user
specified subsets, and the ability to create and insert a modifiable
point into the data set.

The inspection ability is provided by the default Attribute
Information tab, shown in Fig. 2. This shows the user the range
over which the attributes values span, as well as the distribution
of values across this range in the form of a histogram. The user
also has the ability to select a subset of points within the expert
displays for closer inspection. Points can be selected individually,
or by dragging a selection box over points of interest. The selected
points are then highlighted across all three expert displays, and are
linked to the attribute histograms. Thus, the user can quickly see
the variation and distribution of the subset of interest along each
attribute, both within the selection, and relative to the entire data
set. In addition, the user is allowed to disable individual attributes
as they see fit (though at least two must be enabled for display
purposes). The user can then perform all the same tasks as if the
data only consisted of the selected attributes.

A potential artifact when forming lower dimensions is that
points, which are spatially separated at higher dimensions, may
project to the same location in lower dimensional space. To help
the user recognize instances of high point density, we included the
ability to display a density map, using either contours or a land-
scape, for each expert. The density map will convey to the user
the obvious point concentrations. More importantly with inspec-
tion the user can identify areas that may appear to contain only
a few points when in fact there are many, or areas that appear to
contain many points, when in fact there are only very few. Upon
selection of one of these seemingly single points, all the points
sharing that location in the low dimension space will be distin-
guishable by their variations in higher dimensions, shown in the
per attribute display.

Additional useful features include the ability to color data
according to attribute values, and to create custom clusters. At-
tribute coloring helps users to identify groupings within denser
concentrations of points with similar values, as well as verifying
distinct features. Custom cluster creation can be used to organize
points under consideration across the multiple views, as well as
also verifying possible features.

Data Creation and Interaction
Allowing the user to create and interact with their own

unique data point is paramount. This point creation and interac-
tion is enabled by the Experimental Panel, shown in Fig. 3. Initial
values for each attribute can be specified in one of three ways:
The user can specify the desired numeric values themselves, cre-
ate a copy of a preexisting point, or create a new point which is
representative of the average value of a specified cluster. Numer-
ically specified attribute values can be used to test specific prede-
termined values, such as an arbitrary what-if scenario or, as in the
prior described medical application, as a representation of a pa-
tient. This method requires the user to enter the desired numeric
value for each attribute, and then press the Create/Update button
to create the new point. The other options, requiring the preselec-
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(a) Newly created experimental point shown in yellow with the target cluster in red.

(b) After changing attribute values, the experimental point is now among target cluster.
Figure 3: After creating a unique point (shown in yellow) the user can manipulate the attribute values and observe the points movement
within the high dimensional space in real time. 3a shows the unique point in yellow and the target points in red. After using the sliders to
change the values of various attributes, 3b shows the unique point now among the target cluster.
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(a) Linear trajectory.

(b) Shortest-step-first trajectory.
Figure 4: The point trajectory interface. The Iris data is shown in green according to three different dimension reduction techniques. The
top 4a shows linear interpolation trajectory, while the bottom 4b shown the shortest-step-first interpolation trajectory. The interface shows
the start and end points of the trajectory, as well as the progression along each attribute as the user steps through the trajectory. In each
view the large blue point is the starting point, the large yellow point is the current location, and the large red point represents the target
location.
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tion of a point or cluster, will more likely be used to further inves-
tigate some aspect of the data itself. For this investigation the user
must first select a point or set of points within the data set, spec-
ify with the appropriate radio button that selected points are being
used, and then click the Create/Update button. If the user selected
a single point, then the values will be replicated, resulting in the
experimental point being a copy of the selected point. If multiple
points were selected, the attribute values for the new point will be
derived from the average attribute values of the selected points.
Once all necessary attribute values have been specified, the new
point can be created and inserted. To insert a newly created point
involves applying the three dimension reduction techniques to the
newly-expanded data set and displaying the respective results.

Furthermore, once the user specified point has been created,
the user is also able to manipulate the various attribute values as
they see fit. Manipulating these values will allow the user to di-
rectly observe the degree to which changes along a particular at-
tribute will affect the position of the experimental point within the
original data set. This manipulation is done either by moving the
value slider or by entering a new numeric value for the appropri-
ate attribute. As changes are made, the position of the experimen-
tal point is updated in real time across all three expert displays.
Though computationally expensive for some experts (MDS do not
allow for dynamic addition of points and so must be recomputed),
this real-time display enables direct feedback for the user.

This direct visual feedback will help the user to get a sense
for the spatial relation between the attributes and the data set it-
self. After some experimentation, the user will be able to discern
how the various attributes contribute to the position of the points
in the data set. With time the user should be able to develop a base
qualitative understanding of the high dimensional data. In the
context of the previously discussed medical application, the user
would enter their pertinent medical information to create a new
point with attribute values based on their own unique health char-
acteristics. Once displayed, the user would then see where their
point lies in space relative to the data set of healthy and unhealthy
people. From here, the user could modify various personal health
related attributes and observe how these changes alter the position
of their unique point. Hopefully, the user will see and better un-
derstand what alterations to their current state would be necessary
to reach a position indicative of improved health.

Point Trajectory
However, the changes necessary for a user created point to

reach a desired position may not be straightforward to the user.
To help overcome this obstacle, the user can activate a form of
guided interpolation along a trajectory. This guided interpolation
will show the user how the values of each attribute will need to
change in order to displace a point from its current position to a
user specified target position. Both the start and end points can be
specified in the same manner as the initial experimental point. The
user can either specify them numerically, or as separately selected
points or grouping of points. Some attributes, such as age or sex,
may not be strictly modifiable and so should not be considered
when creating a trajectory. The user may want to disable these
attributes, or any others they deem modifiable, in the attribute in-
formation panel. This will exclude the disabled attributes from
the interpolation trajectory.

The user has a choice of the type of interpolation used to cre-

ate the trajectory: linear or shortest-step-first. As implemented,
linear interpolation works by independently performing a discrete
number of linear interpolation steps along each attribute. The re-
sulting points along the trajectory represent a simultaneous pro-
gression across all attributes, as can be seen in Fig. 4a. This pro-
gression results in a straight line between the start and end points
in high dimensional space. However it may be difficult for the
user to keep track of the changes along each attribute simultane-
ously. To help overcome this the user may instead make use of
shortest-step-first trajectory. Shortest-step-first interpolation per-
forms a discrete number of interpolation steps along each attribute
individually, as shown in Fig. 4b. The greedy nature of this form
of interpolation is due to the algorithm always choosing to in-
terpolate along the attribute with the smallest absolute change in
value between its start and end points. Because the shortest-step-
first interpolation focuses on progressing one attribute at a time,
the final trajectory will be composed of as many line segments as
there are attributes. The initial segments will be short, represent-
ing the smaller change in attribute value, while the later segments
will be longer, representing the larger changes necessary.

After activating the trajectory of their choice, the user is able
to step through the intermediate points along the trajectory. The
current point is identifiable as the largest step marker along the
displayed trajectory, and will change as the user progresses along
it. As the user continues stepping along the trajectory, the progres-
sion of the currently changing attributes is shown in their respec-
tive progress bars. This provides the necessary feedback to allow
the user to easily follow the changes along the various attributes
as they occur. For a linear interpolated trajectory the progres-
sion will occur evenly across all attributes, whereas for shortest-
step-first interpolation the progression will occur one attribute at
a time.

Usage Examples
In the previous sections, we provided an overview of the soft-

ware and an in-depth description of the important features. We
will now describe a brief-walk through using two different data
sets, and making use of different features provided by the soft-
ware. The first will use the canonical Iris data set [7], and the
second will use the most recent Fortune 500 list [15].

Iris
The Iris data set includes 150 samples, each containing four

attributes. The attributes are measurements of the length and the
width of the sepals and petals of three different Iris species. Fig.
2 shows the software with the Iris data set displayed. The his-
tograms displayed under the attribute information tab are linked
to the point selections made by the user. Once a point or group
of points is selected, the distribution of the selected point(s) is
shown on a per attribute basis. In the prior figure, the user has
selected a cluster of points, which are shown in red in both the
expert displays and the linked histograms.

For the sake of example, assume a user decides to insert a
new experimental point, perhaps based on values from a newly-
collected specimen. To create this point, the user selects the Ex-
perimental Point tab. Here the attribute values can be entered by
typing the values directly, by adjusting the value sliders, or by us-
ing the mean attribute values of a user-selected point or points.
Once the values for the respective attributes have been entered,
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the new point is inserted into the original data set and the three di-
mension reduction methods are applied. An example of the newly
created point can be seen in Fig. 3a as the larger yellow point
amid the smaller green points within each expert view. From here
the user can make changes to the various attribute values. Alter-
ing these values with the sliders will allow the user to observe
the resulting displacement in real time, the results of which are
shown in Fig. 3b. These results indicate that to reach the target
grouping requires relatively large changes to attributes 1, 3, and 4
(sepal length, petal length and width), but a much smaller change
to attribute 2 (sepal width). The real-time displacement serves to
convey to the user how each attribute contributes to the position
of the data point. The user can attempt to move the experimental
point to a particular target area; however this may not lead to the
intended result. Because there are many attributes which affect
the position of a point, there may be many attribute value combi-
nations that would result in visual proximity of the experimental
point to the target area.

However, since visual proximity alone does not necessarily
guarantee that all attribute values are similar to the surrounding
data points, the user can make use of the trajectory generator. The
trajectory generator will display a path between the specified start
and end positions. The user is then able to advance incrementally
along this trajectory until the desired target is reached. Both the
attribute values for the current trajectory step and a progress bar
display to the user the progression along the trajectory. Fig. 4a
shows a partial advancement along a linearly interpolated trajec-
tory. As previously mentioned, the linearly interpolated trajectory
is calculated by dividing the distance between the start and end
value of each included attribute from the original data space by an
equal number of steps. This calculation leads to a straight line tra-
jectory. While easy to visualize, this trajectory may be of limited
value if the user finds it difficult to keep track of all the simulta-
neous changes along each attribute. Instead it may be beneficial
for the user to utilize the shortest-step-first trajectory, shown in
Fig. 4b. The shortest-step-first trajectory is created by interpo-
lating along the attributes one at a time. The attributes are or-
dered according to the lowest absolute change necessary to reach
the target value. In other words, the shortest-step-first interpola-
tion algorithm selects the attributes of least resistance first, under
the assumption that first attribute which undergoes modification
may be considered the easiest change to make, and so possibly
the most desirable. The results of these trajectories show that, in
this case, the target position is very similar to the position reached
using manual attribute manipulation above.

Fortune 500
The Fortune 500 is a list of the top 500 U.S. corporations

ranked according to their gross revenue. This list is updated an-
nually by Fortune magazine. In its pure form, the data contains 22
attributes. However only 13 of these are beneficial for this demon-
stration. These included attributes are comprised of numeric val-
ues relating to the rank of the company on the list, as well as
its revenue, profits, number of employees, or market value, and
boolean values, such as whether the current CEO is the founder,
foreign, or a woman.

The excluded attributes were either textual or redundant. In
addition, entries with missing fields were excluded.

Fig. 5 shows that, unlike the Iris data, the three experts each

Figure 5: The Fortune 500 dataset with rankings included in the
processed data.

produce noticeably different interpretations of the Fortune 500
data. Here, the first expert (PCA) shows an extremely linear struc-
ture to the data. By coloring the points according to their Fortune
500 ranking, it becomes clear that this ranking is a definitive at-
tribute for this linear structure. Since the rank of the company is
not strictly part of the data about each company, but a result of
the data, we will exclude the rank attribute from the data. Instead
we will color the points according to their ranking. The resulting
plots are shown in Fig. 6, where blue corresponds to a higher po-
sition on the list, and red is a lower position (the higher the rank-
ing the lower the rank number: rank 1, blue, is the top and rank
500, red, is the bottom). Now some similarities between the three
expert views become visible. Each view has a single large con-
centration of points, with the surrounding area quickly becoming
sparse. In addition we can see that the top companies (blue) are
clearly removed from the others in all three expert views. Upon
closer inspection, these companies can be split into two group-
ings, shown as the magenta and cyan clusters in Fig. 7. The
formation of these two distinct clusters can be attributed to the
amount of assets owned. The magenta cluster is comprised en-
tirely of finance, investment, and insurance companies, whereas
the cyan cluster is composed entirely of non-financial companies.
This clustering can be attributed to the financial companies own-
ing more interest bearing assets such as investments and loans,
which other non-financial companies won’t have.

Another grouping of interest, shared somewhat among the
three views, is shown in blue in Fig. 8. All of the companies in
this grouping were not profitable in 2014. This grouping is easily
separable because there are several attributes which can correlate
with profitability. However, there are two non-profitable compa-
nies which have a noticeable distance from the main grouping of
non-profitable companies. Upon further inspection of the various
attributes, we find that the outlying attribute is the assets owned
by the company.

Figure 8: The Fortune 500 dataset with rank attribute removed
and colored according to whether profitable (red) or not (blue).
There are two blue outliers from the main cluster. Further inspec-
tion shows these two companies (Amazon.com and Target) have
a significantly larger value of assets compared to the rest of the
non-profitable companies.
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Figure 6: The Fortune 500 dataset with data points colored according to rank. Some similar groupings and separations are evident,
especially for the highly ranked companies in blue.

Figure 7: Fortune 500 dataset. Fig. 6 showed a separation of highly ranked companies. Further exploration shows a separation between
these high ranking companies, particularly clean in the MDS view. The separation between financial companies (blue) and non-financial
companies (red) can be attributed to the relatively high valuation of assets held by the financial companies.

Limitations and Future Work
Though the current software implementation does provide

the main tools we set out to implement, there are several limi-
tations, as well as improvements which can be made. It should
be noted that this software is only intended to be used with con-
tinuous numeric data. Nominal data is not supported as it does
not lend itself to the dimension reduction or trajectory generation
techniques used. Discrete stepwise or ranked data, though usable,
will not work well with the current implementation, as the trajec-
tory generation does not currently account for numeric attributes
which are representative of rank-intrinsic or stepwise values.

Another issue stems from the nature of some of the dimen-
sion reduction techniques used. Both PCA and ICA produce
an underlying representative model based on attribute weights,
which can be dynamically applied to a new point. MDS does
not produce such a model. Instead, MDS need to be rerun every
time a point is added or modified. While this brute force method
works well for smaller data sets, it can cause noticeable delays
when larger data sets are used. However, the dimension reduction
methods used can easily be exchanged for others as needed.

Conclusion
In this paper we have described the design of a software in-

terface intended to provide unfamiliar users the ability to explore
high dimensional data. Our intent is that using this interface will
enable a novice to develop an actionable intuition for the data in

question. The combination of the visualization methods and anal-
ysis tools discussed result in a software interface which enables
interactive analysis and exploration of high dimensional data. By
allowing the user to create and manipulate new data points we
enable a novel form of data exploration. With this exploratory
point creation, the user is able to directly observe how various
attribute values affect the position of the new data point relative
to the surrounding data set. In addition, by manipulating the at-
tribute values of this exploratory point, the user can observe the
resulting changes in the point’s position in real time. These capa-
bilities would be particularly useful when informing a patient of
their current health status, based on their unique lifestyle choices,
and how various alterations in habits would result in changes to
their health. Furthermore, when coupled with the provided inter-
polation, the user will be shown various trajectories which present
the changes necessary to re-position a specified point to a more
desirable state. While the motivation behind this system was to
aid medical prognostic and diagnostic applications, the ideas dis-
cussed are applicable to any high-dimensional data analysis task.
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