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Abstract. Visualization is an important task in data analytics, as it
allows researchers to view patterns within the data instead of reading
through extensive raw data. Allowing the ability to interact with the
visualizations is an essential aspect, since it provides the ability to
intuitively explore data to find meaning and patterns more efficiently.
Interactivity, however, becomes progressively more difficult as the
size of the dataset increases. This project begins by leveraging
existing web-based data visualization technologies, and extends
their functionality through the use of parallel processing. This
methodology utilizes state-of-the-art techniques, such as Node.js,
to split the visualization rendering and user interactivity controls
between a client–server infrastructure without having to rebuild the
visualization technologies. The approach minimizes data transfer
by performing the rendering step on the server while allowing for
the use of high-performance computing systems to render the
visualizations more quickly. In order to improve the scaling of the
system with larger datasets, parallel processing and visualization
optimization techniques are used. This work uses parameter space
data generated from mindmodeling.org to showcase the authors’
methodology for handling large-scale datasets while retaining
interactivity and user friendliness.

INTRODUCTION
The ability to make rapid visual assessments of parameter
spaces has the potential to change the workflow for both
model simulation and model fitting/parameter recovery. It
enables the rapid identification of input parameters that
result in similar output data or model behaviors. This allows
researchers to eliminate redundant input parameters for
more efficient use ofmodeling and simulation computational
resources. For example, should two parameters exhibit a
strong correlation, one might be held constant while the
other is varied in order to capture all of the unique
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model behaviors. Further, early visual assessment of the
parameter space means that ineffective or incorrect models
may be rapidly identified and eliminated from study. This
again results in effective use of both experimenter and
computational time. Finally, parameter space visualizations
can reveal unexpected relationships between the parameters
and the model behavior. If the behavior is incorrect, errors in
model design or in the model may be more easily found. If
the behavior is novel, parameter space visualization will have
resulted in new hypotheses or expanded research findings.

Web-based visualizations are of interest in this appli-
cation area, as they can be directly integrated into the
high-performance computing (HPC) environment. At the
same time, they can make the implementation and use of
parameter space visualization easy for any level of visual-
ization programmer. The potential for interacting with the
data and feeding any resulting visually identified parameter
constraints directly into themodeling and simulation process
would further improve the modeling workflow.

The approach described in this article targets this area:
web-based visualization directly integrated with the HPC job
scheduling environment, optimized for a fast and interactive
user experience. It is based on existing visualization tools,
such as Data-Driven Documents (D3), combined with
Node.js to devise a parallel implementation for maximal per-
formance. Specifically, parallel coordinate plots have worked
well in the past for identifying correlations between variables
so they were chosen as the first prototype visualization
algorithm for this framework.1 While standard tools, such
as D3 and Plotly, already provide common visualization
algorithms, such as parallel coordinate plots,15,16 the amount
of data these tools can handle is typically limited. In our
experiments, datasets that exceed 500,000 data points can
no longer be handled by these tools. Hence, an approach is
needed that is capable of handling datasets beyond that limit.
There are multiple bottlenecks that need to be overcome
for this to be accomplished. Specifically, the amount of
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memory available on the system needs to be considered as
well as the computational resource available. At the same
time, transferring the dataset from the server to the client
can take a considerable amount of time. By utilizing a
parallel server-side approach, all of these bottlenecks can be
avoided. The parallel approach only processes parts of the
data at a time, thereby reducing the memory footprint. Using
the HPC resource directly provides more computational
resources to the visualization algorithm. At the same time,
this approach avoids the transfer of the entire dataset and
instead only requires a significantly smaller amount of data
to be transferred from the server to the client. Overall, this
enables the approach to process significantly larger datasets
in a shorter period of time.

RELATEDWORK
Big data has been a booming topic for several years.
Visualization is one key aspect of solving today’s big data
challenges, as it is necessary to understand and analyze
data efficiently. Traditional visualization techniques do not
necessarily suffice for big data. They are often not equipped
to handle large sample sizes and generally do not account for
data being too large to fit into themainmemory. The process
of visualization needs to be revamped to accommodate the
ongoing growth of data.

Using web-based techniques for visualization tools can
help in targeting a broader audience. Bostock et al. proposed
a JavaScript library, called Data-Driven Documents (D3),
which serves as a flexible infrastructure for many types of
visualizations.2 Our systemwill provide tools built on the D3
library.

An upcoming visualization service, known as Plotly,
provides a number of web-based visualizations with many
customization tools available. This system uses a client–
server model to produce highly interactive visualizations
for data.3 While the generalization of various visualizations
provides a flexible and efficient way to view data in multiple
types of plots, the rendering process is not capable of
handling large datasets. When testing a 500,000 point
dataset with Plotly, it failed to respond after several minutes
of processing. The proposed methodology in this article
successfully rendered the largest test case that we were able
to provide, consisting of 246 million points.

Data can come in many different forms and sizes.
High-dimensional data, being one variation, is a bit more
difficult to visualize due to the inability to physically see
more than three dimensions. Parallel coordinates4 have
proven to be a very sufficient visualization technique for
this task. The basic idea is to present N -dimensional
data of the attribute space by mapping N equidistant
parallel axes to the two-dimensional space. The axis of
each dimension represents a property. The axes of the
corresponding attribute values range from minimum to
maximum uniform distribution. Thus, each data item can be
used in accordance with its property values in a line segment
on N parallel axes.

When large datasets are visualized using parallel coor-
dinates, confusion can be caused due to a large number of

overlapping lines. For this, Peng has presented the concept
of clutter-based dimension reordering. This concept allows
the algorithm to reduce the clutter of parallel coordinate
plots without sacrificing information in the visualization.5
Siirtola has introduced two browser-based techniques for
manipulating parallel coordinate plots.6 The first technique
uses polyline averaging to summarize a set of polylines. The
second provides a visualization for correlation coefficients
between polyline subsets in order to help the user to
discover new information. Zhao et al. proposed a technique
of rearranging variables to better identify patterns of
interest.7 This work contained a query tool that enabled the
user to describe a specific target pattern to be displayed.
Johansson et al. introduced a method to simultaneously
examine the relationship of a single dimension to many
dimensions. To allow the user to quickly view different
combinations of dimensions, the single dimension being
used can interactively be swapped with another.8 Hauser
et al. have demonstrated and expanded on some of the
intuitive features of parallel coordinate plots.9 Some of the
features presented in these works are used in the proposed
system to showcase that our methods can accommodate
more advanced visualizations.

One of the many difficulties of visualizing big data is
that traditional visualization techniques require all of the
data to be held in memory. Ahrens et al. have developed
a methodology for handling datasets that are too large to
fit into memory. They accomplish this by streaming data to
the visualization, eliminating the size limitation and gaining
some efficiency from running visualizations in a small
memory space, resulting in higher cache hits.10 Streaming
data is used in the work described in this article alongside
data chunking in order to compare efficiency. These two
methods of breaking down data have resulted to be almost
identical in speed. Out-of-core techniques use memory only
as their secondary storage medium. All data is maintained
on the hard drive and the main memory serves as a cache for
that data. As such, these techniques allow the visualization
algorithm to be able to process datasets that exceed the main
memory.11

In some cases, big data visualizations are created
either by rendering subsets of data or by mining features
of data and rendering those results. Goecks et al. have
developed Trackster, which is a tool that couples analysis
and visualization to allow interactive visualizations for large
datasets.12 While this can efficiently produce a visualization,
it does not actually render a large amount of data. In fields of
study that are still in their early stages, such analysis tools for
mining and subsetting may not exist, therefore making this
technique ineffective. Instead, these researchers are trying
to view the entire parameter space in order to develop the
generalizations of their data.

Pretorius et al. have created a system for exploring
parameter spaces for image analysis. In this work, the
paradigm of parameter sampling is changed in order to
incorporate large parameter sweeps in a more efficient way.6
The proposed system extends this methodology by making
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Figure 1. Photos of the resulting visual after making changes to the original plot, which is represented in (a): (b) has reordered IV_IV1 and IV_IV2; (c) has
brushed a section of DV_sum; (d) has changed the statistical coloring to interpolate IV_IV1.

parameter sweeps using multiple models and comparing
their outputs through a parallel coordinate visualization.

Zhou et al. developed several web-based visualization
frameworks combined with preprocessing tools to provide
a way for domain specialists to interpret their data.1 The
framework contained parallel coordinate plots andheatmaps
that could be used to present identification-confusionmatrix
data.

METHODOLOGIES
The software portion of this system was developed from an
open source parallel coordinate plot library built on top of
Data-DrivenDocuments (D3). The baseline implementation
will be overviewed, followed by the details for the per-
formance improvements, including client–server modeling,
parallel rendering and line binning.

Baseline
The baseline of this implementation uses Parcoords, an
open source D3 library specifically designed for building
parallel coordinate plots. Parcoords is a client-side JavaScript
library that internally manages the creation of HTML tags,
data manipulation, and rendering.13 Many of the basic tools
associated with parallel coordinate plots can be used with a
simple flag on instantiation. Some of these features include
reordering, removing, brushing, and statistical coloring of
axes. Figure 1 illustrates these interaction features and
their results on the visualization, which are described in
more detail below as well. Using any of these features
will automatically refresh the visualization with the new
parameters.

Reordering is a simple feature which allows the users to
organize the axes to their liking. To do this, the user can click
and drag an axis to a point in between two other axes. The
plot will then be refreshed with the new arrangement. When
two dimensions are not direct neighbors, it is sometimes hard
to see their relationship. This feature provides a way to select
which axes are adjacent to provide the most useful insight.
Reordering axes can also help to better organize the plot for
a cleaner visualization.

Some axes may prove to be of less importance to the
user. Removing these will both minimize the clutter in the
visualization and improve the refresh speed by reducing
the amount of data being rendered. Parcoords provides an
API method for removing axes, which is connected to a
list of existing axes. The user can toggle each of the axes
individually to remove or reintroduce them.

Brushing is a very powerful tool for parallel coordinate
plots. It allows the user to select a portion of an axis, or
multiple axes. This will then translate to upper and lower
bounds based on the scale of the axis being brushed. These
bounds are used to limit the number of data points being
rendered to the plot. By using this tool, a user can select a
range of values on one axis to more clearly see where they
fall on the other axes. While rendering with active brushes,
the system will skip any data point with a value outside these
bounds, drastically reducing both the clutter of the plot and
the rendering time.

Lastly, another powerful tool is statistical coloring. This
feature provides a color scheme for the lines representing
each tuple in the dataset. The color scheme is based on a
single axis specified by the user via clicking the name label
at the top. Then, by mapping the value of a tuple for the
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specified axis to a color range, the color of each line will
reflect the tuple’s position on that axis. As mentioned before,
it is hard to see the relationship of two dimensions when they
are not directly neighboring. Statistical coloring provides a
way to compare one specified axis with all other dimensions
in the plot.

Altogether, Parcoords provides an easy-to-use JavaScript
API for creating parallel coordinate plots with some com-
monly used features. The infrastructure of using this library
out of the box is sufficient for very small datasets, but presents
several major problems when moving into larger datasets.
Since this is a client-side JavaScript library, users will need
to download the data they wish to plot from a database
server. This becomes unreasonable even when talking about
data as small as one hundred megabytes, while most of
the time large-scale datasets start at gigabytes or terabytes.
Even if the user manages to wait for such a large dataset
to download, most client machines are not equipped to
handle data manipulation and rendering at this scale. The
following sections will discuss the new infrastructure model
and performance improvements used to allow the system to
handle larger datasets.

Client–Server model
The first problem addressed is the overwhelming data
transfer. To reduce the network load, this system moves
the rendering step to the server where the data is stored.
By utilizing a state-of-the-art engine like Node.js, the same
JavaScript files used on the front end can be run on the back
end. Another benefit of using Node.js is that it provides a
module, jsdom,which simulates a web browser environment.
With these technologies the implementation of the rendering
methods does not need to be altered because it thinks that it
is rendering to an ordinary web page.

In order to retain the controls on the user interface of the
web page, somemodifications weremade to the visualization
library. Parcoords is built for the client side to manage both
the HTML tags and image rendering. In order to separate
the controls from the data management and visualization
refresh, this library was split into two files, one for the
server and one for the client. Parameters are generated from
user input of reordering, removing, brushing, or statistically
coloring axes and are given to the server as input in order to
generate the refreshed image.

Parcoords generates two components in the rendering
step. These are the visualization and the dimension axes.
The visualization is rendered to an HTML canvas, which
temporarily stores the image in memory. The axes are
scalable vector graphic (svg) elements, which are required
for enabling the control features. The svg tags can directly
translate to a string to be sent to the client, but the canvas
must be converted to a static image format. Another Node.js
module, canvas, is used to convert the temporary canvas
image into a string format. These two strings then become
the output that the server sends to the client. The client script
can reconstruct the visualization on the web page by simply
pasting the DOM string into a designated div element and
drawing the image string to an underlying canvas. Initially,

the visualization library generates an image and then waits
for input to refresh. Since the redesigned workflow only
generates one image per run, the server script will terminate
immediately after the first render and return the output
results to the client.

Parallel rendering
In most visualizations, rendering one part of the image is
independent of rendering another part. In the case of parallel
coordinate plots, each line and even each individual line
segment can be considered independent of one another.
By exploiting this fact one can distribute the work among
parallel rendering processes for dramatically faster rendering
speeds.

Node.js is run on a single core, so threading will
not produce parallel processing. Instead, a node module,
child process, was used to fork new Node.js instances on a
separate processing core. This required some modification
of the server workflow. First, the server rendering script was
reinstated as the child process, while a master script was de-
veloped to fork subprocesses and manage the distribution of
work. Inter-process communication can create a substantial
overhead if a large amount of data is transferred. In order
to keep this at a minimum, each process queries for its own
data instead of the master process distributing the data to the
children.

As was stated before, each line rendered is independent
of another, allowing work distribution to be flexible. Two
general approaches to distributing work would be to group
by number of rows or number of columns. To divide by
number of rows, the master script would have to render a
full-sized image in each process, since the position on the
axes where the lines will fall cannot be predetermined. If
divided by columns, the length of the image rendered in
each process can be shortened, creating a smaller amount
of overhead for communicating results. For this reason,
distributing by columns is primary, although distributing
by rows can still occur if necessary. This would occur in a
case where the number of rows is large but the number of
columns is small. Figure 2 shows a graphical representation
of how the task gets subdivided among the processes. Hence,
dividing the image to be created allows the master script to
divide the rendering task between the cores in a relatively
straightforward fashion. Subprocesses are forked to create a
new rendering task to generate the subimage between two
axes of the parallel coordinate plot. Only in cases where
this would create an imbalance on the load of the involved
processes, which typically only occurs toward the end of
the rendering step with a larger number of columns, the
rendering task may get broken up by rows to ensure an even
distribution of the load.

In the master script, a global parameter is set to specify
the number of processing cores to use. Using this value, a
controller manages when to start new processes and handle
output. Experiments were conducted to identify optimal
strategies for load balancing. The growth rate of data points
to render time is linear, inferring that many small workloads
will not yield better results than fewer large processes.
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(a)

(b)

Figure 2. Demonstration of how the database chunking is performed to allow parallel rendering. By dividing by columns, the processes do not overlap
in the visualization space, making the merge simple and efficient.

Creating more processes than the number of allocated
processing cores will be slower, since some processes will
have to wait for an open core to run on. To further improve
the efficiency, the controller evenly spreads the work between
the processing cores so that none are substantially slower
than the rest. Basically, there are different approaches to
balancing the load among the processors. On the one hand,
one could create one process per processor and task that
process with generating as many subsections of the image as
necessary. On the other hand, one process could be generated
for each subsection of the image. In either case, the master
script needs to monitor the processors involved to either
create a new process or task an existing process with a
new subsection. Due to the fact that typically the number
of axes is significantly larger than the number of available
processors in our test scenario, balancing the load in this way
works very effectively, and only toward the end of rendering
the image do the rendering tasks have to be broken up by
row. Both parallelization approaches mentioned above were
implemented and tested. As can be seen from the results,
it turns out that creating a smaller number of individual
process improves the rendering speed considerably, as it
avoids the overhead of creating and removing a larger
number of processes.

To further improve the overall performance of the
approach, different access schemes were implemented to
fully support larger datasets. When there are many columns
and many rows, it may occur that one process does not have
enough memory to fit an entire column of data. In this case,
the system will stream data from the database, handling one
data point at a time. This reduces the amount of memory
that a process needs to store, and negates the idle time in
transferring data from the database to the process as a data
structure. In practice, this methodology has proved to be
almost equivalent in speed and scale to taking the whole
dataset as a chunk, but it allows for dataset sizes to be larger
than the process memory.

A side effect of taking the streaming route is that the
scaling for the axes must be carried out outside of the
Parcoords library, since it will not have all of the data
available at once. Scaling for each axis is performed by
mapping the range between the max and min values to the
height of the image being produced. For most cases this is
a fast query, but in testing with an SQL database (in this
case MySQL version 14.14, distribution 5.6.12) it was found
that unindexed columns in a database are extremely slow at
finding max and min. To account for datasets that have this
many dimensions, the max and min are saved on the client
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Figure 3. The precision of rendering can at best draw a line from a pixel
in axis A to a pixel in axis B. Although the actual point values in the red
and green lines are slightly different, they will be drawn in the exact same
place in the visualization.

side, so that this lookup only occurs once as a preprocessing
step before the first render.

Line binning
Constructing visualizations is a very slow process for
a computer when comparing with simple math on a
processor. Often, improvement of rendering speed consists
of identifying criteria to find shortcuts around drawing every
component. In the case of parallel coordinate plots, one can
recognize that there are a limited number of lines between
any two given axes for a given image resolution. This provides
a way to reduce the number of lines drawn, by avoiding
rendering the same line twice.

Parallel coordinate plots have a static height value which
translates into a number of pixels on the screen. Each line
segment in this visualization is drawn from one axis to the
next or from a pixel in axis A to a pixel in axis B, as shown in
Figure 3.When scaling a value to the axis in the visualization,
it often occurs that two or more lines will fall in the same
location, i.e., connect the exact same pixels on the respective
axes. As a result, the user is not able to distinguish one from
the other. Thus, we can infer that the maximum number of
unique lines that can exist is equal to the product of the height
of two axes, measured in pixels. Our system draws a height
of 400 pixels, making the maximum number of unique lines
400 × 400, or 160,000. This, of course, is only the worst-case
scenario. On average, the algorithm would have to draw
many fewer lines, depending on the variety of the data.

In order to identify the fact that there is multiplicity
for a given line, the algorithm sets up a table based on
the height values on each of the two involved axes. In this
specific implementation, the height values can range from 0
to 400, so that the overall number of possible combinations
is 160,000. A hash function is used to translate the height
values of the two end points of a line to the index within this
table to identify whether this line was encountered before or
not. Since this test is merely based on the end points of the
line, it is fairly efficient, especially when compared with the

rendering process for the entire line using, for example, the
Bresenham algorithm. Due to the fact that additional lines
can effectively be skipped entirely by this simple lookup, the
computational savings can be quite significant.

When using statistical coloring, it does not suffice to
draw the first line and skip the rest. In order to retain
an accurate color scheme, the system must accumulate the
average color value of each existing line. The hexadecimal
color value of each line can be converted into an integer
and used to efficiently calculate an average. Once finished
iterating through the data, each existing line is drawn once
using the averaged color value. This improvement has a
very strong effect on large datasets, as it changes the growth
rate to match that of integer addition instead of canvas
rendering.Whether the dataset contains 200k, 1,000k or even
1,000,000k points, the maximum number of lines drawn will
be 160k. It is important to note that the lines that are skipped
are lines that would only be drawn multiple times with the
exact same start and end points, i.e., the exact same line. By
accumulating the color values of all of these identical lines,
the final image is in no way different from the one that would
have been obtained by drawing all lines individually; it only
saves on computational time.

INTERACTIVE COMPONENTS
When visualizing data with parallel coordinate plots, the
interactive features allow one to analyze the data further by
specific interactive features, such as eliminating columns,
brushing along one axis to select subsections of the data, or
applying color coding. These features are key to the ability to
successfully investigate the dataset at hand. It is important
to note that this parallel rendering approach retains those
abilities. The axes of the parallel coordinate plots are listed
in a separate section right below the visualization, where the
user can enable and disable them specifically.

The rendering of the user interface elements is decou-
pled from the rendering of the actual parallel coordinate
plots. The user interface elements are drawn using svg
elements, whereas the visualization is added as an image. This
decoupling allows the web interface to retain the interactive
features. Hence, the user can still apply color coding or
brush along an axis in exactly the same way as one would
with the original, sequential implementation of the parallel
coordinate plot. As such, the user still has the capabilities one
would expect for filtering to reduce the clutter that can occur
in a parallel coordinate plot.

RESULTS
The implementation outlined resulted in a fully functional
web-based visualization tool, connected to mindmodel-
ing.org. Users can initiate this visualization tool by visiting
the results section of the desired job and simply clicking
the Refresh button. Immediately after opening the results
tab, some options are available to the user in order to make
specifications for the first rendering. These options include
selecting active columns and the number of data points to
display. After the first visual is created, other interactive
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Table I. Rendering times in seconds recorded for various stages of development. Bold entries represent test cases where a linear growth rate was not followed.

Data points 1-Core 8-Core, Min Col 8-Core, Max Col 8-Core, Min Col, Binning 8-Core, Max Col, Binning

1.55E+ 06 (12 MB) 29.1 100.7 8.8 99.3 6.4
3.88E+ 06 (30 MB) 74.4 105 15.8 99.8 8
7.75E+ 06 (60 MB) 148.6 118.3 30.4 103.1 12
1.55E+ 07 (120 GB) 288.6 153.2 53.8 114.2 18.5
2.33E+ 07 (180 GB) 437.6 194.7 82 121.3 23.7
3.10E+ 07 (239 MB) 3086 242.7 106.9 132.7 28.2
1.55E+ 08 (1.2 GB) N/A 984.8 593.8 334.4 112.2
2.46E+ 08 (1.9 GB) N/A 1581.6 958.1 498.2 171.5

options will be available on the parallel coordinate plot, such
as brushing and statistical coloring. To allow the user tomake
several modifications before updating the image, no refresh
request will be sent until the user clicks the Refresh button
again. Based on our experimental test runs, a render time
estimator is shown below the plot which updates with every
interaction with the controls.

The algorithms were tested on an Apple MacBook Pro
with Intel Core i5 and 4 GB of memory for the client.
The server consists of 16 Intel Xeon processors running
at 2.27 GHz with 32 GB of RAM. For the experiments,
only 8 CPUs were used at a time to not completely block
the server from performing any other tasks. The algorithm
was tested with eight different data sizes. Each test run
was performed five times. The running time for each test
run was mostly identical for each dataset size with almost
non-existing variance.

The test data for this system resulted from large-scale
modeling and simulation of two computational cognitive
models (Adaptive Control of Thought-Rational and the
Linear Ballistic Accumulator). The goal of the study was
thorough model comparison, so the simulations entailed
wide sampling of the parameter spaces. This sample of data
consisted of 246 million points on 155 dimensions, totaling
1.9 GB of data. More details about the simulations can be
found in Fisher et al.14 A number of dataset sizes were tested
at each stage of development and recorded for discussion.
While the number of data points is listed, it is important to
note that there were 155 dimensions in the tested dataset.
A high-dimensional dataset is handled differently from a
low-dimensional one, although for this system the rendering
speeds are relatively similar. The first stage recorded was
using the standard visualization tools on the server side.
Initially, this only uses one core, so the results should be
comparable to running on the client sidewithout the network
data transfer. After parallelizing the rendering process, two
scenarios were considered: minimizing the data distribution
size and creating many processes versus maximizing the
distribution size and creating few processes. The results of
both are shown in Table I, represented by Min Col and Max
Col, respectively. Lastly, line binning has been added to each
of these to further compare rendering speeds.

The single-core rendering speed has a very large growth
rate, and eventually breaks due to lack of memory. The
baseline visualization tool (1-Core in Table I) can render 23
million points in roughly 437 s. The performance numbers
for these single-core runs are effectively identical to the
rendering times that can be expected from the original
Parcoords implementation, as it is using the exact same code.
These numbers were used as the baseline instead of the
ones obtained via running Parcoords on the client to ensure
that the same type of computing environment was used.
When using parallelization, the system becomes capable of
rendering any size of data and can render small data sizes
quickly. The downside is that the growth rate of the speed
is still quite large. This stage (8-Core, Max Col column in
Table I) can render the same 23 million point dataset in
82 s, an improvement of 4 times. 8-Core, Min Col represents
parallelization using many processes of minimal size. It is
obvious that the overhead from creating more processes
harshly affects the rendering speed, since rendering 23
million points takes over 120 s, as opposed to 82 using 8-Core,
Max Col. Line binning slightly reduces the small dataset
speeds, but greatly reduces the growth rate. This result backs
the methodology discussed, and is capable of rendering 23
million data points in only 23.7 s when combined with
maximizing data distribution, an improvement of 20 times
over the baseline system. The largest dataset tested on the
system contained 246 million points and was successfully
rendered in 171 s. Figure 4 shows least-square-fitted lines for
a plot of the numbers shown in Table I. This graph shows
nicely howmuch faster the parallel rendering performs as the
dataset size grows. It should be noted that the performance
of the Max Col approach performs too similarly, no matter
whether the database is accessed using the streamingmethod
or not, for the dataset sizes tested so far to be distinguishable
in the plot. This is why only one of the lines is visible in the
graph.

The improvement in performance of the visualization
algorithmmakes it easier to use for our collaborative partners
thanks to the increased interactive capabilities and the ability
to process larger datasets that were impossible to visualize
using existing approaches. By using the current implemen-
tation of the described algorithm, our collaborators were
already able to identify characteristics within the data that
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Figure 4. Rendering times in seconds versus dataset size for the different
algorithms tested.

they were not able to before. Due to the fact that it is
directly integrated with the web interface that the users of
the mindmodelling.org system use to track the progress of
their computations, the visualization is ready to use within
that same interface. As a result, it is very easy to use and ready
to deploy by a relatively large user base.

While this system is demonstrated with parallel coor-
dinate plots for parameter space data, the general concept
is also applicable to other types of visualizations. The
distribution of work in the parallelization process will
generally be specific to the type of visualization, but the
infrastructure can be applied very broadly.

FUTUREWORK
In the future, we will extend our framework to include
additional visualization algorithms, thereby expanding the
capabilities as well as providing further functionality to our
user base. Moreover, the framework will be scaled up so that
it is able to take advantage of more computational resources.
We have an in-house high-performance cluster available
to this project which consists of 2048 parallel cores. We
expect an improvement in performance by fully utilizing this
computational platform. Further potential future work lies
in the utilization of GPUs as highly parallel computational
resources which can be used to enhance the performance of
the framework.

CONCLUSION
Visualization is a task that, like many, becomes increasingly
difficult when moving into large-scale datasets. This work
has demonstrated our methodology for transforming a
typical web-based visualization library into a client–server
model. By leveraging HPC resources, we were able to
parallelize the rendering process to effectively handle large
datasets. Our experiments showed that using only eight
parallel cores, we were able to render a plot 20 times faster
than the baseline implementation originally took. The largest
test case for this system, containing over 246 million data
points, was successfully rendered in 171 s on eight cores.
By moving the visualization step to the server end, network
transfer has been reduced to the size of a typical image

per refresh. Lastly, by utilizing a state-of-the-art technology,
Node.js, we were able perform this task using an existing
browser-based visualization library. Overall, this approach
was able to preserve the interaction paradigms provided by
the original algorithms with the added capability of being
able to handle significantly larger datasets while providing
better rendering performance at the same time.
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