
Paper: Togpu: Automatic Source Transformation from C++ to
CUDA using Clang/LLVM
Marangoni, Matthew; Wischgoll, Thomas; Wright State University; Dayton, Ohio

Abstract
Parallel processing using GPUs provides substantial in-

creases in algorithm performance across many disciplines. As a
result serial algorithms are commonly translated to parallel algo-
rithms written in CUDA or OpenCL. To perform this translation
a user must first overcome various barriers to entry. These ob-
stacles change depending on the user but in general may include
learning to program using the chosen API, understanding the in-
tricacies of parallel processing and optimization, and other issues
such as the upkeep of two sets of code. Such barriers are experi-
enced by both experts and novices alike. Leveraging the unique
source to source transformation tools provided by Clang/LLVM
we have created a tool to generate CUDA from C++. Such trans-
formations reduce obstacles experienced in developing GPU soft-
ware and can increase efficiency and revision speed regardless
of experience. This manuscript details a new open source, cross
platform tool, togpu, which performs source to source transfor-
mations from C++ to CUDA. We present experimentation results
using common image processing algorithms. The tool lowers en-
trance barriers while preserving a singular code base and read-
ability. Enhancing the GPU developer workflow through provid-
ing core tooling affords users immediate benefits — and facilitates
further developments — to improve high performance, parallel
computing.

Introduction
Parallel computations have become affordable through the

usage of consumer GPUs. The large performance increase of-
fered by such devices has been utilized in many areas. The pro-
cess of converting traditional CPU code to parallelized code is
non-trivial. It often requires in depth knowledge of various ar-
eas related to GPU computing. This poses obstacles for those
with computational relevant experience and a larger obstacle for
those users lacking such experience. These are significant barri-
ers to entry for GPU computing which restrict both the adoption
of GPU computing and it’s development. Various approaches ex-
ist to make GPU computing easier for the user. This manuscript
presents the initial development cycle of a tool to transform C++
to CUDA in a configurable manner. The tool, togpu, improves
upon existing approaches to lower GPU development entrance
barriers, accelerate GPU developer workflow, and lay a founda-
tion for further development. Minimizing the effort required to
generate something functional and useful is a design goal in many
areas — GPU development is no different.

The barriers of entry to effectively utilize GPUs for parallel
processing are high in many areas. The large breadth and depth
of knowledge a user must possess is one of the fundamental ob-
stacles a user faces. It is common occurrence for users to lack
the time to learn these areas sufficiently to ease development.

Moreover, motivation is not necessarily present. For example,
a physicist looking to accelerate molecular dynamic calculations
may neither hold a passion for GPU development nor care what
Single Instruction Multiple Data (SIMD) signifies for develop-
ment. Similarly, a GPGPU expert with a deadline may be unable
to dedicate the resources required to convert an image progressing
algorithm into a GPU compatible form while ensuring high data
throughput.

Strides in accessibility have been made through languages
such as CUDA replacing previous techniques such as manipu-
lating shader pipelines to perform computations. Despite these
developments GPU accessibility remains limited. The potential
benefits of parallel processing using consumer tier GPUs is high
but the initial time investment by itself can be prohibitive. Includ-
ing the time required to perform the operations of interest and
workflow impacts such as maintaining separate GPU and CPU
sources, the obstacles facing users grow further. These barriers
are not limited to inexperienced users but instead also impact ex-
pert users.

An inexperienced user must know how to program, use a
language that supports CUDA in some fashion and is applica-
ble to the problem domain, and have knowledge of: parallel pro-
cessing and programming, CUDA, know any necessary APIs be-
tween CUDA and their language of choice, know device/platform
specifics, and know GPU optimization and debugging if neces-
sary. Similarly an experienced user must also have the aforemen-
tioned knowledge required of the inexperienced user but also may
experience knowledge hurdles. The topics of optimization and de-
bugging are such areas where intricate knowledge is often manda-
tory. The user may also be required to obtain at least functional
domain specific knowledge if they are asked to implement algo-
rithms versus optimizing existing code.

Existing solutions to lowering entrance barriers for parallel
processing have shown great strides in accessibility while main-
taining functionality. Users encounter various issues both during
immediate development and in the overall development workflow.
These approaches can be improved upon. It is common to re-
quire users to learn the equivalent of another API, while still re-
quiring users to have in depth knowledge of GPUs and parallel
computing. While in depth knowledge may become a necessity
at stages where device/platform optimization and intricate perfor-
mance monitoring take place, it should be minimized as much as
possible to ease GPU development. Other occurrences such as
mixing configuration and execution, forcing refactoring of code
to adopt a new library, and closed source are just a few common
issues which may accompany existing methods. By focusing on
both development usage and workflow impacts we target mitigat-
ing common issues to lower GPU development barriers.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.1

Related Work
Lowering barriers to entry for the usage of parallel process-

ing on GPUs is not a new problem. Various approaches exist and
are presented in this section. Exploration reveals existing solu-
tions are largely spread throughout four categories: Domain Spe-
cific Language (DSL), Wrapper/Binding, Framework, and Source
to Source Transformation.

Domain Specific Language
A Domain Specific Language (DSL) is a programming lan-

guage that is suited to the needs of a particular domain. Constructs
within the language facilitate common operations associated with
the domain. For example, CUDA (or CUDA C as it is also refer-
enced) is a DSL. CUDA provides access to functionality that is
common within the GPU computing domain. Programming facil-
ities to copy data to and from the GPU, launching kernels, decla-
ration of device and host functions, and other related operations
are bundled into this extended version of C. These operations are
suited to the GPU computing domain. Other DSL examples in-
clude Microsoft Accelerator [12] and Copperhead [3].

While DSLs afford users working with GPU computing sub-
stantial convenience and ease of usage, they still stand as another
learning obstacle — a time sink for the user. Some DSLs are
a subset of a language, however they still require knowledge of
data parallel operations, parallel computing knowledge, and ad-
ditional language specific requirements and constructs. CUDA
for example forces users to gain such knowledge. In addition to
the other issues covered in the Workflow Complications section,
this knowledge mandate is a shortcoming of DSLs. It is clear
that a domain specific language, while useful, is not able to suffi-
ciently mitigate knowledge requirements for inexperienced users
performing feasibility exploration. These reasons lead us to inves-
tigate other approaches to lowering GPU development barriers.
Wrappers or bindings are another approach to providing access to
GPU capabilities.

Wrapper/Binding
A wrapper or binding is code that negotiates operations orig-

inating in one language with a functionally equivalent operation
in the native library language. For example, JCUDA enables Java
users to write calls to CUDA functions in Java while making the
necessary calls to C functions through a Java Native Interface
(JNI) layer [20]. Such libraries are extremely useful and enable
the usage of CUDA in languages that are outside of C and C++.
Using a wrapper, much of the knowledge required to use CUDA
is required of the user. Additionally, users are responsible for any
overhead required by the extra library layer (i.e., if the library han-
dles automatic data management and you encounter an issue with
it, users need to be aware of that to determine how to debug it).
Wrappers may also be subject to the workflow issues identified in
the Workflow Complications section. These properties clarify that
while wrappers may be used, alone they are insufficient to achieve
our target goals. A framework is another category of approach to
easing GPU code development and adoption.

Framework
A framework provides CUDA implementations of libraries,

functions, data structures, and operations to give users a small
subset of GPU compatible algorithms. For example, the CUDA

Basic Linear Algebra Subroutines (cuBLAS) provides a GPU ver-
sion of the commonly used BLAS library [7]. Frameworks pro-
vide different facilities for users, some such as cuBLAS are fo-
cused on an area, others provide basic data structure translations.
The library Thrust is an example [1].

Thrust is a parallel algorithm library that resembles the
C++ Standard Template Library (STL) [1]. It provides access
to extensive GPU-enabled functions in order to produce high-
performance applications [1]. Thrust is similar in notion to li-
braries translated by NVIDIA, such as CUBLAS, but provides
more generalized parallel structures [1]. Thrust requires that the
user learn their API and still requires some knowledge of parallel
computing. In conflict with the goal to provide a transparent as
possible programmatic solution, these extra stipulations further
differentiate Thrust. Another framework is available for Python
titled Parakeet that provides Just In Time (JIT) compilation of
Python code for a GPU [11].

With minimal annotations, Parakeet provides a strong frame-
work for automatically generating and managing the execution of
GPU code using JIT compilation [11].Parallelization is achieved
by implementing NumPy operations in terms of four data parallel
operations [11]. Parakeet utilizes heuristic based, array shape de-
tection to determine algorithm execution location (CPU, GPU)
[11]. Parakeet provides a functional demonstration of the us-
age of parallel operators to implement common functionality as
a means of parallelization. A single annotation is required to
identify a function for processing. Parakeet’s minimal annotation
usage lowers the amount of parallel domain knowledge required
from users. However, some significant constraints preclude adop-
tion outside of numerical computing. For instance, Parakeet par-
allelization only applies to Python NumPy (a Python numerical
library) operations and developers are limited to scalar and ar-
ray types [11]. Our application case is also targeting C++ as
the source language. Nonetheless, Parakeet provides an excellent
demonstration of feasibility and the substantial degree to which
CUDA development barriers can be lowered.

Frameworks offer varying approaches but are susceptible to
multiple issues. Often a framework provides only a fixed set of
functionality, which may be too restrictive for many applications.
A framework may also fail to support extensions, whether due to
stagnation, licensing, software design, or other issues. Users are
required to learn a framework, the provided functionality, limita-
tions, requirements, and other attributes. Depending on the frame-
work, a user may be forced to still learn various portions of paral-
lel computing, device and platform specifics, and other applicable
topics. Once familiarity with the framework has been established,
it is then usually necessary to modify the source code to varying
degrees in order to integrate the framework. In some instances
this can be a monumental effort. Some of the issues present with
frameworks are targets of this proposal.

Frameworks provide facilities for usage during GPU devel-
opment. Similarly, source to source transformations may offer
features for usage during development. In contrast, after ini-
tial development efforts additional features may be provided by
source to source transformations such as optimizations for exist-
ing algorithms.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.2

Source to Source Transformation
A source to source transformation is the act of taking one

set of source code and generating another from it. Often the goal
is optimization, some form of refactoring, or conversion from an
input language to a different language. Automating this process
is clearly desirable. For example, a user has a collection of Ruby
code, performs a source to source transformation on it using some
tool, and the resulting output is Ruby code that is now optimized
to take advantage of a faster hashing approach. Another example,
is an indentation tool that automatically indents code to conform
to a specified format upon committing to a version control sys-
tem. A source to source transformation lends itself to refactoring
amongst other uses. With the support of a proper framework, an-
alyzing and exploring source code can be done with various lev-
els of abstraction and result in many interesting operations, from
optimizations to automatic parallelization to updating deprecated
code references.

Many source to source transformations exist, in various
forms. Targeting specifically C++ to CUDA transformation, re-
search revealed that existing options were available for automat-
ing conversions of C and C++ to CUDA code. Generally the
conversion is aided through the use of annotations (usually in the
form of pragma directives) and other annotations to outline areas
to externalize to the GPU. In many cases these annotations require
in depth knowledge of parallel processing for effective applica-
tion. Additionally, the user must learn a new pseudo language
composed of annotations which often map closely to CUDA op-
erations or utilize underlying parallel concepts. Often such tools
require preparation of a code base outside of special directives
such as minimization of external library usage, restructuring code,
changes to data storage, and other such modifications.

CUDA-Lite by Ueng et al. is an example of a tool that per-
forms a source to source transformation focusing on easing the
difficulty of working with GPU memory selection, transfer, and
allocation when using CUDA [16]. CUDA-Lite uses source an-
notations provided by the user to help alleviate the burden of per-
forming memory access coalescing. These annotations allow the
user to denote portions of the code which CUDA-Lite utilizes to
generate code that performs the necessary memory related oper-
ations. Such automation is valuable as memory utilization can
have a substantial impact on performance — the authors noted a
2x-17x performance impact in preliminary results [16]. Ueng et
al. also explained that CUDA-Lite performed on par with hand op-
timized CUDA code [16]. The value of automation is not limited
to optimization of GPU code memory accesses but also extends to
the core of GPU development: automatic parallelization of serial
code.

GPSME is a toolkit to convert C and C++ code to
OpenCL/CUDA while performing automatic parallelization [19].
GPSME focuses on the use of compiler directives: ”At its heart,
the GPSME toolkit converts C and C++ code into OpenCL/CUDA
by following compiler #pragmas” [18]. As previously discussed
such application of annotations using #pragma directives is com-
mon. Both OpenMP (Open Multi-Processing) and the more re-
cent standard OpenACC (Open Accelerators) utilize such annota-
tions [6] [17]. The authors accomplish this by extending Mint, a C
to CUDA translation tool leveraging the ROSE compiler [18]. By
following GPSME specific, user provided annotations GPMSE
outputs a single file containing both C++ and CUDA. Some

guidelines are provided for what developers using GPSME should
and should not include in their code. The guidelines contain
suggestions such as including nested for loops, avoiding recur-
sion/function calls/conditional logic/external library dependen-
cies, and avoiding system operations [18]. The author also pro-
vides some suggestions on how to revise a code base to conform to
these restrictions. Comparing against OpenMP and OpenACC us-
ing Polybench benchmarks, the authors determined GPSME per-
formance exceeded the other test candidates [18].

To effectively gauge generated algorithm performance,
Williams et al. compare OpenMP, OpenACC, Mint, and GPSME
(Mint with modifications) using modified GPU versions of the
PolyBench benchmarks [19]. To differentiate GPSME from other
candidates some of the changes that GPSME contains versus the
Mint toolkit and OpenACC are explored. The authors demon-
strated that GPSME added performance increases substantially in
some test cases. OpenACC and GPSME performed similarly. In-
terestingly, all of these candidates rely on extensive use of pre-
processor directives. While such directives are useful, minimiz-
ing their usage is necessary to enhance user workflows. In most
cases annotations reference parallel computing elements requir-
ing some understanding of parallel computing. At the very least,
a user must effectively learn the equivalent of a DSL composed
of annotations. In many cases the annotations are very similar to
that of CUDA (such as those for copying memory). Annotation
usage also results in the combination of configuration and source
code. This has direct impacts on workflow and usability. One ex-
ample is that sharing configurations becomes more difficult due
to version conflicts (whether inside or outside of a version control
system). The approaches used in this manuscript aim to eliminate
the usage of such annotations and directives as much as possible.
While the authors acknowledge the place of annotations and large
benefit they can provide, there are significant downsides to their
usage which must be carefully considered. Instead of annotations,
the user is provided behavior that is configurable outside of the
source code and starts with opinionated defaults. This choice has
workflow ramifications that extend outside of immediate usability
and learning overhead.

At the time of writing, registering for GPSME’s free trial
fails. Also, the notion of a free trial, lack of source code availabil-
ity, and inaccessible modifications to the ROSE engine in publi-
cations appear to suggest that the final product may be a commer-
cial/proprietary entity. In contrast, the approach used for togpu
focused at encouraging extension and providing a tool for the
public. Hence the source code is provided under an open source
software license and free of charge.

It is clear that source to source transformations provide a
powerful approach to lowering GPU computing entrance barri-
ers. When considering approaches, it is also necessary to look be-
yond the initial user experience to how the approach will fit into
the users workflow. Further investigation revealed other potential
complications with existing approaches.

Workflow Complications
Throughout all of the approaches specified in the related

works section various workflow complications are noted. In gen-
eral, these issues are the result of subtle features of the tools.
While the attributes may be subtle, they can have large impacts
on the workflow of users. The scope of a project may also deter-

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.3

mine the degree to which the impact is felt and thus it may not
be detected during tool development until after an initial release.
This section identifies various additional workflow complications
that arise from both categories of approaches and specific imple-
mentations.

There are various maintenance issues that can come into play
when transforming code for GPU compatibility. One such issue is
the degree to which the approach being used hinders user adoption
and modification. For example, if a DSL is used in a project it is
likely that any user wishing to modify a significant portion of such
a project would be required to learn that DSL. This initial cost
applies to each approach available. In some cases this barrier is
high and in others, such as with source to source transformation,
the barrier can be lower.

A user may have to learn a framework to modify a single
project. Instead, a project using source to source transformation
tools may require a user to only know the input language — in-
creasing accessibility to those without parallel computing knowl-
edge. Moreover, such an approach encourages code reuse and
reduces the amount of time an experienced developer may spend
creating and modifying common code. An experienced user may
wish to change the parallelization method used for a subset of
10 functions for example: instead of making the same changes
10 times, the user may change or configure the source to source
transformation tool appropriately and run it again. Similar to a
common clean and build process.

An additional issue is source divergence — a C++ code base
now must somehow contain a CPU compatible version and a sep-
arate GPU compatible version. This often can result in the source
code diverging either externally or internally. Two distinct code
bases may emerge or alternatively, two instances of an algorithm
exist within the same source. In either case, algorithm changes
must propagate between algorithm instances. Every category of
conversion is susceptible to this issue. Having to update two sets
of code that do the same thing but have very different implemen-
tations (and subsequently different knowledge requirements) is
clearly a suboptimal situation.

An initial attempt to mitigate this might be to add in some
delegation code that determines which version of the algorithm
to utilize and maintains functions for both CPU and GPU imple-
mentations. While there are advantages to this approach, it does
not solve the issue but instead merely preserves the issue within
a single code base. A more clear approach to this is to use some-
thing like GPSME to perform a source to source transformation,
generating the GPU enabled code as required. However, as is
common of source to source transformation tools for automating
GPU parallelization, other issues must be considered.

As noted in other sections, GPSME and other similar tools
(OpenMP, OpenACC, etc.) rely on the extensive use of source
code annotations. Annotations, while powerful, may create an
unanticipated workflow impediment which may not reveal itself
until a more advanced stage in a project. Annotations are a way
to provide hints to the engine performing the transformation. In
some cases a user may wish to change these options, for their
own experimentation, specific platform/device testing, or other
reasons. As a result the user is forced to modify the source code.
First, the breadth and depth of their changes may depend on what
they wish to change and second, their source changes must now be
reconciled against other developments when using revision con-

trol software. This project aims to minimize the use of annotations
due to common recurrence, potential knowledge requirements,
and the need for externalizing configuration parameters.

Configuration parameters are also relevant when dealing
specifically with source to source transformation approaches and
their output. Often the readability of generated code is suboptimal
— it is very clear that a machine generated the code. One of the
advantages of source to source transformation is that in the event
it is not perfect, developers may still benefit due to the partial
work completed in the transformation. Users who are attempting
to reconcile bugs, identify functionality, or optimize code man-
ually must cope with code readability post transformation. The
availability to configure options for readability, even as simple as
prefix and suffix names, would yield greater readability for users.

Another workflow obstruction is the license of the tools be-
ing used and the impact on the output software. Closed source
libraries impede extension by users, even users who have paid for
the software. It is desirable to maximize extensibility both from
a software design standpoint and a code accessibility standpoint.
Having high cost software would deter users, including students
and researchers. As a result the proposed software will be avail-
able at no cost and under an open source license.

These complications, some of which may be subtle, can play
a big role in the user software development cycle. As a result, the
development of togpu considered them from the beginning. Fo-
cus was on the user from the start to build a useful, usable tool.
The consideration of these complications and the state of current
research yields various other potential avenues for extension. By
building on the research of existing methods of GPU develop-
ment, this project is implemented to minimize the impacts of the
identified workflow complications and establishes an extensible,
C++ to CUDA transformation tool foundation.

Implementation
Easing GPU development, specifically for image process-

ing, by automating parallelization can be achieved using a source
to source transformation from C++ to CUDA. The implementa-
tion of togpu is covered in this section. The chosen supporting
libraries and their usage in the tool are discussed. Approaches to
automatic parallelization are detailed and underlying elements of
the transformation process are explored.

An iterative process was used throughout building togpu.
Each iteration increased the feature set to handle more complex
input. This allowed each iteration to focus on a specific area to
improve while moving in the direction of the end goals. For exam-
ple, one cycle may focus on supporting fixed size arrays and the
next cycle may focus on adding optimizations to perform batch
operations on such arrays. At the core of the investigation is the
determination of which, if any, supporting libraries would be used
to perform source analysis for the transformations.

Source Analysis
The requirements and desirable features for supporting li-

braries include: capability to perform source to source transfor-
mation, ability to parse at least C++11 (more languages/standards
is desirable), provides access to parsed code, provides facilities
to identify code sections of interest (loops, functions, locations
of function implementations) with and without the use of anno-
tations, supports extension (including a usable API), ability to

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.4

output CUDA, appropriate licensing, supports multiple platforms,
and has development activity and support such that the likelihood
of library stagnation is a small as possible. Each candidate was
evaluated against these requirements, the context of applicable
goals for this project, usability, and against each other. One candi-
date that was reserved as a viable, backup option was the creation
of such a library. It was preferable however to avoid this scenario
if possible due to many reasons such as time constraints and com-
munity support.

Initial exploration revealed multiple candidates and after fur-
ther research Clang/LLVM (Low Level Virtual Machine) emerged
as the clear choice. Existing options were available for automat-
ing source to source transformations. After a cursory search
for candidate frameworks, the ROSE compiler infrastructure and
LLVM emerged as strong options. Their selection was due to
their maturity and apparent potential to meet this project’s re-
quirements. In short, ROSE was the basis for GPSME, a C++ to
GPGPU automatic parallelization toolkit, was open source, and
appeared to have sufficient documentation. LLVM was chosen as
the basis for nvcc, the compiler provided by NVIDIA for CUDA,
was also open source, appeared to have sufficient documenta-
tion, and offered other useful tools - such as Clang - based on
LLVM [8]. Each candidate, ROSE and LLVM, was investigated
further and evaluated in the context of this project.

The ROSE compiler infrastructure was one candidate con-
sidered for the base of this project. An open source project, hav-
ing substantial language support, and targeting application opti-
mization and source-to-source transformations, ROSE appeared
a more than suitable framework. A dearth of support, incorrect
documentation, out of date libraries, missing Microsoft Windows
support, and a lack of activity (including the more recent EDG4
branch) proved substantial detriments to ROSE usage and adop-
tion [10]. In order to setup a working environment with ROSE it
became necessary to construct a supplemental guide to the exist-
ing documentation which still resulted in compilation difficulties
and failure. The API provided by ROSE shows the large influ-
ence of the SAGE III library. ROSE is based upon SAGE III thus
this is not surprising. However, this conjunction introduced the
necessity of mixing ROSE API members and SAGE API mem-
bers when developing. That aside, the concepts of the API were
sufficient and the API specifics were fairly straightforward [10].
However, when compared against Clang and LLVM with respect
to the project’s goals, ROSE met fewer of the requirements.

The LLVM (Low Level Virtual Machine) Project is an open
source umbrella project consisting of a set of compilation and tool
chain projects. The foundation of the project, LLVM IR (Internal
Representation), enables tools such as a target-independent opti-
mizer to work with various code bases [5]. Some projects include
Clang, a C/C++/Objective-C compiler for LLVM which boasts
substantial performance increases over GCC and offers enhanced
usability [5]. Clang also provides libraries which allow users to
parse and interact with C/C++/Objective-C code at various ab-
straction levels. Clang and LLVM are cross-platform [5]. LLVM
also contains a native debugger as well as a native implementation
of the C++ Standard Library. Many other projects are included in
LLVM, including an official NVIDIA NVPTX port which is in-
cluded in more recent versions of the CUDA toolchain [5].

Clang is a cross-platform C/C++/Objective-C compiler for
the LLVM native IR [4]. Clang provides libraries enabling in-

teraction with parsed code at various levels of abstraction. Clang
generates an AST (Abstract Syntax Tree) which closely resembles
the input code, facilitating quick user comprehension [4]. The
provided libraries allow interaction with the generated AST for
different purposes [15]. These libraries are libClang and libTool-
ing [14].

It is possible to work with input code through Clang in mul-
tiple ways. The three available methods are: using libClang, us-
ing the Clang plugin system, and using libTooling. Choosing the
appropriate approach requires evaluation of the available meth-
ods. The Clang documentation provides a set of guidelines which
outline the capabilities of each method [14]. LibClang is insuffi-
cient as it may be desirable to access low-level abstractions inside
Clang’s AST. It is stated, ”[Do not use LibClang when you] ...
want full control over the Clang AST” [14]. Clang Plugins is not
a viable approach as it sacrifices the ability to run as a standalone
tool and the ability to run outside of the build process [14]. The
third option, LibTooling, is an appropriate match. It provides low-
level access to the Clang AST, supports executing independently
of the build process, and is suggested for refactoring tools - an
applicable relative of source-to-source translation [14].

As for technical requirements, a C++11 compatible com-
piler is required. Development, compilation, and testing was per-
formed on Linux using Clang 3.5, CMake 3.3, and CUDA 6.5.
Compilation and usage is possible on other operating systems as
well as LLVM and Clang are also cross-platform.

The project remains tightly related to Clang and LLVM in
styling and idioms to ease developer familiarization. Matchers
and transforms are abstractions around the Clang ASTMatcher
and MatchFinder::MatchCallback classes. These abstractions
make it possible to quickly add new, reusable transforms that are
configurable.

Automatic Parallelization
Automating the task of parallelizing an algorithm is a non-

trivial endeavour. Extensive research has gone into this area
both in terms of parallelization approaches and automating them.
While automatic parallelization approaches and methods are core
elements in this project developing a novel method of paralleliza-
tion automation was not the focus. New algorithms may arise in
the future related to this project but we reiterate it is not the focus.
It is intended that this project facilitate and help advance the field
of parallelization algorithm research in accordance with the goal
of lowering GPU development barriers and workflow enhance-
ment.

The initial method integrated is a simple form of common
vectorization. Several of the algorithms are readily converted to
this format. The histogram algorithm required some minor mod-
ifications to detect dependencies between the input and output
parameters. A process which is on the roadmap to be replaced
with more advanced dependency analysis. A large boon is the
configurable nature of parallelization approach application. As
more approaches are integrated, they may be applied condition-
ally to various algorithms. Advanced approaches such as per-
forming analysis to determine which method of parallelization is
most appropriate is another potential future enhancement. As the
algorithm collection grows the potential value as an asset for both
researchers and production developers also increases.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.5

Matcher
Matchers are based on the Clang ASTMatcher but with a

few extra elements, such as naming, registration, and configu-
ration support to ease development and meet the needs of this
project [13]. A matcher searches for specific elements in source
code. Nested for loops, a while loop with a single condition, or
the member named ”flag” in the class ”Country” are potential ex-
amples. See Figure 1. The units of code that are of interest may
be bound to various parameters and the result is passed to the as-
sociated transforms.

Figure 1. Example Matcher

// Locate a function declaration that is also a function
definition , defining a

// function named FunctionName that may or may not have
a return statement .

// Bind the function declaration to the key:
BindFunctionDeclName. If there is a

// return statement bind it to the
BindFunctionDeclReturnStatementName key.

DeclarationMatcher FunctionMatcher =
functionDecl (allOf (isDefinition () ,

hasName(”FunctionName”)), anyOf(
hasDescendant(returnStmt () .bind(”BindFunctionDeclReturnStatementName”)),
anything ())) .bind(”BindFunctionDeclName”);

Transform
Each transform may perform a set of modifications to the in-

put code. Once a matcher has located the desired area(s) of code
various elements are bound to a key. The associated transforms
receive results from the matcher and can access bound elements
via lookup using the appropriate key. These keys can be exposed
to the user for configuration. While the bound elements of the
code from the associated matcher result are generally the trans-
formation target, access to other portions of the source code is
available.

Transform Pipeline
The transform pipeline currently follows the execution path

inherent to Clang. Each transform is initialized, associated with
the appropriate matchers,and added to the pipeline in the order
requested for execution. Transform execution order is determined
by the configuration file. The transforms execute in a serial fash-
ion. As this project is in it’s foundational stages, the transform
pipeline is likely to expand. The transform pipeline and other
process elements are also configurable via a configuration file.

Configuration
The tool, transformation process, and pipeline are config-

urable. Options may be set that influence the general tool oper-
ation (e.g.: location of resource files, etc.) via command line ar-
guments or a configuration file. Individual transforms and match-
ers are configured using a configuration file. Each transform and
matcher is represented by a sequence of mappings (keys and as-
sociated values) which is parsed by the tool. Matchers may be
associated with transforms using the configuration file. Similarly

Figure 2. Transformation Pipeline Diagram

Input C++ (invoke togpu)

Transform 1 Matcher 1

Transform 2 Matcher 2

Transform N Matcher N

Output CUDA

the parameters assigned by matchers and utilized in transforms
may be modified, allowing both matchers and transforms to be
reused. The order of operations used in the transform pipeline cor-
responds to the order of the transforms in the configuration file.
Thus if TransformA should be performed before or after Trans-
formB, the configuration of TransformA can be moved to precede
or succeed TransformB to achieve the desired ordering. The con-
figuration file is constructed using Yet Another Markup Language
(YAML) [2]. YAML is human readable, widely used, has many
available parsers including one that ships with LLVM, and is doc-
umented sufficiently in the event creating a new parser becomes
necessary [2]. An example configuration is shown in Figure 3.

Assumptions
Various assumptions are made for this project. The primary

assumption is that the user has access to the C++ source code
for the target project and preferably, it’s dependencies. It is also
assumed that the extent of language support is sufficient for the
user’s project. In cases where it is insufficient users may engage
in further development efforts to increase the language coverage
to their satisfaction. An assumption is made that the output source
code desired is CUDA and correspondingly that the user wishes to
utilize such code on a CUDA supporting platform. It is assumed
that the ability to identify source code sections for transformation
is doable with fewer or zero annotations than that of other ap-
proaches to C++ to CUDA transformation. It is assumed that the
user is able to utilize the proposed software and it’s dependencies
with respect to licensing, operating system, device compatibility,
platform, and/or other aspects.

Limitations
Limitations are present which are not unexpected of early

stage projects. Any of these limitations may be addressed with

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.6

Figure 3. Sample Transformation Pipeline YAML Configuration

−−−
transforms :

− name: AddCUDARuntimeIncludeTransform1
type : AddCUDARuntimeIncludeTransform
matcher names:
− FunctionDeclarationMatcher1

options :
− key: bound function decl name

value : ’KernelDecl’

− name: CopyKernelParametersTransform1
type : CopyKernelParametersTransform
matcher names:
− FunctionCallMatcher1

options :
− key: bound function call name

value : ’ KernelFunctionCall ’
− key: return parameter name

value : ’ return parameter ’
− key: prefix device variable

value : ’ device ’

matchers:
− name: FunctionDeclarationMatcher1

type : FunctionDeclarationMatcher
options :
− key: function name

value : ’ kernel ’
− key: bind function decl name

value : ’KernelDecl’
− key:

bind function decl return statement name
value : ’KernelReturn’

− name: FunctionCallMatcher1
type : FunctionCallMatcher
options :
− key: function name

value : ’ kernel ’
− key: bind function call name

value : ’ KernelFunctionCall ’
...

later development efforts. One of the limitations of this project is
that it is unlikely that the generated code will always outperform
hand optimized code. There may be very fine-grained optimiza-
tions that are not applicable to include in the project yet may be
manually inserted to yield performance gains. This system still
makes the generation of the base code for an experienced user to
optimize much easier, amongst other workflow benefits. Another
limitation, especially in the initial stages, is the dependence upon
extension.

Due to the project maturity level and very limited set of par-
allelization algorithm implementations, the applications of togpu
are limited to specific input algorithms. Moreover, bugs not in-

cluded, there are cases where the existing transformations are in-
sufficient to convert specific code to CUDA. Similarly, support
for specific device and/or platform optimizations, as well as other
interesting additions to the tool must be deferred for future de-
velopment. Each of these limitations may be mitigated by future
extension efforts.

Another implementation inherent limitation is that by specif-
ically targeting C++ to CUDA, other languages cannot be used
with the same code base. Clang/LLVM offers support for C, C++,
Objective-C, and Objective-C++ which may be leveraged in the
future with little changes to support those input languages. That
does not mean that the approaches and progress made in develop-
ing this tool cannot be applied elsewhere or that additional tools
may be introduced to handle more input languages. Another in-
stance of a similar tool for a different input language could be an
interesting development.

Currently togpu can only work with a limited set of lan-
guage elements in input algorithms. This is largely due to time
constraints instead of some limitation of the underlying libraries.
Fixed size arrays must be used for data collections. Looping op-
erations must be performed using for constructs. While external
libraries may be used both inside and outside of the function being
parallelized, usage within the target function is discouraged as no
actions are taken other than copying the calls as written. As devel-
opment continues these restrictions should change and hopefully
vanish.

Experimentation
Algorithms selected for experimentation represent of com-

mon classes of problems in image processing. Vector addition is
the exception but is included as it is a common, introductory GPU
development problem. Each algorithm was implemented in C++
by hand, using an initial, non-optimized (naive) approach. For
example, a separable convolution algorithm was not used, nei-
ther was an accumulator but instead a sliding window. The use
of naive approaches was to create algorithms representative of a
user new to the topic area to improve transformation processes.
Each algorithm was first constructed to run in serial on a CPU -
multiple threads were not used. Second, the same algorithm was
translated manually to CUDA (version 6.5) run on the GPU. Au-
tomatic transformation using togpu is then applied and the result
are shown in Table 1.

Each algorithm is benchmarked and results are presented us-
ing executions or cycles per second. Only the function call or ker-
nel call has been appropriately instrumented thus each cycle rep-
resents one execution of the algorithm. Each CUDA kernel launch
was followed by a cudaDeviceSynchronize call to ensure proper
benchmarking (kernel launches return before the operation has
completed). Each algorithm was executed in a loop 1000 times on
a Nvidia C1060. Three algorithms were constructed and bench-
marked: CPU, GPU, and Generated GPU. The CPU algorithm is
the original serial source code to be transformed. The GPU algo-
rithm is the CPU algorithm manually translated to a CUDA ver-
sion used for reference when constructing transforms. The GPU
algorithm should have very similar performance to the Generated
GPU algorithm. The Generated GPU algorithm is the result of
using the automatic transformation tool on the CPU source.

Vector addition is performed using two 10000 component
vectors. A general 3x3 matrix kernel convolution filter was im-

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.7

plemented. The specific kernel variant run was a box blur (iden-
tity matrix). A color inversion filter was implemented which per-
forms a bitwise inversion of each color channel on the source im-
age. The histogram algorithm implemented utilizes 256 bins and
represents a set of algorithms where output accesses must be syn-
chronized in some manner (e.g., output[input[i]]++). Each image
processing algorithm operated on a 256 x 256 (height x width)
RGB image.

Table 1. Algorithm Execution (executions/second — higher is
better)

Algorithm CPU GPU Generated
GPU

3x3
Convolution
256x256
RGB

4956 7172 7134

Color
Inversion
256x256
RGB

19271 28662 28484

Histogram
256x256
RGB
256 bins

2074 1576 1479

Vector
Addition
10000x1

16441 70430 70827

Effective and quantitative measurement of the differences in
development time when comparing togpu usage versus traditional
development is non-trivial. User experience levels must be taken
into account and quantified, algorithm familiarity should be con-
sidered, and various other factors must be examined. While a sig-
nificant, formal user study is possible, at this stage in development
the tool is not mature enough to mandate such a study.

Anecdotal evidence suggests togpu significantly expedites
GPU development both in source creation and workflow. Inex-
perienced users were able to quickly configure the transformation
pipeline to explore new options and suit their needs. The ability to
select a specific function for optimization provided usable scoping
and eased usage in existing source code as not all the code was re-
quired to be modified. Configurations were easily shared between
team members. Experienced users were able to eliminate boiler-
plate code using transformations and could edit the resulting code
as needed. The generated code maintains high readability and
is accessible while corrections can be applied either to the out-
put code or integrated back into the producing transforms. New
transforms can be added as required and other developers can eas-
ily use the additional transformations.

Discussion
The results shown in the results section and Table 1 point to-

wards the benefit and effectiveness of automating C++ to CUDA
transformation. The performance results combined with anec-
dotal user feedback clearly displays efficacy but more in depth
and formal user workflow impact analysis is obviously desirable.

Such a study is more appropriate for the future when the tool has
matured further and is able to be used on higher complexity source
code.

Many of the problems or algorithms in image processing are
similar such that we anticipate the current state of the tool may
be applicable to many more algorithms than expected. Support-
ing this hypothesis, out of the algorithms specifically investigated
the results were achieved using only two methods of rudimentary
parallelization.

The increase in performance shown when using the produced
GPU color inversion algorithm suggests that per-pixel operations
such as color inversion map well to SIMD design. This is ex-
pected and reinforced by the performance increase shown by the
introductory vector addition algorithm as the problems are ex-
tremely similar.

The histogram shows over a quarter slow down when run on
the GPU. Initial this might seem counterintuitive as a histogram
operation is trivial but this slowdown is anticipated. Optimizing a
histogram calculation for parallel execution is an explored prob-
lem and has been investigated in depth [9]. This difficulty arises
due to the dependency on synchronized output — each bin in the
histogram is dependent upon any number of input pixels. The
general case, the class of algorithms that share common features
with histograms, is the focal point of interest. Utilizing or devel-
oping intelligent parallelization techniques that construct efficient
CUDA output for such scenarios becomes a clear need from these
results. Intuitively this issue may persist within transformation
software as recognition or detection of specific patterns may be
incomplete.

Overall the results are suboptimal in terms of execution per-
formance due to lack of optimizations and an absence of more
advanced parallelization methods. Even with these issues, the re-
sults point out that automatic transformation retains value. An in-
experienced developer may use the tool as a proof of feasibility or
proof to warrant further investigation/optimization by a specialist
the tool is useful and for an experienced developer, having an ini-
tial starting point from which to optimize or correct removes some
time and burden. These types of boosts are but two of many po-
tential areas of benefit. When used as a litmus test to determine if
further resources should be dedicated to optimizing an algorithm
on the GPU it is important to note that poor performance in a gen-
erated algorithm does not mean the algorithm cannot be mapped
effectively for SIMD execution. The case of the histogram is one
such example.

Only measurement of the execution time of each run of the
selected algorithm is displayed. This means that other consid-
erations such as bidirectional host and device memory transfers
are not included. While this is necessary for gauging only al-
gorithm execution, in terms of real world usage another explo-
ration of the comparison of complete program execution times
could prove useful. In the future more advanced parallelization
algorithms, such as methods utilizing batch kernel execution and
asynchronous data streaming, may have been introduced which
would make such a comparison much more intriguing.

Future Work
There are many opportunities to extend togpu. A primary

area of future work is to extend the capabilities supporting auto-
matic parallelization. Adding additional methods of paralleliza-

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.8

tion beyond simple methods such as vectorization would en-
able many interesting benchmarks as well as increase the util-
ity of the application in production usage scenarios. Conve-
niently transforms and the overall system enables anyone to ex-
periment with parallelization approaches. Expanding beyond ap-
plications within image processing is another area where devel-
opment would bring significant value to the project. Some other
intriguing avenues are exploring the benefits of integrating device
specific optimizations and investigating an interactive transforma-
tion mode.

Conclusion
We presented a new tool, togpu, to perform CUDA to C++

transformations using Clang/LLVM to aid users in harnessing par-
allel computing power by lowering GPU development barriers.
Collected results from application of automatic transformations
to common image processing algorithms displayed effective gen-
erated algorithm performance. Implementation details were pre-
sented and future potential development areas were outlined. Fur-
ther development to improve the tool may facilitate adoption in
production and research environments, easing GPU development
for many users.

Acknowledgments
The authors acknowledge the support of Wright State Uni-

versity.

References
[1] N. Bell and J. Hoberock. Thrust: A Productivity-Oriented Library

for CUDA. In GPU Comput. Gems Jade Ed., pages 359–371. 2012.
[2] O. Ben-Kiki, C. Evans, and B. Ingerson. YAML Aint Markup Lan-

guage (YAML) Version 1.2, 2009.
[3] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling

an embedded data parallel language. Symp. Princ. Pract. parallel
Program., pages 47–56, 2011.

[4] C. Lattner. LLVM and Clang: Advancing compiler technology.
Keynote Talk, Free Open Source Dev. . . . , page 28, 2011.

[5] C. Lattner and V. Adve. The LLVM Compiler Framework and In-
frastructure Tutorial. Lang. Compil. High Perform. Comput., pages
15–16, 2005.

[6] S. Lee, S. J. Min, and R. Eigenmann. OpenMP to GPGPU: A Com-
piler Framework for Automatic Translation and Optimization. In
PPoPP’09, pages 101–110, 2009.

[7] NVIDIA. cuBLAS.
[8] NVIDIA. CUDA LLVM Compiler.
[9] V. Podlozhnyuk. Histogram calculation in CUDA. 2007.

[10] D. Quinlan, M. Schordan, R. Vuduc, Q. Yi, T. Panas, C. Liao, and
J. J. Willcock. ROSE Tutorial : A Tool for Building Source-to-
Source Translators Draft Tutorial (version 0 . 9 . 5a), 2013.

[11] A. Rubinsteyn and E. Hielscher. Parakeet: a just-in-time parallel
accelerator for python. Proc. 4th . . . , 2012.

[12] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data paral-
lelism to program GPUs for general-purpose uses. In Proc. 12th Int.
Conf. Archit. Support Program. Lang. Oper. Syst., volume 34, pages
325–335, 2006.

[13] The Clang Team. AST Matcher Reference.
[14] The Clang Team. Choosing the Right Interface for Your Application

- Clang 3.6 documentation.

[15] The Clang Team. Introduction to the Clang AST - Clang 3.6 docu-
mentation.

[16] S. Ueng and M. Lathara. CUDA-lite: Reducing GPU programming
complexity. . . . Compil. . . . , pages 1–15, 2008.

[17] W. Wang, L. Xu, J. Cavazos, H. H. Huang, and M. Kay. Fast accel-
eration of 2D wave propagation simulations using modern computa-
tional accelerators. PLoS One, 9, 2014.

[18] D. Williams. Automatically converting C / C ++ to OpenCL /
CUDA.

[19] D. Williams, V. Codreanu, P. Yang, and B. Liu. Evaluation of au-
toparallelization toolkits for commodity graphics hardware. 10th
Int. Conf. Parallel Process. Appl. Math., 2013.

[20] Y. Yan, M. Grossman, and V. Sarkar. JCUDA: A programmer-
friendly interface for accelerating java programs with CUDA. In
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), volume 5704 LNCS, pages 887–899,
2009.

Author Biography
Matthew Marangoni received his BS in Computer Engineering and

Computer Science from Wright State University (2011) and his MS in
Computer Engineering from Wright State University (2013). He is cur-
rently pursuing his Computer Science and Engineering PhD under advi-
sor Dr. Thomas Wischgoll. Matthew’s work has involved HCI, VR, UX/UI,
data visualization, machine learning as well as other areas. He has pre-
sented at VDA, is a member of Tau Beta Pi and the ACM.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-487.9

