
JASPER: Just A new Space-filling and Pixel-oriented layout for
large graph ovERview
Jason Vallet, Guy Melançon and Bruno Pinaud,
Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract
When analysing data and handling a visualisation, users

mainly spend their cognitive resources making sense of the graph-
ical representation and mapping it back to the data and domain.
This task becomes even more critical when dealing with larger
data sets. Therefore, a valuable visualisation design strategy is
to couple graphical representations and user tasks to better sup-
port the sense making process. This paper focuses on a particular
task where users must make sense of state changes occurring on
nodes of a graph. To this end, we propose JASPER, a new lay-
out algorithm focusing on the visualisation of nodes inspired from
pixel-oriented layouts, relying on node clustering to identify and
represent existing connections through spatial adjacency.

JASPER can layout moderate size graphs in real-time and is
able to tackle large graphs with up to 2 million nodes and 5 mil-
lion edges in reasonable time (about half a minute). Furthermore,
although JASPER has been designed around a specific applica-
tion, the underlying methodology can be employed to draw quick
overviews of any type of graphs. The paper lays down the un-
derlying principles of JASPER, and reports it performances (exe-
cution times) on increasingly large graphs. JASPER is then used
and showcased to visualise network propagation phenomenon in
large graphs.

Introduction
In recent years, the graph drawing community has focused

on increasingly larger graphs, evolving along the multiplication
of the ever expanding social networks and their popularisation.
Used to study social behaviours or consumer habits, social net-
works are nonetheless complex to draw and analyse due to their
sheer size, thus giving them additional interest for the research
community. Roughly speaking, a social network represents a set
of users possibly connected to one another and, when depicted as
a graph, users are represented by nodes while a connection be-
tween two users is symbolised by an edge. In general, the huge
graphs resulting from the mining of such networks force us to face
several hundreds of thousands [26], if not millions [25], of nodes
at once, thus pushing the existing representations, commonly used
to display graphs of more moderate sizes, to their limits.

A lot of different techniques exist nowadays to draw graphs,
and vary according to structural specificities (i.e. tree, di-
rected/undirected or compound graphs). Most techniques aim
at producing a human-readable and easily interpretable map of
the network structure [37]. Popular approaches to display graphs
are node-link diagrams, matrices and hybrid visualisations mix-
ing these two representations (e.g. [17] and [32]). However, all
of those visualisation techniques have limitations when facing
large graphs, especially node-link representations [12, 17]. The

difficulty of displaying millions of elements in a comprehensible
fashion is obvious and, as a result, existing layout algorithms are
not always efficient in representing such graphs. This is mainly
due to the genericity of these methods whereas effective visual
analysis can only be performed through appropriate visual repre-
sentations [37]. Depending, among others, of the analytical tasks
we wish to perform, a good visualisation should thus allow to in-
stantly identify the information that really matter.

In a recent work [36], we proposed to use visual analytics
to compare information propagation in social networks. How-
ever, when facing larger graphs (e.g. networks with thousands of
users), we have been unable to find an existing layout which al-
lows to understand at a glance how propagation operates on the
network. Thus, we have decided to develop a new layout algo-
rithm adequate for our needs: JASPER. It has been designed to
compute compact layouts using pixel-oriented techniques so the
resulting representations will give an overview of the graph. Prop-
agation can be visually tracked as nodes change states using a
simple color mapping.

Though JASPER is adapted to our particular problem, we
believe it can be useful in a number of different situations as a
complementary visualisation for evaluating at a glance some in-
formation on different graphs. Basically, our method adheres to
the following observations:

1. Nodes are the most important elements and thus have to be
clearly displayed,

2. Edges are important too but can impair the visualisation
quality in dense graphs [12],

3. Whether we use a node-link diagram, a matrix or some hy-
brid visualisation, large graphs will still be too big for the
viewer to process/visualise all the embedded information at
once; all we can do is to give hints and directions.

The first point relates to the task JASPER is designed to sup-
port, with a clear focus on node states. The second point is ad-
dressed with authority, since JASPER makes edges non visible.
This design choice however is not that radical given that edges
carry no other information or attributes other than indicating that
nodes are connected. The third observation underlines the fact
that the occlusion problem raised by edges is a general one and
applies to whatever visualisation we may consider when dealing
with large graphs. To compensate this problem, a convenient vi-
sual metaphor can be used to suggest the presence of edges. To
this end, we position nodes so that adjacent nodes (i.e. connected
by an edge) remain as close as possible to each other, thus giv-
ing a hint of an existing connection between those elements to the
viewer. We have to keep in mind that such approximation is nec-
essary as representing every single detail in a legible way is not

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.1

Figure 1: Workflow showing how operations are pipelined in JASPER, starting from a graph with an unspecified layout and returning the
same graph with a node arrangement similar to a pixel-oriented layout.

reasonable considering the number of elements we are handling.
Following those observations and using our representation

method is therefore not without drawbacks: there are limitations
for users trying to visualise dynamic graphs with evolving topolo-
gies. This operation is beyond the scope of our current application
as we are using snapshots of networks in a fixed configuration. It
will nonetheless become relevant in the future as the structure of
a social network is constantly evolving. As for now, we limit our
visualisation on large static graphs and wish to solely visualise
state modifications happening to different nodes.

In the following section, we will present some existing work
related to our current solution and motivate in which aspects they
were not appropriate for our application. This will be followed by
the presentation of our method completed with some design and
implementation details. We then produce some execution times
and present resulting visualisations, extended afterwards as we
introduce a use-case applying JASPER to the visualisation of a
propagation phenomena. The final section allows us to start a dis-
cussion tackling existing problems, possible solutions and sug-
gesting future work directions.

Related work
Information visualisation and graph drawing have been the

subject of extensive research through the years [37]. Among those
works, three techniques are commonly used: node-link diagrams,
matrices and hybrid visualisations. Node-link diagrams are quite
familiar and natural representations for any graphs. Nodes and
edges are both displayed and can thus give visual information
(size, colour, shape, highlight, etc.). Though this type of visu-
alisation can show the global structure of a graph, node-link di-
agram limitations are well-known as they give poor results when
dealing with larger graphs and more particularly when edge den-
sity increases, quickly impairing their overall readability [12, 17].
Matrices, on the other hand, are simple to display and can be use-
ful to appreciate the whole graph structure in one glance. Nodes
and edges can still give visual information but the representation
is nonetheless less natural and large matrices are difficult to work
with [33]. Finally, hybrid visualisations (such as Node-trix [17]
or Mat-tree [32]) can offer significant advantages from both pre-
vious solution but still require some learning efforts for users to
get used to them.

Among all these possible representations, node-link dia-
grams, though proved to come with flaws, are often preferred to
represent social networks [2]. They are mostly displayed in small
samples using force-directed layouts which can give rather good
results on any kind of graph. However, such algorithms can not

be computed on large graphs in a small amount of time [16]. To
find a solution to our large-graph visualisation problem, we thus
have to look at works tackling visualisation of large-scale datasets
(with several hundreds of thousands or millions of elements). Two
examples of such work can be found in [4] and [34] where the au-
thors propose multiscale visualisations of social networks. How-
ever, the resulting representations never show the graph in its en-
tirety thus forbidding the kind of global overview we are seeking.

These two solutions nonetheless raise an interesting point
in using the existing communities within the social networks to
group nodes. More commonly called clusters when studied out-
side social networks, such node grouping can be used to simplify
the layout computation in considering each cluster as a whole
entity instead of trying to find an appropriate position for each
node separately. This method has been used by Huang et al. [19]
and Didimo et al. [8] to visualise up to fifteen thousand nodes
and forty thousand edges. Huang et al. and Didimo et al. both
describe their representations as space-efficient and space-filling
layouts. Such quality is obviously important when dealing with
large graphs so any visual information carried by the displayed el-
ements can be noticed without focusing on each one specifically.
Additional algorithms using space-filling curves as a base for their
resulting layout exist. A few years ago, Muelder et al. [29] have
proposed such a method. Its computation is quick, it can be ap-
plied on large graphs (1M nodes and 2M edges) and the produced
layouts seem clearer than those obtained with force-directed al-
gorithms, nonetheless, edges impair node visibility in the densest
parts of the graph. A somewhat similar solution has been later
proposed by Auber et al. [5] only using hierarchical data, thus
making it inappropriate for general network visualisation. In this
case however, edges are no longer needed as the hierarchy is in-
dicated using coloured nested regions and borders, dividing the
layout like a nested treemap. For more information and extended
bibliographies on space-filling curves, we refer the reader to the
two aforementioned papers ([5, 29]).

The idea of using space-filling curves is elegant and allows
to efficiently use space. This can however be pushed even fur-
ther with a pixel-oriented visualisation as initially introduced by
Keim [21]. This method is used to analyse records and visu-
alise the possible correlation between two measures, one being
displayed using the position of the elements along a space-filling
curve while the second is depicted using a simple colour mapping.
Pixel-oriented visualisations have been successfully used to visu-
alise very large datasets containing up to a billion of elements [35]
and to perform social network analysis [13]. The capacity to dis-
play numerous elements is a necessity for our visualisation case,

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.2

however, edges –carrying information on the connectedness of
each node in the network– cannot be explicitly represented using
a pixel-oriented method. Duarte et al. [9] have recently encoun-
tered a similar problem and addressed it quite effectively. Their
“Nmap” layout is introduced as being a neighbourhood preserva-
tion space-filling algorithm able to display connected nodes close
to each other. As mentioned in the introduction, considering the
number of elements to visualise, we have to represent the informa-
tion simply and give hints on important facts as the user is not able
to process that much information all at once. To this end, a layout
algorithm offering to keep each node close to its neighbours, even
if only approximately, seems a good solution. Though, it can not
be applied on a smaller scale to obtain an exact representation, it
presents sufficient qualities to be used to compute overviews on
large graphs.

Presentation of our solution
Our solution is divided in two main phases (see Fig. 1). We

first compute a layout based on a coarse representation of the
initial graph. This step allows to improve the computation time
as we limit the number of elements, thus simplifying the graph
to produce. Then, we reorganise all the nodes along a space-
filling curve. The order on the curve for each node is based on
its spatial position in the previous layout. The resulting layout
is a space-filling representation with similitudes to pixel-oriented
layout (only the nodes are displayed and existing edges are invis-
ible by default). We end up with a compact visualisation where
nodes belonging to the same connected group are set to be dis-
played spatially close to each other.

Phase I: layout using coarser graphs
Sometimes mentioned as a coarser graph or a skeleton graph,

this method allows to describe an initial graph by a much sim-
pler representation. Similar process can be found in different
algorithms and techniques such as Auber et al. [4], Frishman et
al. [11], Itoh et al. [20] and Didimo et al. [8].

Grouping nodes
The starting point of our method is the application of a clus-

tering algorithm on the initial graph. Typically, clustering algo-
rithms are used to detect clusters in a graph, describing a subgroup
of nodes particularly connected to each other. In graphs represent-
ing interactions between persons such as social networks, those
groups are called communities. The subject is further developed
by Fortunato [10] where an overview of different existing clus-
tering algorithms is presented and several of those techniques are
compared. According to the author, the Louvain algorithm pro-
posed by Blondel et al. [7] and Infomap of Rosvalt et al. [31] pro-
vide the best results. Finally, the execution time on large graphs
provided by Blondel et al. in their paper, completed with addi-
tional support from Didimo et al. [8] showing the prominence of
Louvain’s clustering technique have convinced us to opt for this
solution in our method.

Once we apply the clustering algorithm on a graph, each
node will be put in the same subgroup as their closer neighbours.
As we wish for each node to be as close as possible to its neigh-
bours when displayed, we entirely rely on the clusters quality –
thus on the clustering algorithm efficiency– to appropriately re-
group each node with its proper relatives.

(a) Initial graph G0; each cluster C0

is coloured differently for identifi-
cation purpose.

(b) Coarser representation G1; each
coarse representative is displayed
using the same colour as its cluster.

Figure 2: Example of a coarsening process on a simple graph
divided in 10 clusters.

Building on clusters
Once each node is set in the adequate cluster with its closest

neighbours, we have information on how to group users together.
We start working on the initial graph to identify the different clus-
ters and create a map of their relations. We thus obtain a first
coarse graph. Repeating those operations several times produces
coarser and coarser representations. Figure 2 shows an example
of such treatment on a small graph. Starting with an initial graph
(Fig. 2a), a computation of a coarser representation (Fig. 2b) gives
us the connections between the clusters and results in a simpler
graph. More generally, upon each computation of a coarser graph,
we first group close nodes together then communities linked to
one another. We use the groupings herein created to decide how
close two users should be displayed.

Using a more formal approach, coarser representations can
be described as follows. For a graph Gn = (Vn,En) identified by a
set of nodes Vn and a set of edges En ⊆Vn×Vn, where n≥ 0; we
define G0 as the initial graph we want to visualise and G1,G2, . . .
as its gradually coarser representations. By applying a clustering
algorithm on Gk, where k ≥ 0, a set of clusters Ck is created such
as each node v ∈ Vk belongs to one and only one cluster c ∈ Ck
(described as cluster(v) = c). Those groupings are then translated
to a coarser representation of the graph, i.e., for each cluster c, a
node w is created in a new graph Gk+1 such as w ∈ Vk+1 and,
if an edge e ∈ Ek exists between v and v′ ∈ Vk, we update Gk+1
following those two cases:

a) v and v′ are in distinct clusters (cluster(v) 6= cluster(v′)),
then, an edge ε ∈ Ek+1 is set between the two nodes w
and w′ ∈ Vk+1 –respectively representing cluster(v) and
cluster(v′). When an edge linking w and w′ already exists, a
weight can be set and updated to indicate the multiple con-
nections between the two clusters.

b) v and v′ are in the same cluster c (cluster(v) = cluster(v′) =
c), then the edge e is not considered in graph Gk+1.

Layout computation
The layout is obtained through successive steps on the coarse

representations. Starting with the coarsest graph Gp, we gradu-
ally use the layout computed on the clusters in Gk (p≥ k > 0) to
place the subgroups in Gk−1. The operation is repeated until G0
is reached and treated.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.3

To perform the first layout computation, we have to choose
an efficient layout algorithm offering legible drawings in a small
amount of time. In its survey on spring embedders and force-
directed layouts, Kobourov [23] mentions some possible candi-
dates for such application. Ultimately, we have selected the Fast
Multipole Multilevel Method (FM3) introduced by Hachul and
Jünger [15]. The choice has been motivated based on the results
showed by Hachul et al. [16] and Archambault et al. [1] as this
layout method proposes a good balance between execution time
and drawing quality with minimal edge-crossings and overlapping
edges. Those two points are essentials as we wish to keep a read-
able layout of the clusters to easily distinguish one from another.
An additional perk of the layout resides in its weighted variant
offering advanced control if needed.

Computing the layout of the coarsest graph Gp is straight-
forward as it simply requires to apply the algorithm layout on
Gp. The layout of any of the following coarser graphs Gk, where
k < p, needs a few additional steps. First, a local layout is com-
puted in each cluster c ∈Ck. Then, freshly computed coordinates
of each node v ∈ Vk belonging to the cluster c are transformed
through translation and scaling so that all nodes in c are displayed
in an area around w ∈ Vk+1, representing c in the coarser graph
Gk+1. Each node coordinate in a coarser graph Gk+1 is thus used
as an anchoring point to layout the nodes of Gk. Those two steps
are repeated until we reach G0 and have computed the coordinates
of each initial node.

Classic spring-embedded or force-directed layouts are time-
consuming to compute when facing thousands of elements [1].
This nested method allows to compute several small layouts
quickly. Furthermore, those operations and the geometrical trans-
formations affecting node coordinates can be done independently
from one another and thus be easily distributed. As a possible per-
formance improvement evaluated on the testing graphs analysed
in the following section, computing the inner layout of each clus-
ter is not always the best choice as connections with nodes from
outside the subgroup will not be accurately considered. In most
cases where nodes within clusters are densely connected, a simple
random layout gives acceptable results and allows to speed up the
application by averting the nested layouts computations.

On a more general note concerning the whole Phase I, the
rapidly decreasing number of nodes for each coarser representa-
tion makes the construction of Gk+1 and each application of the
clustering and layout algorithms on it quicker. This is not surpris-
ing considering the graphs obtained from the clusters are getting
simpler, however, based on our observations on the testing graphs,
repeated applications to obtain several levels of coarse graphs do
not necessarily improve the resulting layouts. As a result, in our
applications, only one coarser representation (G1) has been com-
puted and used for each graph. We offer nonetheless the general
method as such, considering structured graphs with established
hierarchical communities will benefit from it.

Phase II: pixel-oriented representation
Pixel-oriented visualisations have been presented by

Keim [21] as a representation allowing to display important quan-
tities of data in a minimal space. To do so, elements one wishes
to display are ordered and placed along a space-filling curve. Our
method uses a similar process with nodes being ordered accord-
ing to their spatial position (computed by the end of Phase I). Each

(a) Level 1 (4 nodes) (b) Level 2 (42 = 16 nodes)

(c) Level 3 (43 = 64 nodes) (d) Level 4 (44 = 256 nodes)
Figure 3: Successive developments of the N-order space-filling
curve introduced by Morton [27]; the layout is similar to a Z-order
curve but with a 90 degrees rotation.

node is then laid on the space-filling curve at its given position.
Finally, edges are hidden to obtain the maximum legibility.

Space division and node ordering
Node ordering can be computed fairly easily. We use a tech-

nique similar to the one employed for k-d tree construction [6]. A
k-d tree is a data structure used for the storage of k-dimensional
data, however, in our case, the only dimensions considered are
those specified with the nodes layout position (x and y coordi-
nates). We first divide the graph in two parts with a similar num-
ber of nodes in each halves using a pivot value on the first di-
mension. The two resulting halves are then divided again in two
equal parts but using a pivot value on the second dimension. This
process is repeated while alternating dimensions until each node
is isolated and thus is given an order. We can compute from the
start how many divisions will be necessary to isolate all the nodes,
however, because we wish to conserve a regular shape for the lay-
out, the number of division have to be equal for each halves. This
means regions with fewer nodes have to incorporate “holes”, or
white-spaces, which are given an order too. Moreover, because
the number of nodes is equally distributed in each halves during
the division, the “holes” are evenly spread. Finally, the resulting
shape of the layout will be either a square or a rectangle depend-
ing of the number divisions and nodes to display.

The variable form of the representation has been introduced
to limit the number of “holes” in the resulting layout. Our ideal
visualisation ratio is set to be 1:1, thus a square is appropriate.
However, the successive divisions and the rearrangement along a
space-filling curve –explained in the next subsection– do not give
us the possibility to freely rearrange nodes. The appearance of
“holes” is noticeable on representations with a limited number of
nodes (see Fig. 4b) but becomes less visible when facing graphs
with more nodes (see Fig. 5b). A variable layout shape allows
us to avoid incorporating too many “holes” and to use most of

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.4

Table 1: Complexity of Phase I and II of JASPER applied on a graph G using one level of coarsening. |V0| and |E0| define respectively
the number of nodes and edges of the initial graph G0 while |V1| expresses the number of clusters computed from G0 (equivalent to the
number of nodes of G1) and |E1| designates the edges connecting those clusters (similar to the number of edges of G1).

Phase I: coarser graphs Phase II: pixel-oriented representation
Step Clustering Coarse graph construction Layout computation Node ordering Placement on the curve

Complexity O(|E0|) O(|E0|) O(|V1|log|V1|+ |E1|) O(|V0|log2|V0|) O(|V0|log|V0|)

the space available by following a simple rule: let n ∈ N and |V |
the number of nodes in the graph to display, the resulting shape
will be a square if 2×4n−1 ≤ |V |< 4n and a rectangle otherwise
(when 4n < |V | ≤ 2×4n). We test the number of nodes during the
first space division (on the x coordinate) to either spread the data
on a square or on half that surface, i.e., a rectangle.

Placement along a space-filling curve
Following the order computed during the space division op-

eration, we can sort the nodes. We use the space-filling curve
popularised by Morton [27]. Sometimes called Z-order curve, we
will prefer the original layout using an N shape (see Fig. 3). For
different developments of the curve, the number of nodes we are
able to place along it evolves.

One can see how the successive space divisions give an ap-
propriate order to each node to be displayed along this specific
curve shape. Similar results can be obtained when using different
curves designs or orientations –such as the Hilbert [18] or the
Z-order curves– as long as the node ordering during the division
respects the path followed by the curve. This last point is crucial
to conserve adjacency in the final layout, otherwise, nodes which
should be close end up being separated if the space division and
reconstruction do not follow the same pattern.

Complexity and results
After having introduced the algorithm and motivated each

implementation choice, we now present the layout obtained when
using our method. A specific use case will be introduced after
this section but we wish to apply the algorithm to well known
graphs beforehand for the reader to judge the resulting layouts
and the computing times. First, let us speak a few words about
the complexity of our method.

Complexity
We stay in the previous context by keeping the algorithm

separated in two phases. Following the notation developed ear-
lier, let |V0| and |E0| be respectively the number of nodes and
edges of the initial graph G0, |V1| the number of clusters com-
puted from G0 (equal to the number of nodes from G1) and |E1|
the number of edges connecting those clusters (number of edges
in G1). We remind the reader we only compute one coarse repre-
sentation (G1) from the initial graph as we find using more than
one level does not significantly improve the final layout. A more
complete analysis showing the differences when using more than
one coarser graph is left for future work.

The overall worst-case complexity is in O(|V0|log2|V0|+
|E0|). The first phase, during which the coarse graph is built, is
performed in O(|V1|log|V1|+ |E1|+ |E0|) while the second phase
is done in O(|V0|log2|V0|). To simplify the expression, we max-
imise |V1| and |E1| to |V0| and |E0| respectively. The complete

details for each step and computation phase are given in Table 1.
The given values concern non-parallel executions. However, due
to the current operating systems abilities and processor architec-
tures, we hardly recommend to use single-core implementation
when parallelisation of instructions can be achieve easily with
compiler tools like OpenMP.

Execution times
Table 2 presents the results of our algorithm execution. The

implementation and running time measurements have been done
on a computer using an Intel i7-3840QM processor (2.8GHz, 4
hyper-threaded cores) with 32GB of RAM, a NVidia K2000M,
running a Linux distribution (Ubuntu 14.04) and the visualisation
software Tulip (http://tulip.labri.fr) [3] in its latest ver-
sion (4.8). The time measurements have been performed with the
Boost library (http://www.boost.org – version 1.55) and con-
sider the real process time execution (processor time used exclu-
sively for the program execution1). The datasets used are freely
available online on the Stanford Network Analysis Project website
(http://snap.stanford.edu) and easily fit in random-access
memory during computation as less than 8GB are used on the test-
ing machine at all time. The graphic rendering and display times
are not included in the measures, thus only concerning the lay-
out computation. As an informal measure, the wiki-Talk layout
has been displayed in less than 20s; please also note the impor-
tant need in memory for the full rendering of the com-LiveJournal
dataset (' 25GB).

The results presented in the table are average values obtained
after 10 runs for each dataset. We use the existing implementa-
tions of Louvain and FM3 available in Tulip, thus a small over-
head due to the inner mechanisms of the framework is added to
our workflow. Nonetheless, we end up being able to compute
the layout on relatively large graphs (2M nodes and 5M edges)
in roughly 35 seconds. The last dataset (com-LiveJournal) is pre-
sented to show the limits of our solution on a much denser graph.
Table 2 shows some details concerning the time needed for inter-
mediate computations as well. We observe the clustering algo-
rithm is responsible on average for 30% of the total computation
time on the first datasets while it is accountable for around 75% of
the computation time needed for the last graph. Hence, the clus-
tering algorithm impacts significantly on both the quality –when
deciding the groupings– and the rapidity of the solution, espe-
cially when dealing with large and dense graphs. On the other
hand, the layout algorithm (FM3) executed on the coarse graph
presents a relatively small workload (15% in the worst case) in
comparison (measured as a part of the Coarsening time).

As planned, the results for some steps based on the previ-
ously announced complexities are different, the information given

1Corresponds to the process real cpu clock from the Boost library

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.5

Table 2: Presentation of the execution times for JASPER. Each time value is an arithmetic mean measured on 8 runs and expressed in
seconds: Clustering gives the time for the clustering algorithm execution and Coarsening is for the rest of the Phase I operations; Phase
II corresponds to the whole Phase II application (pixel-oriented layout computation); Total indicates the total execution time, sum of the
previous values, and σ gives the standard deviation of the Total value.

Graph size Time (seconds)
Dataset Nodes Edges Clustering Coarsening Phase II Total σ

email-Enron [26] 36,692 367,662 .23 .35 .27 .85 .02
soc-Slashdot0922 [26] 82,168 948,464 .77 1.16 .59 2.52 .04

com-DBLP [26] 317,080 1,049,866 3.11 1.32 2.37 6.80 .16
com-Youtube [39] 1,134,890 2,987,624 8.35 5.87 9.08 23.30 .64
wiki-Talk [25, 24] 2,394,385 5,021,410 9.84 4.18 20.24 34.26 1.64

com-LiveJournal [39] 3,997,962 34,681,189 190.59 20.78 33.79 245.16 5.97

earlier being only valid for single threaded executions. Thus,
space-filling and node ordering computations are quicker than ini-
tially expected thanks to their parallel implementations. To this
end, we have used OpenMP (with G++ 4.82) to help improve our
code efficiency and execute it on 8 simultaneous threads, the max-
imum possible number on the computer used for measures. We
plan to address the running time comparison when using different
number of cores in future work.

Resulting visualisation
We illustrate the general results obtained with our technique

using two datasets. The first one, presented in Figure 4, is a ran-
dom network generated following the model of Wang et al. [38].
The graph is rather small, only consisting of 30,000 nodes and
59,997 edges. Colours are mapped on the clusters to help differ-
entiate one from another. The number of clusters, while being
relatively low (between 70 and 80), is still significant enough so
that no existing colour-scale can provide enough discernible vari-
ations [14]. Consequently, some cluster colours appear to be quite
similar while truly being different. We first show the coarse graph
and the final layout obtained when using our algorithm, respec-
tively Figures 4a and 4b. Figure 4c displays the same graph using
a classic node-link view with a force-directed layout (FM3).

One can use the colours to identify the correspondences in
the clusters between the two layouts, when looking at the coarse
graph and resulting layouts (resp. Fig. 4a and 4b). Viewing those
two representations side by side also allows to witness how our so-
lution tends to preserve locality as connected clusters ends up next
or not far one from another. Likewise, we can notice the nodes
placement in Fig. 4b respects the clusters position from Fig 4a
(for instance: the two orange clusters on the bottom-left or the
“reddish” ones in the top-right area). Similar cross-examination
is unfortunately much harder between the classic view (Fig. 4c)
and the resulting layout (Fig 4b) due to the random initialisation
performed by FM3, used in both drawings.

Altogether, the force-directed layout in Figure 4c provides a
clear and understandable view of the graph. However, when fac-
ing densely connected or larger networks, force-directed repre-
sentations are not clear enough and may take a long time to com-
pute. To illustrate this point, we use the DBLP dataset (317,080
nodes and 1,049,866 edges) introduced in [26]. Figure 5 shows
the difference between the two rendered representations. The
classic visualisation (Fig. 5a) using the FM3 algorithm alone is
unreadable and the communities, somewhat still discernible when

solely using the force-directed algorithm with the previous ex-
ample (Fig. 4c), now melt into a single shapeless mass. On the
other hand, our resulting layout (Fig. 5b) offers a much clearer
overview of the graph. Each cluster appears more distinctively,
even with limited colour variations, and, as connected communi-
ties are most likely laid out one next to another, additional infor-
mation and insights concerning the group relations can be gath-
ered by the person visualising the graph. This point is especially
true if the used visualisation framework proposes specific interac-
tors for neighbour identification or exploration such as the neigh-
bour highlighter [28]. As shown in Figure 5c, using such tool
allows users to examine and study the graph as well as the con-
nections between nodes. The absence of edges improves the visu-
alisation overall legibility but those elements are not deleted and
can still be visualised. Moreover, organising and positioning the
nodes in clusters gives some structure to the graph, helping users
in seeing which groups of nodes are connected.

Use case: overview of a propagation phe-
nomenon

Our work emerged from a problem encountered while work-
ing on information propagation over social networks. The main
task we were trying to achieve was to assist users in visualis-
ing how a propagation evolves, helping them to perform visual
comparison between different propagation models. We were then
looking for a simple way to obtain readable overviews of large
graphs which could visually inform the user of the current state
of propagation in the network. In the following, we quickly recall
the principle of information propagation in a network and present
some of the resulting visualisations we obtained using JASPER.

Propagation in a network
Information propagation is a basic phenomenon observed in

social networks. The principle is similar to an infection, initially
starting with a few contaminated persons and gradually trans-
ferred to their acquaintances and persons who may have been in
contact with them. Such infection can start in one or several dif-
ferent locations in a network with some nodes transferring it to
their neighbours. Newly contaminated nodes can themselves be-
come infectious and thus able to spread the disease to their own
neighbours, repeating the process.

One of our previous work [36] was proposing to use visual
analytics to compare existing propagation models describing such
behaviour. We have shown how this task could be achieved on a

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.6

(a) Layout of the coarse graph using FM3 – ob-
tained after Phase I.

(b) Graph displayed with a pixel-oriented layout;
mapping based on the coarser graph representa-
tion – obtained after Phase II.

(c) Node-link representation of the same graph
using the FM3 algorithm.

Figure 4: Application of our solution on a random graph (30k nodes and 60k edges) generated with the model of Wang et al. [38]; the
first two figures (a, b) show the intermediary and final layout of our algorithm while the third figure (c) shows the same graph displayed
with a common force-directed layout.

(a) Node-link representation of the network using the FM3

algorithm; layout computed in 180 seconds using OGDF.
(b) Coarse graph view transformed in a
pixel-oriented view.

(c) Use of a neighbour highlighter interactor
on a node of the same graph.

Figure 5: Application of our solution on the DBLP graph [26] (317k nodes and 1M edges); the first figure (a) shows the graph displayed
with a force-directed layout while the second figure (b) uses a layout computed using JASPER. In the third figure (c), we use the
representation (b) previously obtained, select a node and visualise its direct neighbours using a visual filter.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.7

small graph (300 nodes) drawn using a force-directed layout to
give a simple and direct example. The propagation evolution was
clearly noticeable, each node infection being notified by a chang-
ing colour, first, as it is touched –or contaminated– and then, as
it becomes active, i.e., infectious. Nonetheless, without an algo-
rithm able to compute a layout for a large graph in a small time,
this visual method was not scalable. The algorithm presented in
this paper aims at achieving such goal with a layout computable
in a decent amount of time and presenting a full representation
of the graph. The need for a spatial grouping of nodes in clus-
ters becomes evident at this point as a propagation is due to local
events, thus affecting first the nodes in clusters containing already
infected elements. By gathering the connected nodes in the same
area, we want to focus the visual changes induced by the propa-
gation to a specific region of the graph displayed.

Our original work was using the graph rewriting software
PORGY introduced in [30], however, facing large graphs similar
to those studied in the previous section has proved to be too much
for the program. Indeed, some of the performed operations, like
the search of matching subgraphs, are very demanding and thus
may take an overwhelming amount of time on large graphs. We
thus have decided to discard for now the graph rewriting layer
and only use the basic Tulip software [3], upon which PORGY is
based, to perform and visualise the propagation. To this end, we
have implemented the linear threshold model presented by Kempe
et al. [22] and used the Python interpreter embedded in Tulip to
directly apply it to a network.

We have selected the DBLP dataset [26] as a topological base
for this use case. Every additional information concerning the
graph, such as the influence on a user from another (noted bv,w)
or the threshold value for each node (θv), are randomly generated
to compensate for our lack of knowledge. We nonetheless respect
the model specificities noted by Kempe et al.: let N(v) and NA(v)
be respectively all the neighbours of v and solely its active neigh-
bours, i) the joint influence of the neighbours is never higher than
1 (∑w∈N(v) bv,w ≤ 1) and ii) a node activates only when it is suffi-
ciently influenced (i.e. when ∑w∈NA(v) bv,w ≥ θv).

Visualising the resulting evolution
Figure 6 presents the visual overviews, obtained with

JASPER, of a single propagation simulation. Just like before, we
colour in a similar fashion the nodes belonging to the same clus-
ters to allow their visual identification. The initial set of nodes,
selected to be the propagation starting point, are coloured in black
and can be identified as the dark rectangle in the central top part
of Figure 6a in the red cluster. From this point and using the lin-
ear threshold model, we generate a propagation phenomenon. To
visually depict this ongoing process, the colour of nodes relay-
ing the propagation is changed to black. Fig. 6b shows the graph
evolution after several propagation steps. Some nodes within the
same cluster as the starting set have been contaminated and the in-
fection is slowly spreading to other clusters. Fig. 6c and 6d show
additional overviews with an ever increasing number of infected
nodes. As you may notice, the resulting layout is not quite iden-
tical to the one showed in Fig. 5b. It has been explained earlier
that, as JASPER uses the FM3 algorithm as a basic layout, the
final representation is not deterministic. Additional changes may
also be attributed to the local modularity optimisation performed
by Louvain, the clustering algorithm used in our method.

In this use case, we have computed an additional layer of
clustering compared to the results presented in the previous sec-
tion. It allows us to group connected nodes more precisely. This
underlying structure can be clearly seen in Fig. 6d. Two of the
biggest clusters (top-left in light-blue and bottom-right in sand-
yellow) show a clean separation in the repartition of active and
inactive nodes within them. This is not an artefact and can be ex-
plained, for instance, by either a high threshold value for one or
several nodes between those two subclusters, or an insufficient in-
fluence of those central nodes on their inactive neighbours. If we
look carefully, we can see that similar events actually happen in
most of the clusters. When we continue the propagation process,
some of those subclusters end up been infected while others keep
their nodes completely inactive.

Discussion and future work
The use case previously presented exposes perfectly our

main intention when initially designing this layout algorithm: to
propose a legible overview for large graphs. We acknowledge
the limitations of our method as we emphasize the overview char-
acteristic of the resulting visualisation. Performing analysis or
in-depth studies on a graph can not be achieved using our method
alone. Obviously, if one tries to discover all there is to know about
a graph using a single approach, it will not be sufficient to un-
derstand every singular detail; attaining this outcome will indeed
require different methods and points of view. Only then, may
it ultimately result in a more complete picture. This is true for
our method as, due to our focus on node representation, we have
mostly hidden the edges, thus disregarding some information.
Even though we use node placement and colours to give hints of
detected communities and existing connections, such metaphors
are far from perfect and the visualisation produced is not entirely
sound. Nevertheless, with the assistance of supplementary inter-
actors and visual representations, additional insights on the struc-
ture of the graph and connections established through the edges
can be easily accentuated; the neighbourhood highlighter avail-
able in Tulip or a matrix/node-link drawing focusing on specific
sub-graphs are such tools. Furthermore, this lack of explicit infor-
mation is not solely encountered when using our method as large
graphs typically contain more information and details than one
can possibly display simultaneously. Even other solutions similar
to JASPER, using pixel-oriented layout to maximise the amount
of information displayed in limited space, can only give an ap-
proximation [35]. For instance, considering the wiki-Talk dataset
(2,394,385 nodes), we realise that simply using one pixel to dis-
play each node is impossible as the sheer number of elements to
display is bigger than the number of pixels available on nowadays
common display interfaces (a “full HD” resolution is only able to
display 1920× 1080 = 2,073,600 pixels). Multi-level solutions
like [4] and [34] can overcome such restrictions but only up to a
certain point as their resulting layouts solely provide an approxi-
mated or partial representation of the graph.

The visualisation obtained with JASPER is very different
from a typical node-link representation. Most notably, laying out
the elements on a grid limits the number of direct spatial neigh-
bours in the representation whereas a regular force-directed layout
will not face such restriction. Any layout usually produces some
distortion as it is not a perfect representation of the existing graph
topology (different edges length, various radial distribution for

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.8

(a) (b) (c) (d)

Figure 6: Visualisation of a propagation phenomenon on the DBLP graph [26] (317k nodes and 1M edges) using JASPER overviews;
the four layouts represent nonconsecutive steps of a single propagation simulation on the same graph, each node turning black (for visual
impact) when becoming active, or infected, during the propagation.

each neighbour, . . .). Altogether, due to their particularly com-
pact node arrangement, we can expect the distortion induced by
pixel-oriented layouts to be bigger than any force-directed solu-
tions. Further studies and analyses of the distortions introduced
by JASPER is left for future work.

The topic of dynamic data has been briefly mentioned earlier
but not developed further. Obviously, the quick execution of our
method allows to recompute a whole layout whenever an element
is added or deleted, however, the non-deterministic characteris-
tic of the drawings, imputed mostly to FM3, implies a complete
transformation of the graph, thus disrupting the user mental map.
Entirely recomputing the layout may in some cases be a manda-
tory step if added or deleted elements are key nodes or edges.
Indeed, deleting the central node of a cluster may result in a di-
vision of the said cluster while inserting a new edge can result in
two different clusters merging. Yet, we believe it is better to keep
a certain continuity in the position of the elements, thus we plan to
adapt JASPER to display dynamic graphs with minimal changes
in the final layout and, consequently, on the mental map.

Conclusion
Initially created to be an efficient method to compute

overviews of large graphs, we believe JASPER can be useful in
all the situations where a quick visualisation to assess the state
of a graph is required. When used with the appropriate colour-
mapping, the resulting graph can visually communicate relevant
and accurate information as all the nodes are displayed at the
same time, thus avoiding approximations or incomplete informa-
tion one can encounter in other visualisations (for instance, when
using multi-scale views).

The resulting layout is compact and present similarities with
pixel-oriented layouts, allowing an efficient use of the available
space. We believe this characteristic to be very important and, be-

cause the size of the data sets we wish to visualise is continuously
increasing with time, methods able to represent such large graphs
will always be needed.

References
[1] Daniel Archambault, Tamara Munzner, and David Auber. Topolay-

out: Multilevel graph layout by topological features. IEEE Trans.
on Visualization and Computer Graphics, 13(2):305–317, 2007.

[2] Daniel Archambault and Helen C. Purchase. On the effective visu-
alisation of dynamic attribute cascades. Information Visualization,
2015.

[3] David Auber, Daniel Archambault, Romain Bourqui, Maylis Delest,
Jonathan Dubois, Bruno Pinaud, Antoine Lambert, Patrick Mary,
Morgan Mathiaut, and Guy Melançon. Tulip III. In Encyclopedia
of Social Network Analysis and Mining, pages 2216–2240. Springer
New York, 2014.

[4] David Auber, Yves Chiricota, Fabien Jourdan, and Guy Melançon.
Multiscale visualization of small world networks. In Proc. of the
9th Annual IEEE Conf. on Information Visualization, pages 75–81.
IEEE Computer Society, 2003.

[5] David Auber, Charles Huet, Antoine Lambert, Benjamin Renoust,
Arnaud Sallaberry, and Agnes Saulnier. Gospermap: Using a gosper
curve for laying out hierarchical data. IEEE Trans. on Visualization
and Computer Graphics, 19(11):1820–1832, 2013.

[6] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Commun. ACM, 18(9):509–517, 1975.

[7] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
and Etienne Lefebvre. Fast unfolding of communities in large
networks. J. of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

[8] Walter Didimo and Fabrizio Montecchiani. Fast layout computation
of hierarchically clustered networks: Algorithmic advances and ex-
perimental analysis. In 16th Int. Conf. on Information Visualisation,

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.9

pages 18–23, 2012.
[9] Felip S.L.G. Duarte, Fabio Sikansi, Francisco M. Fatore, Samuel G.

Fadel, and Fernando V. Paulovich. Nmap: A novel neighborhood
preservation space-filling algorithm. IEEE Trans. on Visualization
and Computer Graphics, 20(12):2063–2071, 2014.

[10] Santo Fortunato. Community detection in graphs. Physics Reports,
486(35):75 – 174, 2010.

[11] Yaniv Frishman and Ayellet Tal. Online dynamic graph drawing. In
Proc. of the 9th Joint Eurographics / IEEE VGTC Conf. on Visual-
ization, pages 75–82. Eurographics Association, 2007.

[12] Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagli-
ola. On the readability of graphs using node-link and matrix-based
representations: A controlled experiment and statistical analysis. In-
formation Visualization, 4(2):114–135, 2005.

[13] Robert Gove, Nick Gramsky, Rose Kirby, Emre Sefer, Awalin
Sopan, Cody Dunne, Ben Shneiderman, and Meirav Taieb-Maimon.
Netvisia: Heat map and matrix visualization of dynamic social net-
work statistics and content. In Privacy, Security, Risk and Trust and
IEEE 3rd Int. Conf. on Social Computing, pages 19–26, 2011.

[14] Stephen J. Guastello. Human Factors Engineering and Ergonomics:
A Systems Approach, Second Edition. Taylor & Francis, 2013.

[15] Stefan Hachul and Michael Jünger. Drawing large graphs with
a potential-field-based multilevel algorithm. In Graph Drawing,
LNCS, pages 285–295. Springer Berlin Heidelberg, 2005.

[16] Stefan Hachul and Michael Jünger. Large-graph layout algorithms
at work: An experimental study. J. of Graph Algorithms and Appli-
cations, 11(2):345–369, 2007.

[17] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin.
Nodetrix: a hybrid visualization of social networks. IEEE Trans.
on Visualization and Computer Graphics, 13(6):1302–1309, 2007.

[18] David Hilbert. Ueber die stetige abbildung einer line auf ein flchen-
stck. Mathematische Annalen, 38(3):459–460, 1891.

[19] Mao Lin Huang and Quang Vinh Nguyen. A space efficient clus-
tered visualization of large graphs. In 4th Int. Conf. on Image and
Graphics, pages 920–927, 2007.

[20] Takayuki Itoh, Chris Muelder, Kwan-Liu Ma, and Jun Sese. A hy-
brid space-filling and force-directed layout method for visualizing
multiple-category graphs. In IEEE Pacific Visualization Symposium,
pages 121–128, 2009.

[21] Daniel A. Keim. Designing pixel-oriented visualization techniques:
theory and applications. IEEE Trans. on Visualization and Computer
Graphics, 6(1):59–78, 2000.

[22] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the
spread of influence through a social network. In Proc. of the 9th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Min-
ing, pages 137–146. ACM, 2003.

[23] Stephen G. Kobourov. Spring embedders and force directed graph
drawing algorithms. CoRR, abs/1201.3011, 2012.

[24] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting
positive and negative links in online social networks. In Proc. of the
19th Int. Conf. on World Wide Web, pages 641–650. ACM, 2010.

[25] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Signed net-
works in social media. In Proc. of the SIGCHI Conf. on Human
Factors in Computing Systems, pages 1361–1370. ACM, 2010.

[26] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W.
Mahoney. Community structure in large networks: Natural clus-
ter sizes and the absence of large well-defined clusters. CoRR,
abs/0810.1355, 2008.

[27] G. M. Morton. A computer oriented geodetic data base and a new

technique in file sequencing. Technical report, IBM Ltd., 1966.
[28] Tomer Moscovich, Fanny Chevalier, Nathalie Henry, Emmanuel

Pietriga, and Jean-Daniel Fekete. Topology-aware navigation in
large networks. In Proc. of the SIGCHI Conf. on Human Factors
in Computing Systems, pages 2319–2328. ACM, 2009.

[29] Chris Muelder and Kwan-Liu Ma. Rapid graph layout using space
filling curves. IEEE Trans. on Visualization and Computer Graph-
ics, 14(6):1301–1308, 2008.

[30] Bruno Pinaud, Guy Melançon, and Jonathan Dubois. Porgy: A vi-
sual graph rewriting environment for complex systems. Computer
Graphics Forum, 31(3):1265–1274, 2012.

[31] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on
complex networks reveal community structure. Proc. of the National
Academy of Sciences, 105(4):1118–1123, 2008.

[32] Sébastien Rufiange, Michael J. McGuffin, and Christopher P.
Fuhrman. Treematrix: A hybrid visualization of compound graphs.
Computer Graphics Forum, 31(1):89–101, 2012.

[33] Joris Sansen, Romain Bourqui, Bruno Pinaud, and Helen Purchase.
Edge visual encodings in matrix-based diagrams. In Proc. of the
19th Int. Conf. on Information Visualisation, 2015.

[34] Lei Shi, Nan Cao, Shixia Liu, Weihong Qian, Li Tan, Guodong
Wang, Jimeng Sun, and Ching-Yung Lin. Himap: Adaptive visu-
alization of large-scale online social networks. In IEEE Pacific Vi-
sualization Symposium, pages 41–48, 2009.

[35] Ben Shneiderman. Extreme visualization: Squeezing a billion
records into a million pixels. In Proc. of the 2008 ACM SIGMOD
Int. Conf. on Management of Data, pages 3–12. ACM, 2008.

[36] Jason Vallet, Hélène Kirchner, Bruno Pinaud, and Guy Melançon. A
visual analytics approach to compare propagation models in social
networks. In Proc. of Graphs as Models, volume 181 of Electronic
Proc. in Theoretical Computer Science, pages 65–79. Open Publish-
ing Association, 2015.

[37] Tatiana von Landesberger, Arjan Kuijper, Tobias Schreck, Jörn
Kohlhammer, Jarke J. van Wijk, Jean-Daniel Fekete, and Dieter W.
Fellner. Visual analysis of large graphs: State-of-the-art and future
research challenges. Computer Graphics Forum, 30(6):1719–1749,
2011.

[38] Lei Wang, F. Du, H. P. Dai, and Y. X. Sun. Random pseudofractal
scale-free networks with small-world effect. The European Physical
Journal B - Condensed Matter and Complex Systems, 53(3):361–
366, 2006.

[39] Jaewon Yang and Jure Leskovec. Defining and evaluating network
communities based on ground-truth. CoRR, abs/1205.6233, 2012.

Author Biography
Jason Vallet received his MSc in computer science from “Université

du Québec à Chicoutimi” (2013) and is currently a PhD student in com-
puter science at “Université de Bordeaux”. His thesis subject is focused
on information visualisation, graph rewriting, and their joint applications.

Guy Melançon received his PhD in combinatorial mathematics from
“Université du Québec à Montréal” in 1991. Since 2007, he is a full
professor in computer science at “Université de Bordeaux”. His work
has focused on information visualisation and network analysis.

Bruno Pinaud received his PhD in computer science from “Uni-
versité de Nantes” in 2006. Since 2008, he is an associate professor in
computer science at “Université de Bordeaux”. His work has focused
on information visualisation, graph rewrite modelling and experimental
evaluation.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-484.10

