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Abstract
Understanding how brain regions are interconnected is an

important topic within the domain of neuroimaging. Advances
in non-invasive technologies enable larger and more detailed im-
ages to be collected more quickly than ever before. These data
contribute to create what is usually referred to as a connec-
tome, that is, a comprehensive map of neural connections. The
availability of connectome data allows for more interesting ques-
tions to be asked and more complex analyses to be conducted.
In this paper we present a novel web-based 3D visual analytics
tool that allows user to interactively explore the intrinsic geom-
etry of the connectome. That is, brain data that has been trans-
formed through a dimensionality reduction step, such as multi-
dimensional scaling (MDS), Isomap, or t-distributed stochastic
neighbor embedding (t-SNE) techniques. We evaluate our tool
through a series of real-world case studies, demonstrating its ef-
fectiveness in aiding domain experts for a range of neuroimaging
tasks.

Introduction
Providing a deeper understanding of the interconnectedness

of the human brain is a primary focus in the neuroimaging com-
munity. Imaging techniques, such as functional Magnetic Reso-
nance Imaging (fMRI), diffusion tensor imaging (DTI) and high
angular resolution diffusion imaging (HARDI), enable neuroim-
agers to collect and derive data about how different brain regions
connect from both a structural and a functional point of view [20].
Analogous to the genome for genetic data, the connectome is a
map of neural connections [30].

Complex functional and structural interactions between dif-
ferent regions of the brain have necessitated the development and
growth of the field of connectomics. The brain connectome at the
macro-scale is typically mathematically represented using con-
nectivity matrices that describe the interaction among different
brain regions. Most current connectome study designs use brain
connectivity matrices to compute summarizing statistics of either
a global or a nodal level [31].

In the current work, we introduce the potential utility of de-
riving and analyzing the intrinsic geometry of brain data, that is,
the topological space defined using derived connectomic metrics
rather than anatomical features. The utility of this intrinsic geom-
etry could lead to a greater distinction of differences not only in
clinical cohorts, but possibly in the future to monitor longitudinal
changes in individual brains in order to better deliver individual-
ized precision medicine.

Specifically, we introduce a prototype application that pro-
vides researchers with the ability to perform visual analytics tasks
related to the exploration of the intrinsic geometry of a dataset and
the comparison of how the dataset looks when embedded within

different topological spaces. The intrinsic geometry represents the
brain connectome after non-linear multidimensional data reduc-
tion techniques are applied. Dimensionality reduction techniques
remap the brain according to network properties. This means that
the position of each node does not correspond to its anatomical
location, as it does in the original brain geometry. Instead, its po-
sition is based on the strength of the interaction that each region
has with the others, whether structural or functional. The stronger
the connectivity between two regions, the closer they are in the
intrinsic geometry. In the intrinsic geometry we are more inter-
ested in the shape the brain connectome assumes independent of
the anatomical distances between nodes. Thus, the space in which
the intrinsic geometry is plotted in is called topological space [5].

Through using a variety of dimensionality reduction tech-
niques such as Isomap [32] and t-distributed stochastic neighbor
embedding (t-SNE) [33], a brain’s connectivity matrix can be di-
rectly embedded into topographical spaces. Linear dimensionality
reduction techniques such as multidimensional scaling (MDS) [3]
and principal component analysis (PCA) [19] have been previ-
ously used in unrelated fields of medicine as a way to distinguish
clinical cohorts through biomarkers, although it can be argued
that they are not suitable for complex high-dimensional connec-
tome data [16, 35]. To our knowledge our approach represents the
first comprehensive application of dimensionality reduction tech-
niques in the ever-expanding field of brain connectomics.

This intrinsic geometry concept provides an underlying
connectomic visualization that is not obscured by the standard
anatomical structure. That is, visualizing connectivity informa-
tion within an anatomical representation of the brain can poten-
tially limit one’s ability to clearly understand the complexity of
a human brain connectome; some meaningful structural patterns
may be much easier to see in topological space. The use of intrin-
sic geometry relies on the intuition that the brain’s intrinsic ge-
ometry should reflect graph properties of the corresponding brain
connectivity matrix, rather than the inter-regional Euclidean dis-
tances in the brain’s physical space [7]. Fig. 1 shows the shape
of the intrinsic geometry for example connectomes using Isomap,
MDS, and t-SNE reduction techniques.

Related Work
Many approaches to visualizing the connectome have been

presented and, broadly speaking, three main types have emerged:
node-link diagrams, matrix representations, and circular lay-
out [25, 26]. The Connectome Visualization Utility [22], the Brain
Net Viewer [37], and the Connectome Viewer Toolkit [14] each
provide a 3D node-link representation. In these tools, the dimen-
sion of the nodes is bound to a graph-based metrics, like nodal
strength or nodal degree, while the weight of the edges is dis-
played using different colors or by changing diameter of the cylin-
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(a) MDS Space (b) Isomap Space (c) tSNE Space

(d) MDS Space (e) Isomap Space (f) tSNE Space

Figure 1. In these figures we present the different shapes the structural connectome assumes in topological space when different dimensionality reduction

techniques are applied. With any reduction of data from a higher dimension to a lower one some information is lost, and so our tool enables users to investigate

intrinsic geometries resulting from different techniques in order to explore the different topological spaces that may shed light on a particular connectome dataset.

The screenshots are taken from different points of views and the colors represent different lobes of the brain.

drical link. Other functional brain connectivity visualization tools
instead utilize 2D node-link diagrams, such as a technique intro-
duced by Jianu et al. [18] that explores brain connectivity using
2D neural maps and a frequency-dependent approach by Salvador
et al. [29] that displays functional connectivity via an undirected
graph layout. The main advantage of using node-link diagrams
is that they provide an overview of the entire graph that makes it
easy to understand which nodes are indirectly connected. The 3D
represeentations additionally provide meaningful spatial informa-
tion, and the tools that utilize 3D node-link diagrams locate the
nodes relative to the real anatomical position. However, excessive
visual clutter is introduced when the number of nodes and edges
increase, affecting the readability of the graph. Ma et al. [23]
explore a dual representation of a dataset, providing both an ad-
jacency matrix and an anatomically grounded node-link diagram
in order to provide distinct, yet interrelated views of the same
data. This approach also includes a temporal dimension and uses
glyphs to indicate community membership of nodal regions, but
does not extend to 3D data.

Both the Connectome Visualization Utility [22] and the Con-
nectome Viewer Toolkit [14] cam make use of adjacency matrices

to represent connections; additionally, the former also includes a
circle layout view. This view, also known as a connectogram was
first introduced by Irimia et al. [17]. A connectogram displays
brain regions around a circle, and the interconnections between
them are represented as edges that connect regions together in-
side the circle. Transparency is used to represent the weight of
the edges, which reduces the visual clutter and highlights only
on strong links, while weak edges fade into the background. By
using connectograms it is possible to incorporate additional infor-
mation adding more than one nested circles; the outermost circle
can be used to represent the cortical parcelations, while the inner
circles could use heat maps to display different structural mea-
sures associated with the corresponding regions. This approach
mitigates the clutter that can occur in other approaches when the
number of edges and nodes increase.

Currently, there are no effective tools that enable a user to in-
teractively investigate the intrinsic geometry of connectome data,
and none that allow a user to apply and visualize complex trans-
formations to connectome datasets. To address these issues, we
incorporate an interactive 3D node-link diagram to visualize con-
nectome data, described below. Moreover, we support viewing
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via virtual reality displays, as it has been shown that stereoscopic
3D visualization can make it easier for user to the comprehen-
sion of the anatomical location of regions as well as the functional
connections [27]. Nonetheless, the visualization of 3D networks
can outperform 2D static ones, especially when considering com-
plex tasks [1]; for example, initial investigations by Forbes et al.
demonstrate an effective a stereoscopic system to visualize tem-
poral data of the brain activity [13].

Tasks
Due to the high complexity of the human connectome, sim-

ply being able to explore the data to support sensemaking is a
fundamental task. However, a researcher typically has a well de-
fined assumption about the contents of their data and a clear idea
about which aspects of the data he or she wants to explore. Effec-
tive exploration involves being able to find relevant information
quickly by filtering the data in order to identify patterns, to assist
in the generation of new hypotheses, or to confirm or invalidate
expected results.

Researchers often need to examine multiple datasets in order
to compare the structure or activity of one region of a brain with
another, or to compare different populations or experimental con-
ditions. For example, a psychiatric researcher could be interested
in understanding the differences between the functional connec-
tivity of healthy controls versus depressed participants. Individu-
als with depression show a higher functional connectivity between
the regions within the default mode network than in healthy con-
trols [15]. Being able to visually distinguish details about the
different activity levels within specific brain regions is necessary
to support a deeper understanding of these pathologies, as well as
to verify experimental results and enable the generation of new
hypotheses.

Neuroimagers may also need to identify the importance of re-
gions that can be directly or indirectly affected by damage to the
brain, such as in the case of traumatic brain injury [21]. It is also
important to understand the structural and functional implications
of neurosurgical interventions such as temporal lobotomy [2],
or as a predictive measure towards behavioral therapy outcomes
for use in aphasia treatment [24, 34]. Lastly, experts are inter-
ested in identifying culpable regions when investigating neuro-
degenerative disease and neuro-psychological disorders such as
Alzheimer’s [8, 39] and schizophrenia [6]. Including both neu-
roanatomical and topological representations allows researchers
to more comprehensively address these complex issues.

The Visualization Application
The primary layout for our prototype application is a 3D

node-link diagram, motivated by interest researchers have in un-
derstanding the brain’s intrinsic geometry. The position of each
region in the topological space is highly relevant in this context.
Although many visualization researchers have noted some poten-
tial pitfalls in making use of 3D representations for visual analy-
sis tasks, the importance of being able to compare the anatomical
geometry with the different intrinsic geometries necessitates this
layout. When viewing the intrinsic geometry, the individual nodes
represent different brain regions and are represented with circular
glyphs, while edges representing a functional or a structural con-
nection between these regions are displayed using lines. Fig. 2
shows an example view in our application.

A main concern with the use of node-link diagrams is the po-
tential for visual clutter when displaying a highly interconnected
graph, such as the human brain connectome. Instead of show-
ing all the connections simultaneously, by default our tool only
shows nodes, hiding all links unless explicitly required. Through
interaction, users are able to display or hide connections accord-
ing to their preferences and current needs. We also allow the user
to choose to view the connections only within a particular sub-
graph that is relevant for a particular task. This edges-on-demand
technique allows exploration tasks to be performed by showing
only the connections starting from a specific region that is cur-
rently being interrogated. The user can pin the connections in
the scene just by clicking on the node itself. We use varying
degrees of transparency to visually encode the strength of edge
weights. Stronger connections are then represented using opaque
lines, while weaker edges are more transparent. Transparency is
scaled relative to only the currently displayed edges.

Information about which hemisphere particular nodes belong
to can be meaningful for certain tasks. Being able to understand
quickly whether or not global right/left symmetric patterns are
still recognizable in the intrinsic geometry also helps the domain
experts by providing an anatomical reference during the explo-
ration of the intrinsic geometry. We represent nodes from hemi-
spheres using two different glyphs, circular and toroidal.

Colors are used to highlight the neuroanatomical member-
ship of each node in the brain. In our application, each glyph
belongs to one of the 82 neuroanatomical regions as defined by
Freesurfer [11]. However, the data structure is flexible enough to
accept any membership or affiliation structure. Currently, these
affiliations are hard-coded by default, but our application has the
ability to compute affiliations on the fly according to specific
graph metrics.

Analytics Features
Our application facilitates a range of user interactions to sup-

port visual analysis, including the ability to:

• create the shortest path tree rooted in the node selected by
the user;

• visualize the shortest path between the two nodes;
• let the user turn on and off particular regions;
• let the user quickly switch between different geometries;
• compute the nodal strength for each node of the graph.

We use Dijkstra’s algorithm [9] to create the shortest path
tree. In structural connectomes, since the adjacency matrix de-
fines the number of reconstructed white matter tracts connecting
two regions, the edge length is set to the inverse of the fiber count
(the higher the number of tracts, the more coupled two nodes are
and thus the shorter their distance is). From a mathematical point
of view:

d(i, j) =
1

wi j
(1)

where d(i,y) is the distance between node i and node j and wi j is
the weight of the edge which links i and j contained in the adja-
cency matrix. The user can filter the shortest path tree according
to two different measures: graph distance and number of inter-
mediate nodes, or “hops.” In the first case the user can filter the
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Figure 2. This figure shows the main view of our tool. On the upper left a simple menu allows users to choose the way nodes are grouped (color encodings)

and the topological space in which we visualize connectome data. On the upper right a slider sets the minimum edge weights for an edge to be visible. On the

bottom left the name of the node selected and its nodal strength are showed. We also allow users to change the size of the glyphs and to hide/show the 3D grid

in the background. On the lower right, a figure legend mapping each color to its neuroanatomical label is shown. The connectome visualization is displayed at

the center of the scene.

tree according to the relative distance with respect to its farthest
node. Given a threshold t, all the nodes that satisfy the following
inequality are drawn:{

d(r, i)≤ maxDistance(r) · t
0 ≤ t ≤ 1

(2)

where r is the root node, i is the node considered, maxDistance(r)
is the distance between the root node and the farthest node, and
t is the threshold chosen by the user. If t = 0 then only the root
node is displayed, while if t = 1 the entire shortest path tree is
drawn. In the latter case, the user is able to filter out nodes that
are not reachable within a certain number of nodes from the root.

We enable the user to interactively select two specific nodes
in order to show the shortest route between them. We can also
display all the nodes in the network to provide the overall context
of this sub-graph.

Being able to select regions is also important. The number
of nodes displayed could affect the visual clutter of the display.
We let the user choose whether to display or not groups of nodes
depending on their affiliations. Thus, neuroimagers can explore
only the regions that are strictly relevant to their research goals.

A main feature of our tool is the ability to switch between
geometries. We provide a menu to select the space they want to
explore. Switching geometries can be done with just one click,

allowing the users to see how the connectome data appears em-
bedded in different topological spaces.

Nodal strength is a graph-based metric which defines the
centrality of a node. The nodal strength is defined as follows:

Nodal strengthi =
N

∑
j=0

wi j (3)

where N is the number of nodes in the graph and wi j is the weight
of the link between i and j [28]. This graph-based metric helps
experts to understand the relevance of a node in the network. This
value is presented in a numerical label that appears when a node
is interacted with; the user can filter out nodes below a particular
threshold according to this measure.

Case Studies
In the following section, we present real-world case studies

that use our visualization tool to help understand patterns in both
the structural and functional connectome.

Case Study 1: Understanding Rich Club Nodes
We wanted to understand how the connectivity of the brain

changes when specific regions of the brain are removed. In par-
ticular, we wanted the see the differences between a complete
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(a) Complete Structural Connectome (b) Structural Connectome Without Rich Club (c) Random Regions Removed

Figure 3. This figure compares the complete structural connectome, Figure (a), and the structural connectome when nodes with the colored rich club property

are removed, Figure (b). By comparing (a) and (b), it is very clear that without the rich club nodes, the intrinsic geometry of the brain becomes diffuse and nodes

are less coupled to each other. Rich club regions form the core of the brain’s structural connectome. These results are put in context when we consider Figure

(c). Figure (c) shows a connectome after an equivalent number of nodes to rich club nodes were randomly selected and removed. It is clear there are subtle

differences between the (a) and (c) but no gross changes to the structure as with targeted rich club removal (b). Put together, these simulated region removal

analyses confirm the importance of rich club nodes.

structural connectome and a connectome in which nodes belong-
ing to the rich club were removed. The basic concept behind
the rich club property is the tendency for nodes with high nodal
strengths to form tightly interconnected groups [38]. Mathemati-
cally speaking, given a graph N and the parameter k which defines
a nodal strength cut off, the rich club property is defined as

φ(k) =
2E>k

N>k(N>k −1)
(4)

where E>k is the number of edges in N between the nodes of nodal
strength greater or equal to k and N>k is the number of nodes in
N with nodal strength greater or equal then k. This metric could
also be seen as follows:

φ(k) =
E>k(N>k

2
) (5)

Given that, φ(k) is the number of realized edges (E>k) normalized
with respect all the possible edges there could be between these
nodes in a complete graph.

From Fig. 3 it is possible to see that the complete structural
connectome forms a shape similar to a “bowl,” while the connec-
tome without rich club nodes shows a big “hole” in the middle. It
is clear that those rich club nodes keep the entire network tightly
interconnected. When they are missing, the remaining brain re-
gions are more distant from each other, becoming less correlated
and less coupled together.

Those differences gain particular relevance as we consider
a different simulation. Instead of removing the nodes that were
shown to have a particular characteristic (i.e. the rich club prop-
erty), we also performed a random nodes removal using a uni-
form probability distribution and removing an equivalent number
of nodes. As we can see from Figs. 3(a) and 3(c), the differences
between the complete structural connectome and the one with ran-
dom removal are not significant. Thus, this result validates the
importance of rich club nodes.

Case Study 2: Comparing Depressed and Healthy
Connectomes

Functional MRI (fMRI) has been widely used to study
neural tasks, but a growing subset of fMRI is being dedicated
to the default mode network (DMN) or how the brain responds
when no external stimuli or task is given. The main feature of
DMN function is strong interregional coordination of baseline
oscillatory activities between its participant nodes. Core DMN
brain regions are the ventromedial and dorsomedial prefrontal
cortex, the posterior cingulate, the precuneus, the lateral temporal
cortex and the hippocampus. Our results show that in depression
(Fig. 4) there is strong coupling between the precuneus and
hippocampus in the resting-state topological space, in line with
extensive evidence supporting the involvement of these two
regions in DMN functional organization [4, 36].

Using our application, clinicians explored the DMN in the
averaged brain of 10 healthy controls and the averaged brain of 15
subjects with depression. They were able to gain insight the func-
tional connectome by investigating differential patterns of inter-
action between the hippocampus, thalamus, and putamen. They
found that these regions tended to be mixed together within the
control participants, suggesting functional coupling. By contrast,
in the depressed participants cohort, the hippocampus and the tha-
lamus demonstrated a tend towards separating from the putamen,
creating a separate cluster that is closer to the precuneus. This
behavior is clearly visible in Fig. 4. Previous literature supports
this idea of tight clustering of the hippocampus and thalamus re-
gions in depressed patients, something not observed as often in
healthy controls [15]. This could be a unique signature for major
depression and offers some insight into the behavior of depressed
subjects, especially their tendency to ruminate on their past and
unsuccessful life events.
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(a) Functional Connectome (b) Healthy Subjects (c) Depressed Subjects

Figure 4. This figure compares the intrinsic topology of the functional connectome in healthy versus depressed subjects. In Figure (b) it is clear that the

hippocampus and thalamus regions (blue and red nodes) tend to create a cluster apart from other regions. On the contrary, in healthy subjects the same regions

are mixed together with putamen regions (green nodes).

Figure 5. A photo of a neuroimaging researcher exploring the intrinsic

geometry of the brain with the our visualization application in immersive 3D

using an Oculus Rift headset.

Discussion
Since spatial vicinity equates to stronger connectivity in the

intrinsic space, the user is able to freely and easily explore the ter-
rain of either functional or structural brain connectivity. Indeed,
the real advantage of exploring in the intrinsic space (especially
when coupled with virtual-reality technology), is the ability to
display the connectivity relationship among a number of brain re-
gions, as neuroimagers unfold complex high-dimensional connec-
tivity data into easily understandable and relatable configurations
in 3D. This is evident in the resting state fMRI case study where
the default mode network connectivity alterations in regions in-
cluding precuneus and hippocampus can be easily appreciated.
Experts also found that this tool transforms connectivity matrices
in an engaging way that does not require much of a learning curve

to understand and to use. By converting fiber count or functional
connectivity into a distance measure, this visualization software
creates a “road map” of the human brain. While the actual con-
nectivity matrix can be parsed— much like knowing the distance
to any stop of a road trip— it is hard to comprehend these strict
numerical quantities without a map to help guide relative loca-
tions. Our visualization application allows for such an apprecia-
tion to occur and provides methods for interacting with individual
nodes to discover highly integrated circuits in both functional and
structural connectomes. Moreover, by inducing virtual lesions,
one can compare the relative importance of certain brain regions
and graph theoretical metrics by the subsequent changes in the
topographical shape of the connectome.

Conclusion and Future Work
This paper introduced a novel visualization application that

enables a user to interactively explore the human brain connec-
tome. Being able to select edges on demand allows users to ex-
plore the entire connectivity network while limiting the visual
clutter typical of highly connected node-link diagrams. Moreover,
the analytics features provided by our tool make it easier to inves-
tigate the most relevant parts of the network according to the users
current goals. Additionally, it enables users to view and compare
the intrinsic geometry of connectome datasets in a number of dif-
ferent topological spaces in order to enable new understandings
of the data.

Although our application has already enabled us to explore
the intrinsic geometry of the brain in specific use cases, there are
many useful features that we plan to introduce. For instance, it
would be useful to allow users to add or remove nodes interac-
tively and then apply dimensionality reduction techniques directly
to only the currently visible nodes. We also plan to continue our
investigation into the use of virtual reality systems. One current
exploration involves combining the Oculus Rift and Leap Mo-
tion devices together to enable gesture interaction within an im-

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-481.6



mersive environment to enable a more engaging exploration with
the brain’s intrinsic geometry (see Fig. 5). We are also interested
in exploring the use of motion as a means to augment identifi-
cation of and reasoning about individual nodes and node clus-
ters [10, 12]. Finally, we are excited about the potential utility of
immersive connectome visualization as part of a biofeedback pro-
cess that can provide users with the ability to see and control their
connectome. Currently, we can use the DTI and fMRI data to
track long term changes in the brain and follow macroscale neu-
roplastic changes within the brain. A future goal is to also map
changes to the connectome using electroencephalography (EEG)
and provide feedback in real-time to patients to promote changes
in the brain through treatment.
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