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Abstract
Image local information is crucial for accurate segmentation

of images with inhomogeneities in the intensity. In many popular
methods, however, local regional information is normally under-
estimated and not included in the segmentation framework. In
this paper, a segmentation is formalised as Bayesian Inference
procedure. By considering the spatial variation of the inten-
sity distribution, a likelihood that contains a joint distribution
of intensity and spatial location is obtained. After incorporating
this likelihood in a Bayesian maximum a posteriori estimation,
we transformed the stochastic model into a segmentation method
which utilises local information to segment images with inhomo-
geneities so as to guarantee a global optimum for the two-region
case(foreground/background). Taking the computational complex-
ity of our model into account, we take advantage of a GPU parallel
algorithm to accelerate computation without losing segmentation
accuracy. We demonstrate that taking into account local image
information, our method results in significant improvements for
image segmentation.

Introduction
In the life sciences, images are an important source of

information in the study of the processes of life. Here we
are particularly interested in microscopy images and images
of specimens made with microscopes are not always ideal
for further numerical analysis. Therefore image restora-
tion and enhancement techniques are required to be able
to extract the right information from the images. We are
specifically interested in accurately extracting 3D objects
from volume data produced by confocal laser scanning mi-
croscopy (CLSM). The objects in CLSM are fluorescently
labelled which discriminate an object from the background.
However, the homogeneity in the fluorescent staining is not
always stable and/or constant. This gives rise to problems
in the extraction of the object, i.e. the segmentation is a
difficulty to overcome. We, therefore, want to address this
problem by finding an effective optimization model for the
segmentation of 3D objects.

There are a number of algorithms, including water-
shed, thresholding, clustering, and so on, that can be ap-
plied to segment inhomogeneous 3D objects. The common
starting point for these algorithms to work properly is that
voxels belonging to an object should have a homogeneous
intensity [9, 11, 12, 13]. Thus, these algorithms are not ca-
pable of extracting objects from images that exhibit an in-
homogeneous distribution, e.g. Fig.1. In addition, some
intrinsic limitations in fluorescence imaging, such as photo-

bleaching, chromatic and spherical aberration, blurring and
non-continuous and low signal-noise ratio will further in-
validate those existing methods.

In the life sciences, the availability of well-defined pro-
cedures for extraction of information from images, has been
acknowledged as an important topic in bio-imaging [5, 6, 7].
In our research we investigate zebrafish larvae that are
stained through a reporter marker, i.e. GFP [8]. Although
the fluorescent label provides an indication of the zebrafish
larvae in the image, the distribution of the fluorescent label
is not homogeneous and also not continuous. In the inter-
pretation of these images, one step is to interpolate missing
voxels over the inhomogeneity and discontinuities, the fea-
ture of human vision should be reflected in the method to
extract the objects, i.e. the zebrafish, from the image. More-
over, the object extraction should be completed automated
and in a reasonable time. So, our efforts are directed at de-
veloping an accurate and time efficient method for object
extraction from fluorescent image, in particular, 3D images
of zebrafish larvae.

In the research presented here, we choose a level set
method as numerical implementation framework for track-
ing boundaries and shapes as it is able to represent surfaces
with complex topologies and evolve their topology in a nat-
ural way. Existing level set methods for image segmen-
tation can be categorized into two major classes: region-
based models [9, 10, 12], and edge-based models [11, 21, 26].
Region-based models aim to identify each region of inter-
est by using a certain region descriptor to guide the mo-
tion of the active contour. It is, however, very difficult to
describe a region with intensity inhomogeneities. A typi-
cal region-based example are the piecewise constant (PC)
models proposed in [9]. Edge-based models use edge in-
formation for image segmentation. These models do not
assume homogeneity of image intensities, and thus might
be applied to images with intensity inhomogeneities. How-
ever, these type of methods are, in general, quite sensitive to
the start conditions and often suffer from serious ”leakage”
problems where with weak object boundaries are present in
the images[26].

Key to overcome difficulties with inhomogeneity in the
image is the use of local regional image information. Using a
generally accepted model of images with intensity inhomo-
geneities, we present a probabilistic framework, in which
local information that is understood as the intensities in a
neighbourhood of which each point is interpreted as a con-
ditional probability and embedded as a part of a posteriori
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probability in Bayesian inference model[28]. Furthermore,
the maximal Bayesian a posteriori probability transformed
into a novel region-based level-set function where local in-
formation is integrated over the neighbourhood centre to
define an energy functional. Minimization of this energy
is achieved by an evolution process of level set evolution.
Hence, the relevant local information is utilized in a math-
ematical way. In order to reduce computation complexity,
this algorithm is specifically designed to segment a 3D ob-
ject from raw 3D images in a parallel manner.

This paper is organized as follows. In Section II we
present the inferring stochastic framework and show local
image information is integrates. It contains the mathemati-
cal foundation of the optimization of the energy function. In
Section III we focus in detail on the two-region energy func-
tion and the formulation of the level-set method, the main
algorithm in our research. In Section IV, the level set for-
mulation and the numerical implementation of iteratively
partial derivative, GPU parallelisation as well as experimen-
tal results are presented. Finally, in section V we present our
conclusion and discussion.

(a) 2D projection (b) 3D images

(c) result of threshold (d) result of PC model

Figure 1: Error of thresholding and PC model for images
with intensity inhomogeneity. (a)-(b): Original data in 2D
project and 3D with noise; (c)-(d): the result of Thresholding
and PC model.

A Statistical Framework for Segmentation
In this section, we will derive a maximum likelihood

estimation in the context of Bayesian inference formulation
and transform this stochastic estimation into a region-based
energy function. In this stochastic model, intensity like-
lihoods of partitioned regions are not constant, but vary
along its locations. One of the challenges addressed in this
paper is the embedding of local information derived from

an inhomogeneous data set into a formulation of Bayesian
inference .

Approach to Segmentation as Bayesian Inference
Let I→Rd(d = 1 or 3) denote the input data defined on

the domainΩ⊂Rs(s≥ 2). The task of segmenting the image
space into a set of n pairwise disjoint regionsΩi:

Ω =
n

⋃

i=1

Ωi, Ωi∩Ω j = ∅,∀i , j (1)

can be solved by computing a labelling θ : Ω→ {1, · · · ,n},
indicating which of the n regions each vector x belongs
to: Ωi = {x|θ(x) = i}, and an approximation u, depicting
what a intensity-space joint distribution of the n regions
is: ui(x) = {u(x)|θ(x)= i}. In the framework of Bayesian infer-
ence, one can compute such a segmentation by maximising
the conditional probability:

argmax
θ

P(θ,u|I)= argmax
θ

P(u|I,θ) ·P(I|θ) ·P(θ)

P(I)
(2)

whereP(I) is a constant, which is irrelevant to the maximisa-
tion of conditional probability. A straightforward interpre-
tation that arises from the above formulation is that if one
intends to obtain a most likely configuration of label θ over
the whole image domain Ω, alongside the corresponding
most reasonable approximation u under given input data I,
we could substitute a Bayesian a posteriori probability com-
putation. Here, for a fixed label configuration and an input
image domain, P(u|I,θ) indicates the extent of the proba-
bility an approximation showing up; P(I|θ) represents, in a
specified distribution and at a given label configuration θ,
the probability of I is; P(θ) represents prior knowledge that
a label configuration θ should have, such as the smoothness
property along boundaries between different regions.

Assuming that the intensities of all x in u is not
independent, but, in contrast to previous segmentation
approaches[11, 24, 25, 26], is dependent on space, we ob-
tain

P(u|I,θ) =P(u(x),x|I,θ) (3)

where u(x) and vector x individually indicate the approxi-
mated intensity and vector location inΩ. If we, furthermore,
take the hypothesis that the intensity probability at location
x is only influenced by its neighbours withinΩi rather than
vectors affiliated to other regions Ω j( j , i), the probability
in Eq.(3) can be extended as

P(u|I,θ) =

n
∏

i=1

P(u(x),x|I,θi) (4)

Note that Eq. (4) shows u(x) is variant in regionΩi instead
of being constant as it normally is[9]. It has commonly been
neglected, but we will show here that taking into account
this spatial variation of intensity distributions based on a
weighted spatial kernel density leads to drastic improve-
ments of the resulting segmentation process.

©2016 Society for Imaging Science and Technology

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-480.2



Supposing the probability of I(x) is only relevant to
θ(x), I(x) and θ(x) should obey a bivariate distribution. Let
Qρ,σ(·) denote the kernel density function with ρ and σ as
parameters, we get

P(I|θ) =

n
∏

i=1

P(I|θi) ∝

n
∏

i=1

exp
(

Qρ,σ(ui(x), I(x))
)

(5)

where ui(x) is the estimated value in regionΩi. Eq. (5) can
be interpreted as the more likely x belongs toΩi, the smaller
intensity difference between I(x) and u(x) at a given location
x in Ωi is. In practice, it is used as the data fidelity term to
assure the approximation u remains highly analogous to I.

Prior knowledge is considered as a powerful regulari-
sation mechanism to limit our solution into a comparatively
narrow but yet reasonable scope. We could specify the prior
P(θ) to favour segmentation regions of shorter boundaries:

P(θ) ∝ exp















n
∑

i=1

L(Ωi)















(6)

where L(Ωi) denotes the length of the boundaries of each
regionΩi = {x ∈Ω|θ(x) = i}.

Inferring Space-Variant Intensity Distributions

The expression in Eq. (4) denotes the joint probability
for observing a intensity value I at the given x being part of
regionΩi. It can be estimated as

P(u(x),x|I,θi) ∝ exp

(∫

Ωi\x
Gρ,σ(ui(x), I(y))dy

)

(7)

where, Gρ,σ(·) denotes a kernel function centred at given x.
With a hypothesis that, as a space-variant kernel function,
Gρ,σ(·) will proportionally vary to the intensities and loca-
tions. This kernel states that at a given centre x in regionΩi,
ui(x) is a weighted sum of all its neighbour I(y) in regionΩi,
whose weight coefficients are dominated by the distance of
y against centre x. Hence, we could construct a Gaussian in-
tensity distribution having a spatial-variant property. Note
that in our model, ui(x) is determined by its neighbours in
the same region without itself, which could simplify the
stochastic model.

The negative logarithm of the estimated probability dis-
tributions can be used as a powerful data-term for segmen-
tation. For each centre x we obtain the data-term by adding
all regional terms over its regionΩi

E(x) =

n
∑

i=1

Ei(x) =

n
∑

i=1

− log(P(u|I,θi) ·P(I|θi)) (8)

The proposed formulation can be seen as a generalisa-
tion of the traditional purely intensity-based approaches. By
steering ρ and σ, the parameters in kernel density functions
Qρ,σ(·) and Gρ,σ(·), we can scale the influence of intensity
similarity and location distance on the segmentation result.

Formulation of the Variation Method
Having determined the probability distributions from

every x for all regions Ωi, i = 1, · · · ,n, we are now ready to
solve the maximization of optimization/labelling problem
Eq. (2) equivalently by minimizing its negative logarithm
(cf. Eq. 8). According to Eq.(6) and Eq.(8), the maximum a
posteriori (MAP) estimation is equivalent to solve the min-
imization of the energy function

E(Ω1, · · · ,Ωn) = ν
n

∑

i=1

L(Ωi)+λ

∫

Ω
E(x)dx (9)

in which λ and ν are positive weighting parameters that
regulate the influence of the data-term and regulariser.

Note that this maximisation of a posteriori probability
formulation works as a generalised energy function to solve
segmentation problem. Through adjusting different Qρ,σ
(deferred intensity distribution) in Eq.(5) and Gρ,σ (satisfied
space-variant intensity distribution) in Eq.(7), we can em-
bed different image information into our Bayesian inference
formula and generate a corresponding optimisation object
function.

Local Regional Energy Function and Level-
Set Formulation

In this section, we will develop a concrete pair of Qρ,σ
and Gρ,σ to fit an inhomogeneity labelling problem. In our
research, we only considered a two-region label problem. In
this case, global optimisers can always be found[14]. Conse-
quently, our aim is to seek an optimal approximation from
input data under the condition of an inferred energy func-
tion.

Inferring Objective Energy Function
Our goal is to find an optimal approximation from inho-

mogeneous input data, therefor local information should be
extracted from each region and embedded into our energy
function to enhance discrimination ability of blurry fore-
ground voxels from background noise, and subsequently
ensuring the approximation u could analogous to I. To
this end, we could construct a space-variant kernel func-
tion Gρ,σ(·) and intensity distance kernel function Qρ,σ(·) as
follows:

Gρ,σ(ui(x), I(y)) = Kρ(x−y)
|I(y)−ui(x)|2

2σ2
(10)

and

Qρ,σ(ui(x), I(x)) = Kρ(x−x)
|I(x)−ui(x)|2

2σ2
(11)

where ui(x) is the approximated intensity at the point x in
regionΩi; Kρ(|x|) is a kernel function with a spatial property
that decreases and approaches zero as |x| increases. Here,
we choose the kernel function Kρ(·) as a Gaussian kernel
with a scale parameter ρ > 0:

Kρ(x) =
1

(2π)n/2ρn
e−|x|

2/2ρ2 (12)
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Note that with this definition, Qρ,σ(ui(x), I(x)) equals
Gρ,σ(ui(x), I(x)), which drastically simplifies our model
through combination local information with a data fidelity
term. According Eq.(10) and Eq.(11), we accomplished the
data-term E in each regionΩi from Eq.(8) as follows:

Ei(x) =

∫

Ωi\x
Gρ,σ(ui(x), I(y))dy+Gρ,σ(ui(x), I(x))

=

∫

Ωi

Gρ,σ(ui(x), I(y))dy

(13)

It should be emphasised that ui(x) is the function of a centre
x and will vary with the centre x due to the fact that the
kernel function Kρ(·) takes larger values at location y near
the centre x, and it decreases to 0 as y goes away. There-
fore, an influence on ui(x) increases in dominance when y
is approaching the vicinity of centre x, whereas it gradually
fades out if y retreats from the centre.

Let C be a contour in the domainΩ, in 3D segmentation,
C is actually the boundary surface between different regions,
but in the context of level-set framework, for coherence we
continue to use the contour concept. Obviously, for each
centre x, the regional energy Ei(x) can be minimised when
C is exactly on the object boundary and the approximated
values ui are optimally chosen. In order to find the entire
object boundary, we must minimise Ei(x) over all regions
Ωi. This can be achieved by minimising the total integral of
Ei(x) over all the centres x in the domain Ω. So, we define
the E(x) in Eq.(9) as follows:

E(C,x) =

∫

in(C)
(2σ2)−1Kρ(x−y)|I(y)−u1(x)|2dy

+

∫

out(C)
(2σ2)−1Kρ(x−y)|I(y)−u2(x)|2dy

(14)

This energy can be converted to an equivalent level-set for-
mulation, from which an implicit active contour will be cre-
ated to automatically handle topological changes.

Formulation of the Variational level-set model
In level-set methods[23], a contour C ∈Ω is represented

by the zero level-set of a Lipschitz function Φ : Ω → R.
Hence, the original task, at present, has transformed into
a label problem over an implicit function Φ. A Heavi-
side function is introduced as the global label configuration.
Within the level-set representation, the energy functional
E(C,x) in Eq.(14) can be rewritten as:

E(Φ,x) =

"

Ω

Kρ(x−y)

∣

∣

∣I(y)−u1(x)
∣

∣

∣

2

2σ2
H1(y) dy dx

+

"

Ω

Kρ(x−y)

∣

∣

∣I(y)−u2(x)
∣

∣

∣

2

2σ2
H2(y) dy dx

(15)

where H1(x) and H2(x) are the composition of Heaviside
function in a form of Hi(Ω(x)), and H1(x)+H2(x) = 1.

In order to avoid the level-set re-initialization

problem[15] and ensure a stable evolution of the level-set
function Φ, an extra distance regularization term proposed
by Li[16] to penalise the deviation of Φ from a signed dis-
tance function is added in our variational level-set formula-
tion. The distance regularization function is characterized
by the following integral:

P(Φ) =

∫

Ω
p(|∇Φ|)dx (16)

To regularise the contour in level-set energy functional, we
also need the length of the zero-level curve (surface) of Φ,
which is given by:

L(Φ) =

∫

Ω
δ(Φ)|∇Φ|dx (17)

where smooth Dirac function δ(Φ) is the deviation of Heav-
iside function H(Φ).

Now, we define the entire energy functional of all cen-
tres x over whole domainΩ

F (Φ,u1,u2) = λE(Φ,u1,u2)+µP(Φ)+νL(Φ) (18)

where λ, µ and ν are non-negative constants. By solv-
ing above optimization problem, a reasonable approxima-
tion which is able to tolerate inhomogeneity within each
region will obtained, and consequently a relatively short
yet smooth contour that partitioned foreground from back-
ground will be located at the boundary of the object.

Gradient Descent Flow
We use the standard gradient descent method, a.k.a

steepest descent method, [17, 18] to minimize the energy
functional Eq.(18). The detailed derivation of the gradient
flow is given as follows:

• For a fixed level-set functionΦ, we minimize the func-
tional Eq.(18) with respect to the functions u1(x) and
u2(x). By calculus of variations, it can be shown that
the functions u1(x) and u2(x) that minimizeF (Φ,u1,u2)
for a fixed function Φ are given by:

u1(x) =
Kσ(x) ∗ [H1(x)I(x)]

Kσ(x) ∗H1(x)
(19)

and

u2(x) =
Kσ(x) ∗ [H2(x)I(x)]

Kσ(x) ∗H2(x)
(20)

Note that the denominators in Eq.(19) and Eq.(20) are
always positive, due to the fact that 0 <Hi(Φ) < 1 [16].

• Remaining u1 and u2 fixed, and minimising the energy
functional F (Φ,u1,u2) with respect toΦ, we derive the
gradient descent flow:

∂Φ

∂t
= −λδ · E−νδ ·div

(

∇Φ

|∇Φ|

)

−µdiv(dp(|∇Φ|)∇Φ)

(21)
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where δ is a smooth Dirac function, E is the function as
below

E = (u2
1−u2

2)− c · (u2 −u1) (22)

where c = 2 ·Kρ(x) ∗ I(x) is a no-negative constant. u1

and u2 are given by Eq.(19) and Eq.(20), respectively.

Numerical Implementation and Results
In the section, we will detail the numerical implemen-

tation of level-set iterative partial differential equations and
parallel GPU implementation by matrix operation. Further-
more, we will discuss the experimental results.

Numerical Implementation
To solve the optimization problem, we employ the sim-

ple finite difference scheme to compute u
(t+1)
1

(x), u
(t+1)
2

(x)

and Φ(t+1) in an iterative manner:

u
(t+1)
1
=

{

u
(t)
1
+

Kρ(x) ∗ [H1(x) · I(x)]

Kρ(x) ∗H1(x)

}

∆t

u
(t+1)
2
=

{

u
(t)
2
+

Kρ(x) ∗ [H2(x) · I(x)]

Kρ(x) ∗H2(x)

}

∆t

Φ(t+1) =
{

Φ(t) −λδ(t)
[

(u
(t)2
1
−u

(t)2
2

)− c · (u
(t)
2
−u

(t)
1

)
]

−νδ(t)div

(

∇Φ(t)

|∇Φ(t)|

)

−µdiv(dp(|∇Φ(t) |)∇Φ(t))

}

∆t

(23)

where div(dp(|∇Φ|)∇Φ) can be found in[21] and ∆t is time
step.

In practice, the Heaviside function H in Eq. (15) is
approximated by a smooth function Hǫ defined by

Hǫ(x) =



















1
2

[

1+ x
ǫ +

1
π sin

(

πx
ǫ

)]

, |x| ≤ ǫ

1, x > ǫ
0, x < −ǫ

(24)

The derivative of Hǫ is the following smooth function

δǫ(x) =

{

1
2ǫ

[

1+ cos
(

πx
ǫ

)]

, |x| ≤ ǫ

0, |x| > ǫ
(25)

Parallel GPU Implementation
Taking the iterative level-set convergence into consid-

eration, the computational most expensive operation is the
convolution in functions u1 and u2 given by Eq. (19) and
Eq.(20). Let M is a l×m×n matrix, and i, j, k are respectively
dimensional subscripts. We could denotes matrix multipli-
cation by element as

M(i, j,k) =A(i, j,k) ·B(i, j,k) = Ai jk ·Bi jk =Mi jk (26)

and matrix sum as

Ms =

l
∑

i=1

m
∑

j=1

n
∑

k=1

Mi jk (27)

Let M =
{

Mi jk

∣

∣

∣

∣

Mi jk = K′
i jk
· fi jk,1 ≤ i ≤ l,1 ≤ j ≤m,1 ≤ k ≤ n

}

,

We could decompose M into a×b× c blocks of sub-matrices

Spqr with dimension d× e× f and by definition rewrite con-
volution as

K(x) ∗ f (x) =

l
∑

i=1

m
∑

j=1

n
∑

k=1

K′
i jk
· fi jk

=

a
∑

o=1

b
∑

p=1

c
∑

q=1

Ss
opq

=Ms

(28)

where, K′(x) = K(x− t) and sub-matrix Sopq is

Sopq =

∣

∣

∣

∣

∣

K′
od+1,pe+1,qf

· fod+1,pe+1,qf ... K′
od+d,pe+1,qf

· fod+d,pe+1,qf
...

K′
od+1,pe+e,qf

· fod+1,pe+e,qf ... K′
od+d,pe+e,q f

· fod+d,pe+pe,q f

∣

∣

∣

∣

∣

(29)

In order to compute the convolution operation in using a
GPU, we can do the Fast Fourier Transformation(FFT) [19]
on each GPU block(o,p,q) [22] which corresponds to sub-
matrices Sopq, and subsequently obtains u1 and u2 by sum
up all blocks. Therefore, the term E in Eq.(22), which is a
combination of u1 and u2, requires no extra computation of
convolutions. Note that every matrix operation in our al-
gorithm including matrix sum and element-wise multipli-
cation are simultaneously computed on the GPU by blocks.

Results and Discussion
Data set and settings

We evaluate the proposed method on a 3D images of
zebrafish larvae from the Institute of Biology of Leiden Uni-
versity. The set consists 20 of 3D fluorescent images of
zebrafish in which every 3D image contains 20 1024×1024
slices, containing a green fluorescent signal. Our imple-
mentation environment is: an iMac installed with 64-bit
OS X Yosemite, 16 Gigabytes RAM, Intel Quad−CoreTM i7-
3770 2.50GHz processor, with one GPU NVIDA GeForce GT
750M. This is a minimal configuration. Our method could
be easily extended to a multi-GPU cluster further increasing
parallelisation speedup. The experiments were performed
in Matlab 2014R and all run-time were recorded in Matlab
program.

Evaluation of the Results
We first show the results of our method for zebrafish

images in Fig. 2. The initial boundary box and the final
boundary surface are shown in the upper row and the lower
row, respectively. In the image, the background and the fore-
ground exhibit obvious intensity inhomogeneity and noise.
Note that the image is the same as in Fig. 1, in which we have
shown that the Piecewise Constant(PC) model and thresh-
olding method are not successful in correctly separating the
complete object from the noise. The result in Fig. 2 demon-
strates our obvious advantages. In the image, some parts
of the fish boundaries are quite weak. As can be seen from
(c) and (d) in Fig. 2, our model still achieves satisfactory
segmentation result. Fig. 3 shows the maximum inten-
sity projections (MIP) of the fish, which is filled all missing
parts on fish body by grey regions, and the rendered volume
from our result, which shows the complete extraction from
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3D fish data.
In order to provide a detailed demonstration of the ad-

vantages of our method on dealing with the low signal-noise
ratio phenomenon, we use a single slice from a 3D image. In
this 2D slice we show the ability of noise reduction as well
as region enhancement. Typically, Fig. 4 shows the result
for 2D slice (taken from a 3D image) of quite low signal-to-
noise ratio in which a serious intensity inhomogeneity can
be observed. For this image, the initial contour was placed
across fish body and the background as shown in Fig. 4(a).
Here we like to point out that a new contour can emerge and
circumscribe even the low-intensity voxels nearby the edge
of fish body during the evolution. This can be seen from the
curve evolution process as depicted in Fig. 4(b) after 30 iter-
ations. The final contour recovers all boundaries very well,
as shown in Fig. 4(c), which is after 50 iterations. From this
one can appreciate that our method is also able to segment
images consisting of very inhomogeneous regions, which
is shown in Fig. 4(d). Note that, the grey part shows that
our method could correctly identify unclear voxels located
in between the intensity of the signal in the zebrafish and
background by using the spatial information and contour
length regularity. The application to the zebrafish images
comes naturally to our model, it both finds the object while
reducing the noise. When the level set functionΦ converges,
the estimatation fits the original image very well. Moreover,
the missing parts on boundaries are filled and, thereby, re-
gion partitions are completed.

The result of the level set method provides a segmented

(a) (b) (c)

(d) (e) (f)

Figure 2: Application to zebra-fish images. (a): Original
data as a 2D projection; (b) 3D object withD noise;(c): Initial
boundary box; (d)-(f): surface evolution and Final surface.

region enclosed by contour. As a Consequently, we use the
following region-based metric for an evaluation of the seg-
mentation performance [29]. Let R be a segmentation result,
and S be the true object region. Denote NS, NR, NS∩R as
voxel numbers respectively. We can compute the overlay
ratio from the R to the ground-truth region S, denoted by

(a) Orignal data (b) Segmentation (c) 3D volume

Figure 3: 3D segmentation result. (a): maximum intensity
projection(MIP) of the original data. (b): MIP of the Seg-
mentation. (c): 3D volume after rendering.

overlay(R,S), as follows:

overlay(R,S) =
2 ·NR∩S

NR +NS
(30)

which is referred to as the overlay ratio of R and S. This
region-based metric can be used to evaluate accuracy at the
voxel-level of a segmentation result. With the above met-
ric, we are able to quantitatively evaluate the performance
of our method with different initializations. We applied our
method to an image with 20 different initialization contours.
In Figure 5, for example, we show three of the 20 initial con-
tours, depicted in white, and their corresponding results,
depicted in red. In these three different initializations, ini-
tial contour 1 completely includes the object of interest [in
Fig. 5(b)], initial contour 2 is in the object [in Fig. 5(c)], and
initial contour 3 is completely outside of the object [in Fig.
5(d)]. Despite different locations of these initial contours,
the corresponding results are almost the same. All results
show the accurate capture of object boundaries. The seg-
mentation accuracy is quantitatively verified by evaluating
these results in terms of overlay ratio. The results are shown
in Fig. 6(a). This again demonstrates the robustness of our
model to the contour initialization.

Complexity Analysis
The images that we use this algorithm for are generally

large. Therefore we should consider the extend to which a
standard CPU approach would be useful for the processing
of large amounts of images. Assume an image contains N
voxels. Then, in a sequential implementation, one convolu-
tion, according to the definition, for each voxel is K(x) ∗ f (x),
costs N2 times the unit operation. Consequently, each of the
N voxels in the image will have its own convolution value
of ui(x) in Eq.(19) and Eq.(20) for every iteration during
the convergence procedure. Therefore, the total algorithm
complexity in one iteration is O(N3). If an objective func-
tion needs M iterations to obtain convergence, the overall
complexity will be O(M×N3). Subsequently, even if we
use the FFT as a substitute for convolution, the computa-
tional cost is still up to O(M×N2 logN)[20]. In order to
further accelerate the computation, we could consider this
computation as large scale matrix system. Using matrix
blocking techniques[27], a convolution operation could be
decomposed into K blocks where each block has n voxels
as shown in Eq.(28). Our hypothesis is that a GPU could
process K blocks in parallel and simultaneously apply FFT
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(a) 0 iteration (b) 30 iterations

(c) 50 iterations (d) Estimated result

Figure 4: Application of the level set method to a represen-
tative slice from a 3D image of zebra-fish.

(a) Original data (b) Initial contour 1

(c) Initial contour 2 (d) Initial contour 3

Figure 5: Robustness of our method to contour initializa-
tions in a 2D slice. (a)original slice of fish image. (b)-
(d)The initial contours, depicted as white contours, and cor-
responding segmentation results, depicted red contours.

on each blocks. Thus, the complexity of our method as
implemented in a parallel manner on GPU has an upper

bound O(M× N2

(k·n)2 logN), whereby the computational cost

are drastically decreased.
We can quantitatively compare the accuracy of our

method using GPU/CPU with that of the PC model by com-
puting the overlay ratio on all 20 3D images. The result of
the comparison is shown in the graph of Fig. 6(b). As shown
in Fig. 6(b), the overlay ratio of our model is significantly
higher than that of the PC model. The CPU implemen-
tation of our model is way slower than that of PC model,
however, after using parallel GPU acceleration, the run-time
drastically decreases; as depicted in Fig.6(c). In our parallel-
lization experiment, our model remarkably speeds up with
an average speed-up factor of 11 times; this is listed in Ta-
ble. 1. Fig.7 shows the good results of our method with one
representative image out the all 20 images as an example,
and compares it with the PC model. Here it is obvious that
our model produces a more accurate segmentation result;
91.68% overlay ratio for our methods against 49.66 overlay
ratio for the PC model.

Method
our method

PC
No GPU GPU

Run-Time(s) 9364.57 853.20 453.94

overlay(%) 90.6474 88.9746 49.5923

Table 1: Average run-time,in seconds, and overlay ratio for
our method and PC method for all 3D images according to
Eq.(30)

Conclusion and Discussion
In this paper, we proposed an algorithm for two-

region segmentation. The proposed method is derived from
Bayesian inference framework, which efficiently utilizes in-
tensity similarity as well as the spatial location, and com-
bines it with a level-set based approach. This results in a
global optimal solution for the two-region case. Therefore,
it can segment images with intensity inhomogeneities. The
computational complexity can reduced by computing con-
volution in frequency domain, i.e. FFT. In addition, our ap-
proach can be further parallelised using GPU’s. This results
in a drastic reduction of computation time. Our experimen-
tal results demonstrate a good performance of our method
for images that contain objects with weak boundaries. Com-
paring our method to a piece-wise constant method clearly
illustrates the advantages of our method in terms of effi-
ciency and accuracy.
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