©2016 Society for Imaging Science and Technology

Morse Decomposition of 3D Piecewise Linear Vector Fields

Marzieh Berenjkoub, Guoning Chen; Univeristy of Houston; Houston, Texas

Abstract

Morse decomposition has been shown a reliable way to com-
pute and represent vector field topology. Its computation first con-
verts the original vector field into a directed graph representation,
so that flow recurrent dynamics (i.e., Morse sets) can be iden-
tified as some strongly connected components of the graph. In
this paper, we present a framework that enables the user to ef-
ficiently compute Morse decompositions of 3D piecewise linear
vector fields defined on regular grids. Specifically, we extend the
2D adaptive edge sampling technique to 3D for the outer approx-
imation computation of the image of any 3D cell for the construc-
tion of the directed graph. To achieve finer decomposition, a hier-
archical refinement framework is applied to procedurally increase
the integration steps and subdivide the underlying grids that con-
tain certain Morse sets. To improve the computational perfor-
mance, we implement our Morse decomposition framework using
CUDA. We have applied our framework to a number of analytic
and real-world 3D steady vector fields to demonstrate its utility.

1. Introduction

Vector fields are one of the omnipotent tools for the study
of a wide range of continuous dynamical systems that describe
the behaviors of gas and liquids under different circumstances.
Applications that involve vector fields and their analysis include
automobile and aircraft engineering, climate study, oceanography,
combustion physics and chemistry, earthquake engineering, and
medical practice, among others. An effective and compact way
to represent these complicated data is to compute their topology
[13, 1]. The topology of a steady vector field is defined as the flow
recurrent features, including fixed points and periodic orbits, and
their connectivity [7].

Conventional vector field topology, also referred to as the
differential topology, is computed based on the characterization
of streamlines— solutions to the ordinary differential equation that
describes the vector field, which is numerically unstable. To ad-
dress this, Chen et al. [2] introduced the Morse decomposition
as a stable representation of the vector field topology. Different
from the differential topology, Morse decomposition represents
the flow recurrent dynamics by the individual disjoint sub-regions
of the flow domain, called Morse sets, that enclose these flow re-
current features. This coarse representation offers an additional
room for topology to tolerate certain amount of error or pertur-
bation, resulting in a more stable representation compared to the
differential topology. Since its introduction, Morse decomposi-
tion has been extended to analyze piecewise constant vector fields
[3] and 3D vector fields defined on unstructured meshes [4]. How-
ever, there is still little work on the computation of Morse decom-
position of vector fields defined on 3D regular grids.

In this paper, we introduce an effective framework that en-
ables the efficient computation of Morse decompositions of 3D
piecewise linear vector fields that are defined on regular grids.

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

Figure 1.
resolutions. In this case, we started with a regular 32 x 32 x 32 cubical grid
(left) on the domain [—30,30] x [—30,30] x [—10,50], and gradually doubled
the resolution (middle and right). T = 400, 800 and 1600, respectively.

Morse sets (magenta) of the Lorenz system in three different

Similar to the previous approaches, the first step of our frame-
work is to convert the original vector field into a directed graph
by tracking the image of each 3D cell of the regular grid based on
the vector field defined on it (i.e., flow map estimation). To accu-
rately estimate this image, we extend the adaptive edge sampling
technique introduced in [2] and make use of the configuration of
the regular grid to develop a 3D adaptive face sampling strategy.
This leads to an accurate construction of the directed graph. Af-
ter obtaining the graph, flow recurrent dynamic features can be
identified as the strongly connected components of the graph.

One challenge for Morse decomposition computation is to
determine an ideal integration time for the flow map estimation,
which can accurately capture the flow behavior while achieving
efficient calculation. To address that, we extend the hierarchi-
cal refinement framework for 2D vector fields [20] to 3D flows,
which enables the Morse decomposition to start with a smaller in-
tegration time. This integration time will be increased gradually
at regions that may contain flow recurrent dynamics to refine the
obtained results. In addition, our refinement framework borrows
ideas from the recently introduced image-space Morse decompo-
sition for 2D vector fields [5], and procedurally sub-divides the
3D cells to refine the boundary of the obtained Morse sets. Fig-
ure 1 provides an example of such a refinement to the Morse set
detected from the Lorenz system.

Since the input vector fields are defined on regular grids,
a CUDA implementation of our framework is possible, which
largely improves the computation performance of our framework.
This is much needed in practice when handling large scale 3D
vector fields. To our best knowledge, this is the first work that
addresses Morse decomposition of piecewise linear vector fields
defined on 3D regular grids. It is also the first time that a CUDA
implementation of Morse decomposition is presented. We have
applied our framework to a number of analytic and real-world 3D
data sets to demonstrate its utility.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related work on vector field topology. Section 3 re-
views the Morse decomposition. Section 4 provides the detail

VDA-477.1

of our 3D flow combinatorialization based on the adaptive face
sampling. Section 5 describes our pipeline of hierarchical Morse
decomposition. Section 6 details the implementation of our algo-
rithm using CUDA. Experimental results for analytical and simu-
lation data are provided in Section 7, followed by the conclusion
and possible future work in Section 8.

2. Related Work

There exists a large number of algorithms and techniques
for the visualization and analysis of vector-valued data. A series
of survey papers [8, 9] provide a comprehensive review of this
vigorous research area. In the following, we review only the most
related work to the presented research.

Helman and Hesselink were the first to introduce vector field
topology to the visualization community [13]. Specifically, they
defined a topological skeleton that is comprised of first-order fixed
points and their connectivity. This topological skeleton has been
extended to handle the boundary features and higher-order fixed
points [14], respectively. Wischgoll and Scheuermann [15] in-
troduced a technique for periodic orbit detection from 2D steady
vector fields, which is later extended to 3D [24].

Chen et al. introduced an efficient method for detecting pe-
riodic orbits from 2D/2.5D vector fields and defined a more com-
plete vector field topology by including periodic orbits into the
topology [7]. Theisel et al. proposed a saddle-saddle connector
for 3D vector field topology visualization to reduce the occlusion
issue[15]. Extracting higher-order of critical points has been in-
troduced by Weinkauf et al. to assist the simplification of 3D
vector field topological representation[16]. Considering the prob-
lem of instability in previous methods, Chen et al. introduced
the first stable and discrete representation of vector field topology
based on Morse decomposition[2]. This framework has been ap-
plied to 3D vector fields defined on unstructured grids [4] and ex-
tended to construct a hierarchical representation of the flow struc-
ture [20], respectively. Different from their work, we handle 3D
vector fields defined on regular grids, which enables us to develop
some efficient algorithms and implementations to compute Morse
decomposition for large scale data in pratice. Recently, Szymczak
and Zhang proposed a stable Morse decomposition framework for
piecewise constant vector fields on surfaces[6]. Later, Szymczak
et al. presented an algorithm for computing nearly recurrent com-
ponents for 3D piecewise constant (PC) vector fields defined on
regular grids [3]. Note that piecewise constant vector fields as-
sume a constant vector value within each cell, which changes the
nature of the original vector fields. Different from their setting,
we compute Morse decomposition directly based on the original
piecewise linear vector fields.

3. Background

In this section, we will briefly review some important con-
cepts of vector fields and Morse decomposition.

Consider a 3-manifold Ml C R3, a general vector field u can
be expressed as an ordinary different equation X = u(x,7) or a
map ¢ : R x M — R3, satisfying (p,t(‘)’ (x) = x¢ and @f"(x) =
Qi (95 (x)) = @ (¢}, (x)). This flow map describes the spatial
correlation of points through trajectories (or flow paths) starting
at time fo: @f (x). In steady flows, a point xo € M is a fixed point
if @(r,x0) = xp for all r € R. That is, u(xg,#) = 0. x is a periodic
point if there exists T > 0 such that ¢(T,x) = x. The trajectory of

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

©2016 Society for Imaging Science and Technology

Figure 2. The Morse decomposition computation pipeline.

a periodic point is called a periodic orbit. Both fixed points and
periodic orbits are examples of flow recurrent features. The con-
nectivity of these flow recurrent features represents the qualitative
(or structural) information of the vector fields, which we refer to
as vector field topology.

Morse Decomposition A Morse decomposition is a collection
of disjoint closed sets, called Morse sets. Together, they contain
all the recurrent dynamics of the flow induced by the vector field.
More precisely, sets M;, i € {1,2,...,N} form a Morse decompo-
sition if and only if the trajectory of any point is either (i) entirely
contained in one of the Morse sets or (ii) is contained in some
Morse set M; for large enough negative times and in some other
Morse set M, with j > i, for large enough positive times. In-
tuitively, (ii) means that the trajectory of any point outside the
Morse sets can only move from a set with lower subscript to a
set with a higher subscript. (ii) excludes any recurrent dynamics
outside the Morse sets, making it gradient-like. In practice, the
partial order between Morse sets can be represented as an acyclic
directed graph called Morse connection graph, or MCG.

In [2], Chen et al. described a computation pipeline for
Morse decompositions of the given 2D vector fields. In this
pipeline, the input vector field is firstly converted into a directed
graph, denoted by %, through a numerical computation, called
flow combinatorialization. The nodes of .# are the individual tri-
angles of the mesh where the vector field is defined. The directed
edges indicate the flow mapping relations between triangles. For
instance, if there is a directed edge 77 — T, the particles released
at triangle 77 can be advected by the flow and reaches 7> over cer-
tain time 7. In other words, .% encodes the dynamics of the flow
at a combinatorial level. From .%, Morse sets can be identified
as the strongly connected components of .% with non-trivial Con-

VDA-477.2

ley index. The connectivity between the identified Morse sets can
then be extracted by path searching between their corresponding
strongly connected components in .. It has been shown that this
pipeline can be extended to 3D as illustrated in Figure 2.

Algorithm 1 Adaptive sampling on a face algorithm

procedure ADAPTIVE_ FACE_ SAMPLING(V f, 7,k)
Input: V:vector field; f:current face; T:user specified integral
time; k: the level of adaptive face sampling.
Output: V,:the index of edges that will be added to the graph
Z¢ in Algorithm2(After all GPU computation done).
Local variables:
11,13, 14, f1:the four sub-faces of f;
V1, V3, v3,v4:the four vertices of f;
e1,e,e3,eq4:the four end points of f;
L: the current level of adaptive face sampling.
Begin
L=L+1
if (L>k|]|
check_ neighborhood.- condition(ey, ez, e3,e4))
return;

else
ve1 = add_particle(vi,v2);
trace(Vyu1,7);
vey = add_particle(vy,v3);
trace(v,;2,T);
ve3 = add_particle(vs,vy);
trace(vy,3,T);
Vea = add_particle(vq,vy);
trace(Vyu4, 7);
Vee = add_particle—center(f);
trace(Vee, T);
check_edge_end_points();
f1 =build_ new_ face(v,vei, vee, Vea);
call Adaptive_ face_ sampling(V,f],7,L);
f5 =build_new_ face(vey,v2,ve2, Vee);
call Adaptive. face_ sampling(V, fé,r,L);
f3 =build_ new_ face(vee, ve2, v3,ve3);
call Adaptive_ face_ sampling(V, f3,7.L);
f4 =build_ new_ face(vea, vee, ve3, v4);
call Adaptive_ face_ sampling(V,f},7,L);
end procedure

4. Flow Combinatorialization

As described earlier, the most important step in Morse de-
composition computation is the flow combinatorialization. In this
work, we employ the idea of 7-maps for the computation of flow
combinatorialization. In the rest of our discussion, we assume
that the underlying computation domain is represented by a reg-
ular grid. Vector values are defined at the vertices and tri-linear
interpolation is used to obtain values on the edges and inside the
grid.

The purpose of flow combinatorilization is to construct the
directed edges e, = (V; — V;) (V; and V; are two voxels) in %,
which accurately encodes the flow map induced by the vector
field. As shown in the previous work [2], the directed edges start-
ing from each node in %7, i.e., corresponding to a 3D cell (or

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

©2016 Society for Imaging Science and Technology

Figure 3. Morse decomposition results of the Benard data with 64 x 16 x 32
cubic cells, using T = 1200. Different colors indicate different Morse sets. The
Morse sets computed without using adaptive face sampling (top) are typically
disconnected, while they are well connected with the proposed adaptive sam-
pling strategy (bottom).

a voxel) V, can be obtained by locating all the 3D cells, {V;},
that intersect with the image of V, denoted by (p,'(?H(V) or simply
@ (V). Thatis, ey = (V = V;) € F1 <= V;N (V) #0.This set
of 3D cells constitutes the outer approximation of ¢(V). Hence,
to obtain an accurate directed graph,.Z+, it is essential to compute
an accurate outer approximation of the image of each 3D cell of
the given grid. A naive approach for the outer approximation es-
timation is to advect the densely placed particles within each 3D
cell over time 7 and locate the set of cells that enclose the end
positions of these particles. However, such a naive approach will
usually result in disconnected Morse sets due to inaccurate esti-
mation of the flow map (see an example shown in Figure 3 top).
To address that, we extend the 2D adaptive edge sampling strat-
egy [2] and propose an adaptive face sampling process described
as follows.

Adaptive Sampling For Faces

Consider a voxel V and its boundary dV. Let ¢ (dV) be the
image of the dV under the flow ¢ over time 7. It suffices to have
an accurate outer approximation of @¢(dV) to obtain the outer
approximation of @¢(V). The interior of ¢(V) will be identified
via a backward mapping [2]. To obtain the outer approximation of
©:(dV), we propose an adaptive face sampling strategy for each
V. This adaptive sampling is based on the observation that the
image of a connected object under a continuous map remains con-
nected. Consequently, the basic idea of our strategy is to preserve
the connectivity of ¢z(dV) during mapping.

Specifically, we are interested in finding the set of connected
voxels that contains the image of each face of a voxel. To com-

VDA-477.3

e N
- — — K — — — - — —
I I
8 { od v 4 ‘“ v
|f2 | | f3 f3
s, 2 _
- —-n —
<] N gl 2 4 2
AN
v v v vl 2 v v
J
N\
Vi
- %

(b)

Figure 4. lllustration of the adaptive face sampling strategy on regular grid.
Top images show an example of face subdivision based on the connectivity
of the image of face f,. The bottom images illustrate an outer approximation
(e.g., the shaded region) of a face (i.e., the red quad in the left).

pute this set of connected voxels, we first release particles from
the four vertices (or corners) of each face f;. If the voxels that
contain the end positions of these four particles are not identical
or neighboring to each other (i.e., they are not connecting), more
seeds will be inserted between the previous seeds recursively. We
achieve that by subdividing f; into four equal quads. We consider

)

each new quad as a new face fl(jk and apply the same process

above, i.e., placing particles at the corners of each fl(jk) (exclud-
ing those corners that have been considered in the previous iter-
ation) and validating the connectivity of the voxels that enclose
their images. This recursive process continues until we locate a
set of connected voxels that completely encloses the image of f;.
In theory, this process will converge given a finite 7 and a con-
tinuous flow. In practice, we set a maximum recursive level k to
prevent the over-stack exception because of the memory limita-
tion of GPU. In all our experiments, we set k up to 4. Figure 4
provides an example to illustrate our adaptive face sampling. For
a face f1, initially four particles are placed at the four vertices v;
and advected by the flow over time 7 (left image of Figure 4(a)). If
the two voxels containing the images of the two vertices v; and v
are neither the same nor neighbors, we then divide f; to four faces
in a way that v, located at the center and v, to v.4 are located in
the middle of each edge (middle image of Figure 4(a)). We trace
streamlines from the new faces and determine whether the voxels
containing the images of faces f1; and fj, are connected or not.
If they are not, it means that we need more samples on face (f1;).
Therefore, we split the face segment (fj;) to four equal faces and
recursively call the algorithm until a set of connected voxels is
found. Algorithm 1 provides a pseudo-code of our adaptive face
sampling. Figure 3 (bottom) shows the Morse decomposition re-

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

©2016 Society for Imaging Science and Technology

sult with the proposed adaptive face sampling. Note that in our
experiments, T is estimated by the number of integration steps.

The complete flow combinatorialization is computed in both
forward and backward flow directions. Particularly, we first esti-
mate the .%; in the forward flow direction using the above adap-
tive face sampling process and add the obtained directed edges
accordingly. Then, we estimate .%; in the backward flow direc-
tion using the same adaptive face sampling process and add the
corresponding edges by avoiding the repeated edges. In addition
to the above boundary estimation, we also seed particles at the
centers of the individual cells and compute their images and add
the corresponding edges while avoiding redundancy [2].

5. Hierarchical Refinement

Even with the above flow combinatorialization computation,
it still remains a challenge to determine an ideal T to compute
the Morse decompositions with sufficiently fine Morse sets and
fast computation. Chen et al. [2] have shown that in general, the
larger the 7 the finer the decomposition result will be but with
slower computation and larger error (e.g., disconnected Morse
sets). In practice, users have to select different 7’s in order to
get the desired result. To address that, Chen et al. [20] proposed
a hierarchical refinement framework which enables to compute a
Morse decomposition using a smaller 7 at first, then gradually re-
fines the results by using a larger 7 within the Morse set regions
detected in the previous computation. We adapt their framework
and combine it with an additional cell subdivision process to re-
fine the boundaries of the resulting Morse sets, whose smoothness
is known constrained by the resolution of the underlying grid.

Specifically, our hierarchical refinement method consists of
two stages. In the first stage, we gradually increase 7 for the re-
finement of the detected Morse set. This is based on the work
by Chen et al., which demonstrates that computing the flow com-
binatorialization does not require a constant T value everywhere
in the domain [20]. This refinement process enables us to semi-
automatically determine an ideal 7 for the extraction of finer
Morse sets within a local region given its flow characteristics. In
the second stage, we sub-divide the voxels that fall in the resulting
Morse sets from the first stage and re-compute the local Morse de-
composition within each Morse set region with a higher grid reso-
lution. This enables us to partially improve the smoothness of the
Morse set boundaries for visualization, which is in a much similar
spirit of the image-space Morse decomposition framework [5]. In
particular, our refinement framework can be described as follows.

1) An initial Morse decomposition is computed using a small
7. 2) For each obtained Morse set (we denote it as M;), if its
size (i.e., total number of voxels within it) is larger than a user-
specified threshold, we increase 7; as 7/ = 27; and recompute the
Morse decomposition within a sub-volume corresponding to M;.
3) If the newly obtained Morse sets are all well-connected indi-
vidually, we put them into a queue Q, and set 7; = 7/, and repeat
the step 2) with a Morse set from Q. Otherwise, if the extracted
Morse sets become disconnected or we reached the threshold for
adaptive face sampling (i.e., k > 4), go back to the previous level
of this Morse set M; and set T/ = (7; + 7/)/2, then go to step 2).
4) After all Morse sets converge using steps 2) and 3), we refine
the grid within the obtained Morse sets by doubling their resolu-
tion. For each Morse set M; and its corresponding 7;, we use 27;
to compute a new Morse decomposition within it. If the newly

VDA-477.4

{Geometry-Based Morse decomposition}

all Morse set
are well-connected?

s No

t"- 7' < Threshold

doubling the resolution
No Yes

Ye
Add them into a queue
E}pdate local flow combinatorializationj

Morse decomposition
(number of Morse set > 1)?
No
Yes

(Queue is empty)?

Figure 5. The pipeline of the proposed hierarchical refinement framework
of Morse decompositions of vector fields.

obtained Morse sets are all well-connected individually, we put
them into Q, and repeat step 4) to increase its resolution unless
the memory doesn’t permit. Otherwise, we set 7/ = (7; + 7/) /2
and recompute the Morse decomposition within M; and go to step
4).

To explain how the hierarchical framework searches for an
ideal 7, we use the Tornado data as an example. Figure 7 shows
the result of Tornado with different numbers of integration steps.
We start from 7 = 150 and increase it by doubling it using the
hierarchical refinement framework. The third image in Figure 7
shows the result which is obtained by 7 = 600. The resulting
Morse set is disconnected. We then perform a binary search for
the ideal 7, as illustrated in the pipeline shown in Figure 5. The
ideal 7 for this data is 450. We then subdivide the cells falling in
this Morse set in attempt to further refine the Morse set. However,
the resulting Morse set with a finer resolution does not improve
much for this example.

6. CUDA Implementation

Even with the previously described hierarchical framework,
the computation cost for the Morse decomposition of 3D vector
fields can still be very high. To further accelerate the compu-
tation, we explore the GPU and CUDA implementation of our
framework. As the estimation of the outer approximation of each
3D cell (or voxel) is independent of the others, it is natural to
process them in parallel. In the higher-level, one can assign a

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

©2016 Society for Imaging Science and Technology

thread for the outer approximation computation for each cell. In
the lower-level, the outer approximation is extracted via the trac-
ing of particles seeded at each cell. Ideally, if the advection of
each particles is independent of the others, a thread can be as-
signed to it to achieve the maximum parallelization. However,
considering the proposed adaptive face sampling strategy, not all
the required particles and their initial positions are known at the
beginning. This makes their parallel computation challenging. To
address that, we proceed as follows (see Algorithm 2).

Algorithm 2 An efficient GPU outer approximation computation
procedure CONSTRUCT- EDGE_ MAP(V,B 7,k)
Input: V:vector field; B:boundary coordinates;
Output: fr:completed graph;
Local variables: h:array of vertex coordinates; e: array of end
points coordinate; ,:array of seed point coordinates; e,: array
of coordinates of ending positions of seed points; Q is a queue
for saving Morse sets;

Begin
Generate_ Vertex_ Coordinates(h);
forallh € B

do in parallel
e < Trace_Streamlines_.GPU (h,t,v);
end in parallel
end for
Add_ Edges(h,e,f7);
Call Morse_ Decomposition(fz);
Current _Morse_Sets = Save_ Morse_ Set();
do
for all h € Current _Morse_Sets
do in parallel

(hp,ep) < Adaptive_Face _Sampling_GPU (h,e,7,k)

end in parallel
end for
Add_Edges(hp.ep.f7);
Call Morse_ Decomposition(fz);
Current _Morse_Sets = Save_ Morse_ Set();
for all x € Current_Morse_ Sets do
if (\Check_Connectivity(x));
end for
while (lisEmpty(Q))
End
end procedure

Add xto Q;

At first, streamlines are computed concurrently by execut-
ing a CUDA thread per vertex of the grid for the initializa-
tion of flow combinatorialization. These streamlines and their
end positions will be accessed multiple times in the subsequent
face adaptive sampling and connectivity determination. Function
trace_Streamlines_.GPU in Algorithm 2 accomplishes this initial-
ization. An important array for this initialization is 4 that contains
the coordinates of the vertices. It is passed to the GPU memory.

After computing the streamlines starting from vertices, the
ending positions of the streamlines will be saved at e. Based on
these end positions, the corresponding directed edges are added to
the graph. Specifically, since one vertex is shared by six voxels,
six directed edges starting from these six voxels will be added for
each streamline. In the next step, we perform the face sampling

VDA-477.5

R

Table 1: Performance (in seconds) and memory usage(in MB)
of the Morse decomposition of the Lorenz data with different

integration steps and different resolution (k = 2).

Res | 32 64 128

r Memory Memory Memory
Time Time Time

100 1,162.7 3,463.2 23,199.0
24.611 148.981 1199.119

200 1,163.3 3,420.3 23,200.7
45.47 332.292 2,572.517

400 1,164.0 3,430.9 23,201.6
84.866 674.945 5,722.202

300 1,164.8 3,440.1 23,823.3
153.059 1,236.084 10,153.4

1,165.0 3,452.9 23,204.8

1600

193.171 1775.597 15,092.5

(i.e., Adaptive_Face_Sampling_GPU function in Algorithm 2), in
which we need the ending positions of the vertices of the six faces
of each voxel which are computed in the last step. Again, since
each vertex is shared by 6 faces, we access the ending position
and starting position of this voxel using four threads. One thread
will cover three faces and the other three faces will be covered by
other three threads running for other vertices.

During the adaptive sampling process, the connectivity
of the voxels that contain the end positions of the stream-
lines starting from a given sub-face can be achieved by check-
ing the adjacency of the indices of these voxels. To reduce
repetition in the computation, in the implementation of the
Adaptive_Face_Sampling_GPU function, we only consider the
three faces whose normals are in the forward flow direction, and
the other three faces will be covered by other threads assigned to
other adjacent voxels. Because in each level of face sampling we
need to compute the previous level completely, each face must be
split sequentially. The algorithm of this adaptive face sampling
process has been described in Figure 4 and Algorithm 1.

Since it is impossible to run a particle per thread because
the number of required levels of adaptive sampling as well as the
required particles are unknown, we allocate the GPU memory to
the size of maximum number of particles in all levels that the
algorithm may need. As we add one particle to the middle point
of each edge of every (sub-)face and one to its center, each (sub-
)face will place totally 5 particle. If we set k = 4, the total number
of all the (sub-)faces involved in this adaptive sampling process
will be 341 = Zi:o 4%, Thus, the maximum number of particles
needed for processing a face will be 5 x 341 = 1705.

7. Results

We have applied our 3D Morse decomposition framework to
a number of analytic and real-world flow data. Figures 1 and 6
show the obtained Morse sets for the Lorenz system. This vector
field is defined on a 32 x 32 x 32 grid with 6 = 10, b = 8/3 and
p =28 in the domain [—30;30] x [—30;30] x [—10;50], which is
originally presented in [21]. From the result, we see our method

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

©2016 Society for Imaging Science and Technology

successfully locates the Morse set that encloses a saddle-like pe-
riodic orbit. Figures 3b and 8 show the result for the Benard-
Rayleigh Convection data [22] using one-level cell subdivision.
We have subsampled the data set to 64 x 16 x 32 within the
domain [—16;16] x [—4;4] x [—8;8]. Our result clearly shows
the eight Morse sets that match the configuration of the Be-
nard flow. Figure 9 shows the flow behind a Square-Cylinder
Data [23].The dimension of this data is 96 x 32 x 24 in the do-
main [—20; 12] x [—4;4] x [0;6]. By subtracting the average (or
mean) velocity from the flow, we can observe some interesting
swirling structure, which is highlighted by the identified Morse
set. Figure 7 shows the flow of Tornado Data [25]. This vec-
tor field is defined on a 32 x 32 x 32 grid and in the domain
[—30;30] x [-30;30] x [~10;50]. Our result identifies one con-
nected Morse set that corresponds to the core of the tornado.

To study the performance of the proposed Morse decompo-
sition, we conduct a number of experiments with the above data
sets. There are a number of factors that may affect the perfor-
mance of our pipeline including its computational time and mem-
ory consumption. In the following experiments, we particularly
concentrate on four factors: 1) the resolution of the grid, res 2)
number of integration steps 7, 3) number of levels of adaptive
face sampling k and 4) number of levels of refinement L. Tables 1
and 2 provide the performance report of our experiments, respec-
tively. All the performance information is measured on a PC with
Intel Xeron 2.6GHz 2 processor and 128GB RAM and a Quadro
K4000 Graphic Card.

Different integration step 7 and resolution res To see how
different resolution affect the performance of our framework, we
compute the Morse decompositions of the Lorenz system with
three resolutions of 32, 64 and 128, respectively. We set the num-
ber of levels of adaptive sampling k to 2 and start the 7 from
100 and increase it up to the 1,600. Figure 6 shows the result
of Lorenz with different integration steps. The computation times
for T =200, 400, 800 and 1600 are 45.47, 84.866, 153.059 and
193.171 seconds, respectively, and the memory foot-prints are at
most 1,164.0MB for all of them. Figure 6 and Table 1 provide the
results of Lorenz with different integration steps and resolutions.

Different numbers of levels of adaptive sampling £ To see
how different numbers of levels of the proposed adaptive sam-
pling algorithm affect the performance of our framework, we
compute the Morse decomposition of all four data sets with dif-
ferent levels of adaptive sampling. We use the sub-sampled data
for our computation which is mentioned at the beginning of this
section. As described earlier, due to the hardware constraint, we
set the number of levels of adaptive sampling, k, up to 4. From
these results, we see that the computation time is a few seconds
for all data sets when k = 0. When £ is increased, the compu-
tation times are increased accordingly. However, the increase of
the computation time need not be linear with respect to k. This is
in large due to the different flow configuration of different data.
Among different data sets, the computation time is varying. This
is mostly because of different resolutions of the data and different
parameter settings for the computation. For example, the cylinder
data has the highest resolution, therefore, its computation time is
higher than the others when using a similar 7. Another example is

VDA-477.6

©2016 Society for Imaging Science and Technology

Figure 6. The Morse set of the Lorenz system with resolution of 32 x 32 x 32. The results are obtained using T = 100, 200, 400, 800 and 1600, respectively.

The computation times are 24, 45, 84, 153 and 193 seconds, respectively.

Table 2: Performance of the Morse decomposition for all four data sets with different levels of adaptive sampling. Both 7 and
resolution are fixed for the individual data set. Specifically, for Lorenz: =200 and res is 32 x 32 x 32; for Tornado:7=100 and res is
32 x 32 x 32; for Benard:7=1200 and res is 64 x 16 x 32; for cylinder:7=200 and res is 96 x 32 x 24.

Dataset Measurements K 0 1 2 3 4

Lorenz Time (s) 1.453 21.768 24.42 52.330 89.366
Memory (MB) 398.0 1,156.3 1,156.2 1,159.1 1,162.5

Tornado Time (s) 1.543 31.768 32.815 100.367 252.005
Memory (MB) 398.6 1,154.3 1,154.4 1,155.1 1,155.6

Benard Time (s) 2.531 241.519 242.261 976.892 2996.884
Memory (MB) 400.1 1,157.7 1,157.6 1,163.0 1,171.5

Cylinder Time (s) 1.859 78.209 79.522 283.086 742.849
Memory (MB) 187.7 1,886.5 1,886.5 1,889.1 1,900.2

the Benard data which has a highly convoluted flow configuration.
Therefore, a larger 7 (i.e., 1,200) is needed in order to isolate the
eight vortex systems. Consequently, it has the longest computa-
tion time in general. In terms of the physical memory consump-
tion, it is easy to understand that the larger the data set (with larger
number of cells) the more memory it will consume. For instance,
the cylinder data typically demands more memory space than the
other data sets. In terms of the level of adaptive sampling, when
k = 0, the memory use is relatively small, while it becomes much
larger when k > 0 due to the enabling of the adaptive sampling.
However, the memory consumption does not change much if & is
increased. This can be explained by the fact that we initialize the
memory for the storage of the graph by assuming an average 16
particles for each voxel in our implementation.

Another interesting observation from our experiments is that
for some data set, after k is larger than certain value, the improve-
ment of the resulting Morse decomposition (i.e., the connectivity
and smoothness of the Morse sets) is not obvious. For example,
for the Tornado data, we found a connected Morse set consisting
of 2,701 voxels using k = 1. When we set k = 2,3, 4, the obtained
Morse sets contain 2,901, 3,006 and 3,091 voxels, respectively.

Different levels of cell subdivision An important factor that af-
fects the possible levels of cell subdivision is the GPU memory
constraint. Since we have no a-priory information for the num-
ber of particles, we have to allocate the possible maximum num-
ber for the returning array of indexes. It’s also dependent on the
dimension of the data set, i.e. for Lorenz data in resolution of
64 x 64 x 64, we can have adaptive sampling up to 3 levels, and

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

for Benard data in resolution of 128 x 32 x 64, the maximum level
of refinement is 2.

Figures 1 and 9 show the examples of the effect of cell sub-
division to the decomposition. Generally, the deeper the level of
refinement is used, the smoother and more coherent would the
results become.

CPU vs. GPU There is a substantial performance gain with the
GPU version as shown by the comparison in Table 3. The GPU
version is 7.30x to 12.87x faster than the single threaded CPU
implementation. The reductions in the run-time are from 843.274
to 115.436 seconds for the Lorenz, 13,295.7 to 1,032.509 sec-
onds for the Benard, 1,096.402 to 98.761 seconds for the Tornado
and 881.951 to 2,193.303 seconds for the Square-Cylinder. Those
correspond to 7.8, 12.8, 35.2 and 4.49 times speed-up of the GPU
over the CPU, respectively. The smallest speed up is for Cylin-
der and the largest one is for Benard. The reason is because of the
longer integration step and also the complexity of the Benard flow,
which needs to go through deeper levels of adaptive sampling in
order for the extracted Morse sets to be converged.

8. Conclusion

In this paper, we have presented a new framework for Morse
decomposition of piecewise linear vector field defined on 3D reg-
ular grids. Most vector fields of interest in science and engi-
neering are three-dimensional. Our approach allows one to an-
alyze them directly, without being restricted to slices or other
two-dimensional domains. Specifically, we present a hierarchical
Morse decomposition framework that enables the automatic se-

VDA-477.7

©2016 Society for Imaging Science and Technology

Figure 7. Results for the Tornado data set using the proposed hierarchical framework. The results shown in the first three images are generated with k =3 and
T =150, 300, and 600, respectively. We see the Morse set become disconnected with T = 600. We then apply the binary search for the ideal T which turns out to
be 450 (the right image). The computation times are 19.715, 58.419, 86.427, and 98.761 seconds, respectively.

Figure 8. Results for the Bernard-Rayleigh convection data set using the sub-sampled data set. The result on the top left is generated using Tt = 1200 and
k= 1. The top right result is obtained using © = 2400 and k = 2. The bottom left image is generated using T = 4800 and k = 3, which contains a disconnected
Morse set. We then apply the binary search and determine the ideal t for those local regions that may contain flow recurrent dynamics. The bottom right image
shows the converged result with eight isolated Morse sets (in different colors). The t used for these Morse sets range from 2,400 to 3,600. The computation
times are 143.2, 287.34, 976.53 and 1032.51 seconds, respectively.

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016 VDA-477.8

Table 3: The comparison of the performance (in terms of the
computation time (in seconds) and memory consumption (in
MB)) of a GPU implementation versus a CPU implementation
of the proposed pipeline with the Lorenz, Tornado, and Benard
data sets. The last column is the speed-up gained from the
GPU implementation.

GPU CPU
Memory Memory
Dataset)) Speed-
Time Time
up
1,233.8 1,341.9
Lorenz 7.30x
115.436 843.274
1,367.8 1,481.8
Benard 12.87x
1,032.509 13,295.7
1,328.7 1,419.7
Tornado 11.10x
98.761 1,096.402
. 9,288.9 9,858.1
Cylinder 4.49x
881.951 2,193.303

lection of a proper 7 for the flow map estimation at different flow
regions in order to generate Morse decomposition with desired
fineness. We also introduce an adaptive face sampling strategy
for the accurate estimation of the outer approximation of each cell
during the flow combinatorialization computation. Finally, we in-
tegrate the cell subdivision strategy into our computation pipeline
to refine the boundaries of the obtained Morse sets. Our pipeline
has been implemented using CUDA and applied to a number of
3D data sets to demonstrate its efficacy.

There are some limitations of the current framework. In par-
ticular, for the flow behind a square cylinder data set, our method
cannot sufficiently refine the obtained Morse set due to the limited
level of adaptive face sampling (i.e., k). In addition, the proposed
CUDA implementation may not be optimal, as it does not utilize
the advantage of shared memory mechanism. Furthermore, the
memory allocation for particles is performed in the beginning of
the algorithm and remains unchanged, which is sub-optimal. In
the future, we plan to address all these issues.

Acknowledgment
We thank Tino Weinkauf and Robert Laramee for the data.
This research was supported by NSF 11S-1352722.

Author Biography

Marzieh Berenjkoub is a Ph.D. student at the Department of
Computer Science at the University of Houston. She earned her
M.S degree in Computer Science from University of Tabriz, Iran.
Her research interests include visualization, computer graphics,
medical imaging, and human-computer interaction.

Guoning Chen is an Assistant Professor at the Department of
Computer Science at the University of Houston. He earned his
Ph.D. degree in Computer Science from Oregon State University
in 2009. His research interests include scientific data analysis
and visualization, geometric modeling, geometry processing, and
physically-based simulation. He is a member of IEEE and ACM.

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

©2016 Society for Imaging Science and Technology

References

[1] Laramee, R.S. Laramee and H. Hauser and L. Zhao and F. H. Post.
"Topology-based flow visualization, the state of the art.” Topology-
based methods in visualization (TopoInVis2005). Springer Berlin
Heidelberg, 2007. 1-19.

[2] Chen, Guoning, Konstantin Mischaikow, Robert S. Laramee, and Eu-
gene Zhang. “Efficient Morse decompositions of vector fields.” IEEE
Transactions on Visualization and Computer Graphics, 14(4): 848-
862, 2008.

[3] Szymczak, Andrzej, and Nicholas BrunhartLupo. “Nearly recur-
rent components in 3D piecewise constant vector fields.” Computer
Graphics Forum. 31(3): 1115-1124. 2012.

[4] Reich, Wieland, Dominic Schneider, Christian Heine, Alexander
Wiebel, Guoning Chen, and Gerik Scheuermann. “Combinatorial
vector field topology in 3 dimensions.” 4th Workshop on Topology-
Based Methods in Data Analysis and Visualization (TopolnVis2011).
2011.

[5] Chen, Guoning, and Shuyu Xu. ”An image-space Morse decomposi-
tion for 2D vector fields.” IS&T/SPIE Visualization and Data Analy-
sis (VDA) conference, February, 2015.

[6] Szymczak, Andrzej, and Eugene Zhang. “"Robust Morse decomposi-
tions of piecewise constant vector fields.” IEEE Transactions on Vi-
sualization and Computer Graphics 18(6): 938-951, 2012.

[7] Chen, Guoning, Konstantin Mischaikow, Robert S. Laramee, Pawel
Pilarczyk, and Eugene Zhang. ’Vector field editing and periodic orbit
extraction using Morse decomposition.” IEEE Transactions on Visu-
alization and Computer Graphics, 13(4): 769-785, 2007.

[8] Post, Frits H., Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee,
and Helmut Doleisch. ”The state of the art in flow visualization: Fea-
ture extraction and tracking.” Computer Graphics Forum. 22(4): 775-
792, Blackwell Publishing, Inc, 2003.

[9] Laramee, Robert S., Helwig Hauser, Helmut Doleisch, Benjamin
Vrolijk, Frits H. Post, and Daniel Weiskopf. "The State of the Art in
Flow Visualization: Dense and TextureBased Techniques.” In Com-
puter Graphics Forum, 23(2): 203-221. Blackwell Publishing Ltd.,
2004.

[10] McLoughlin, Tony, Robert S. Laramee, Ronald Peikert, Frits H.
Post, and Min Chen. "Over Two Decades of IntegrationBased, Geo-
metric Flow Visualization.” Computer Graphics Forum. 29(6): 1807-
1829, Blackwell Publishing Ltd, 2010.

[11] Pobitzer, Armin, Ronald Peikert, Raphael Fuchs, Benjamin
Schindler, Alexander Kuhn, Holger Theisel, Kreimir Matkovi, and
Helwig Hauser. "The State of the Art in TopologyBased Visualization
of Unsteady Flow.” Computer Graphics Forum. 30(6): 1789-1811,
Blackwell Publishing Ltd, 2011.

[12] Edmunds, Matt, Robert S. Laramee, Guoning Chen, Nelson Max,
Eugene Zhang, and Colin Ware. ”Surface-based flow visualization.”
Computers & Graphics 36(8): 974-990, 2012.

[13] Helman, James, and Lanbertus Hesselink. ”Representation and dis-
play of vector field topology in fluid flow data sets.” Computer 8:
27-36, 1989.

[14] Scheuermann, Gerik, Bernd Hamann, Kenneth I. Joy, and Wolfgang
Kollmann. ”Visualizing local vector field topology.” Journal of Elec-
tronic Imaging 9(4): 356-367, 2000.

[15] Wischgoll, Thomas, and Gerik Scheuermann. ”Detection and visu-
alization of closed streamlines in planar flows.”IEEE Transactions on
Visualization and Computer Graphics, 7(2): 165-172, 2001.

[16] Ebert, D., P. Brunet, and I. Navazo. “Locating closed streamlines in
3D vector fields.” methods 16: 19, 2002.

VDA-477.9

©2016 Society for Imaging Science and Technology

Figure 9. Results of the flow behind a square cylinder data set. The images in the left column show the Morse decompositions of the flow with increasing
resolutions (from top to bottom). Specifically, the upper-left image visualizes the Morse set (in red) obtained with resolution 96 x 32 x 24 , T =900 and k = 4; the
middle-left image shows the Morse set with resolution 192 x 64 x 48, © = 1800 and k = 2, the bottom-left image is the Morse set with resolution 384 x 128 x 96 ,
T =13600 and k = 1. The computation times for these three results are 1150.98, 1621.2, and 2456.24 seconds, respectively. The images in the right column shows
the Morse decomposition results of the cylinder flow at time step 2028 with T = 200, 400, and 800, respectively. The resolution of the data for these results is
96 x 32 x 24 and k = 1,2 and 4. The computation times are 161.31, 326.4 and 519.574 seconds, respectively. Note that for all these results, only one Morse set is

identified.

[17] Theisel, Holger, Tino Weinkauf, Hans-Christian Hege, and Hans-
Peter Seidel. ”Grid-independent Detection of Closed Stream Lines in
2D Vector Fields.” VMV. Vol. 4. 2004.

[18] Theisel, Holger, Tino Weinkauf, Hans-Christian Hege, and Hans-
Peter Seidel. ”Saddle connectors-an approach to visualizing the topo-
logical skeleton of complex 3D vector fields.” In proceedings of IEEE
Visualization, 2003.

[19] Weinkauf, Tino, et al. ”Extracting higher order critical points and
topological simplification of 3D vector fields.” In proceedings of
IEEE Visualization, 2005.

[20] Chen, Guoning, Qingging Deng, Andrzej Szymczak, Robert S.
Laramee, and Eugene Zhang. "Morse set classification and hierar-
chical refinement using Conley index.” IEEE Transactions on Visual-
ization and Computer Graphics, 18(5) (2012): 767-782, 2012.

[21] Lorenz, Edward N. ”Deterministic nonperiodic flow.” Journal of the
atmospheric sciences 20.2 (1963): 130-141.

[22] Weiskopf, Daniel, Tobias Schathitzel, and Thomas Ertl. “Texture-
based visualization of unsteady 3d flow by real-time advection
and volumetric illumination.” Visualization and Computer Graphics,
IEEE Transactions on 13.3 (2007): 569-582.

[23] Camarri, Simone, Angelo Iollo, Marcelo Buffoni, and Maria Vit-
toria Salvetti. ”Simulation of the three-dimensional flow around a
square cylinder between parallel walls at moderate reynolds num-
bers.” AIMETA 2005 (2006): 1000-1012.

[24] Thomas Wischgoll, Gerik Scheuermann: 3D Loop Detection and
Visualization in Vector Fields, Visualization and Mathematics III,
Springer-Verlag, Heidelberg, Germany, 2003, pp. 151-160

[25] Falk, Martin, and Daniel Weiskopf. "Output-sensitive 3D line inte-
gral convolution.” Visualization and Computer Graphics, IEEE Trans-
actions on 14.4 (2008): 820-834.

IS&T International Symposium on Electronic Imaging 2016
Visualization and Data Analysis 2016

VDA-477.10

