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Abstract  

In this paper, we present a spherical sampling technique that 
can be employed to find optimal sensors for trichromatic 
color applications. The advantage over other optimization 
techniques is that it assures a global minimum is found, and 
that not only one, but a set of solutions is retained if so 
desired. The sampling technique is used to find all possible 
RGB sensors that exhibit favorable chromatic adaptation 
transform (CAT) behavior when tested on Lam’s 
corresponding color data set, subject to a CIE ∆E94 error 
criterion. We found that there are a number of sensors that 
meet the criterion, and that the Bradford, Sharp, and 
CMCCAT2000 sensors are not unique. 

Introduction 

In most trichromatic imaging applications, linear transforms 
from one set of RGB sensors to another set of RGB sensors 
are applied to color images somewhere in the processing 
chain. In digital photography, for example, sensor RGB 
code values are transformed to output-referred RGB 
encoding values, such as ROMM RGB or sRGB1,2 so that 
the image can be processed or viewed on a monitor with the 
appearance that was intended. Similarly, all ICC monitor 
profiles contain a linear transformation to map RGB code 
values of a digital file to specific RGB monitor primaries, 
so that the image appears “correctly” on the user’s monitor.  

In color imaging, the transformation usually takes the 
form of: 
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where r1, g1, b1 and r2, g2, b2 are vectors containing RGB or 
XYZ tristimulus values that describe two different sensors 
or encodings, and M is a 3x3 transformation matrix that 
maps vectors r1, g1, b1 onto r2, g2, b2. 

It is often the case in color imaging research that the 
second set of RGB sensors is not known, and therefore 
needs to be determined using some applicable criteria. 
Usually, an optimization technique is employed that best 
minimizes (or maximizes) the parameters of these criteria. 
Considering the large number of computational steps 
necessary to find a solution, optimization software routines 

have been developed. For example, Matlab3 has a statistical 
toolbox that offers a number of pre-programmed 
optimization techniques. 

While optimization routines are helpful tools to find 
unique solutions to a problem, they do not, in general, allow 
finding a set of solutions that fulfill some criteria. They tend 
to converge to a single minimum. Depending on the 
optimization technique and parameters used, it is not always 
evident that the solution is unique, i.e. corresponds to a 
global and not a local minimum. 

It is easier to find a set of solutions, and to be sure to 
find all possible solutions, if the solution space is sampled. 
Optimization through sampling implies that all possible 
combinations are tried, and the best solution is retained that 
corresponds to the global minimum. Sampling also allows 
retaining all possible solutions that fulfill the criteria if the 
result is not unique. 

In this paper, we describe a spherical sampling 
technique and apply it to find all RGB sensors usable for 
chromatic adaptation transforms, subject to applying the 
von Kries chromatic adaptation model and a CIE ∆E94 error 
criterion. The algorithms are described in detail, and the 
results for the chromatic adaptation application are 
presented. 

We find that there are many sensors that account for 
corresponding color data. It is evident therefore that the 
overall ‘best’ adaptation transform may be best chosen by 
looking at secondary factors such as transform plausibility.4 

Spherical Sampling 

In the case of trichromatic (RGB and XYZ) imaging 
applications, the basis functions span a three-dimensional 
space. If the lengths of the vectors are normalized to unity, 
then different vector combinations can be illustrated with 
their end-points that lie on the surface of a sphere (see 
Figure 1). Trying all possible combinations of three points 
distributed over the surface of the sphere allows us to find 
all possible solutions to a given problem. To determine the 
sample points, the surface of the sphere has therefore to be 
sampled at a pre-defined distance that depends on the 
application. That leads to the question of how to uniformly 
distribute a large number of points (N) on the surface of a 
sphere. 

There has been significant research done on this 
problem, and a variety of algorithms have been proposed.5,6,7 
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A popular and simple technique is that of icosahedral 
dissection, which proceeds as follows8: for each triangular 
face of the icosahedron, the midpoints of the sides are 
joined to form four new triangles. The centers of the 
triangles are then radially projected onto the sphere, 
yielding a total of 80 points. Continuing the dissection 
process produces N = 20 x 4n points (n = 0, 1, …). One 
drawback of this method is the restricted number of possible 
N. Additionally, the points are not asymptotically uniformly 
distributed, the projection process increases the areas of the 
“middle triangles” more than the rest.9 

We have therefore chosen to use the generalized spiral 
set method proposed by Rakhmanov, Saff, and Zhou,10 
which appears to perform better than the icosahedron 
method for large N. Using spherical coordinates (φ, θ),        
0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π, the coordinates of the N points can be 
calculated as follows: 
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Figure 1 illustrates the distribution of the points for N = 
700. The cartesian coordinate vectors p (x,y,z) that 
correspond to each sample point can then be calculated as 
follows  (ρ = 1): 
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Each point in the sphere corresponds to some linear 
combination of the XYZ color matching functions. 
However, we must be careful and realize that the XYZ 
functions themselves are not orthonormal, which is to say, 
for example, that the X- and Y-functions are quite 
correlated. In order to use the points on the sphere as shown 
in Figure 1 to represent sensors, we need to first map the 
XYZ color matching functions to a new set of orthonormal 
functions. That is, each function will be orthogonal (at right 
angles) to each other function. In effect, by finding an 
orthonormal set of sensors, we are finding new coordinate 
axes, and coordinate axes generally have these orthonormal 
properties. We can find these orthonormal sensors using the 
well-known singular value decomposition (SVD). 
Orthonormalising sensors to decorrelate them is sometimes 
presented in color research as an explanation of color 
opponency since color opponent sensors are, depending on 
the study, either orthonormal or close to orthonormal 

If C denotes the (mx3) XYZ sensor matrix, than we can 
write C as equation (5).  

T
21DQQC =       (5) 

Q1 is an orthonormal mx3 matrix, and D and Q2 are 
both 3x3 matrices. It is evident then that Q1 is precisely the 

orthonormal basis that we seek. By multiplying Q1 with a 
linear transformation matrix L (3x3) that consists of three 
sample point vectors pi, pj, pk, a new matrix V (mx3) of 
color values can be derived that corresponds to a new RGB 
sensor set: 

],,[,1 kji pppLLQV ==     (6) 

If we take every triplet of points (pi, pj, pk) on the 
sphere and post-multiply Q1, then we will generate a set of 
sensitivities that are uniformly distributed on a sphere in 
sensor space. And so we have used our 3-dimensional set of 
points to create a corresponding set of evenly distributed 
sensors. With reference back to equation (1), if we start in 
XYZ space, then M will equal to: 
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Figure 1: Evenly distributed points on a sphere (N=700), using the 
generalized spiral set method. 

 
 
While we have described the sampling technique 

starting with XYZ color matching functions, the algorithms 
can, of course, be adapted to using any kind of RGB color 
matching functions. It is important to point out that the 
sampling technique returns three sensors that have equal 
magnitude. In contrast, cone sensitivities are known to have 
different sensitivities: the short-wave mechanism is much 
less responsive than the long- and medium- wave 
mechanisms. Here we can avoid sensor magnitude because 
this variable is not important in the context of adaptation 
transforms (we are looking for scalars relating sensor 
responses across lighting conditions and these relative 
scalings are independent of the absolute magnitude of the 
sensors). 

Chromatic Adaptation Transforms (CATs) 

Chromatic adaptation is the ability of the human visual 
system to discount the color of the illumination and to 
approximately preserve the appearance of an object. Image 
capturing systems, such as scanners and digital cameras, do 
not have the ability to adapt to an illumination source. To 
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faithfully reproduce the appearance of image colors, it 
follows that all image processing systems need to apply a 
transform that converts the input colors captured under the 
input illuminant to the corresponding output colors under 
the output illuminant. This can be achieved by using a 
chromatic adaptation transform (CAT). Basically, applying 
a chromatic adaptation transform to the tristimulus values 
(X’, Y’, Z’) of a color under one adapting light source 
predicts the corresponding color’s tristimulus values (X”, 
Y”, Z”) under another adapting light source. 

There are several chromatic adaptation transforms 
described in the literature, most based on the von Kries 
model.11 CIE tristimulus values are linearly transformed by 
a 3x3 matrix MCAT to derive R’G’B’ responses under the first 
illuminant. The resulting R’G’B’ values are independently 
scaled to get R”G”B” responses under the second illuminant. 
The scaling coefficients are most often based on the 
illuminants’ white-point R’G’B’ and R”G”B” sensor values. 
If there are no non-linear coefficients, this transform can be 
expressed as a diagonal matrix. To obtain CIE tristimulus 
values (X”Y”Z”) under the second illuminant, the R”G”B” 
are then multiplied by (MCAT)

-1, the inverse of matrix MCAT. 
Equation (8) describes a matrix formulation of this concept: 
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Quantities ''' ,, www BGR  and """ ,, www BGR  are computed 
from the tristimulus values of the first and second 
illuminants, respectively, by multiplying the corresponding 
XYZ vectors by MCAT.  

The currently most popular chromatic adaptation 
transforms are the von Kries CAT,12 the linearized Bradford 
CAT,13,14 the Sharp CAT,15 and the CMCCAT2000 
transform.16 All are based on the von Kries model as 
described in equation (8), but they apply the white-point 
scaling to different RGB sensors (see Figure 6), i.e. they use 
different transformation matrices MCAT. Recent studies17 
have shown that for given sets of corresponding colors,18 the 
performance of Bradford, Sharp, and CMCAT2000 
transforms is approximately the same when using 
perceptual error criteria of CIE ∆ELab, CIE ∆E94, or CIE 
∆ECMC(1:1), even though the transformation matrices were 
derived differently.  

That leads to the question if there are other RGB 
sensors that perform just as well as the Bradford, Sharp and 
CMCCAT2000 sensors and that have not yet been 
considered.  

Experiment and Result 

The experiment was designed to find other chromatic 
adaptation transform matrices besides Bradford, Sharp and 
CMCCAT2000 that performed as well if not better, using 
Lam’s corresponding color data set and an error criterion 
based on CIE ∆E94. Using the spherical sampling method 
described in Section 2, all possible RGB sensor 
combinations can be tried to find other transformation 
matrices MCAT.  
 

 

Figure 2: The variation in spectral sensitivity of a sensor rotated 
(x,y) by 5 degrees. 

 
 
First, we determined the number of surface points 

necessary to uniformly sample the sphere. By visually 
comparing the difference between a sensor and a rotated 
sensor, we determined that the maximum distance between 
sample points should be no larger than 5 degrees (see 
Figure 2). We found for N = 5,000, the angle between two 
neighboring vectors varies between ~3-5 degrees. 
Therefore, the necessary combinations to be checked are 
equal to: 
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Out of computational considerations, we reduced the 
number of combinations by assuming that the sample points 
giving a positive result are located around the points that 
describe the Bradford, Sharp, and CMCAT2000 transform. 
We then determined the location of the vectors for the three 
transforms, and retained only the sample points that fell 
within 20 degrees of those points (see Figure 3). As a result, 
222 “red”, 180 “green”, and 165 “blue” vectors were 
retained, resulting in 6.68x106 different transforms to be 
tested. 
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Figure 3: All sample points within a 20 degree radius of Bradford, 
Sharp and CMCCAT2000 (for N = 5000). 
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Figure 4: All sample points that result in sensor combinations with 
a RMS CIE ∆E94 ≤ 4 prediction error.  
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Figure 5: All sample points that result in sensor combinations that 
are not statistically significantly different from CMCCAT2000 at 
95 percent confidence. 
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Figure 6: Bradford (--), Sharp (-.) and CMCCAT2000 (–)          
RGB Sensors.   
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Figure 7: All RGB sensor sets (13,801) with a RMS CIE ∆E94 ≤ 4 
prediction error. 
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Figure 8: All RGB sensor sets (2,491) that are not statistically 
significantly different from CMCCAT2000 at 95 percent 
confidence. 
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To evaluate if the resulting RGB sensors have good 
chromatic adaptation transform behavior, Lam’s corre-
sponding color data set18 was used, which was also 
employed to derive both the Bradford and the Sharp 
CATs13,15 Lam had observers predict the appearance of 58 
wool samples under illuminants A and D65. The resulting 
corresponding color data set has been used extensively to 
test chromatic adaptation transforms and has been found to 
be quite stable.16 

The MCAT transforms found through the spherical 
sampling technique were retained if the RMS prediction 
error was CIE ∆E94 ≤ 4. For comparison, the Sharp CAT, 
Bradford CAT, and CMCCAT2000 prediction errors for the 
same data set are 3.4, 3.5, and 3.6, respectively.17 The 
assumption is that any chromatic adaptation transform with 
a perceptual error of CIE ∆E94 ≤ 4 for Lam’s data set is 
adequate. For example, RMS CIE ∆E94 is equal to 5.017 for 
von Kries operating on cone responses, a chromatic 
adaptation that is still widely used.12 

Of the ~6.7 million possible chromatic adaptation 
transforms evaluated, 13,801 fulfilled the error criterion. 
See Figure 4 for the corresponding sampling points and 
Figure 7 for the corresponding RGB sensors. 

In addition, one-tail student t-tests for matched pairs17,19 
were calculated to evaluate how many of the 13,801 RGB 
sensors resulted in a chromatic adaptation transform that 
was not statistically different from the CMCCAT2000 
transform. At the 95 percent confidence level, 2,491 RGB 
sensor sets remained. The resulting sampling points are 
shown in Figure 5, and the corresponding sensor sets in 
Figure 8. 

The corresponding color data set clearly does not 
uniquely support a single von Kries type chromatic adapta-
tion transform. That is particular relevant as the CIE and 
other standards bodies are proposing a single standard 
chromatic adaptation transform. Looking at Lam’s data 
alone, there are probably at least 2,491 sensor sets to 
consider. 

Conclusion 

We present a spherical sampling technique that can be used 
to evaluate and/or find linear color transformations. It has 
the advantage over other optimization techniques that it not 
only can easily find a global minimum, it can also return a 
set of solutions if so required. 

We also show that the Bradford, Sharp, and CMCCAT-
2000 sensors are not unique. There is a number of other 
RGB sensors that exhibit the same favorable chromatic 
adaptation behavior. If the sampling distance is further 
decreased, the number would increase even more. This 
leads to the conclusion that there is either too much noise in 
the corresponding data set used to evaluate CATs, that the 
von Kries model used to implement chromatic adaptation 
transforms is too much of a simplification, or that there are 
many possible solutions to chromatic adaptation transforms 
and it is not critical which one is used. 

We speculate that in order to make a final choice on a 
single color chromatic adaptation transform, other second-

ary factors should be examined. For example, if one color 
space or one set of RGB sensors fits better with other color 
imaging workflows. It has been shown that sharp sensors 
are fairly close to the sRGB sensors.20 
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