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Abstract

Video processing algorithms tend to improve over time in
terms of image quality while increasing in implementation
complexity. Generally, video algorithms are developed and
evaluated in isolation from the video processing system of
which they will be a part, in a consumer product. The final
image quality obtained by that system, however, strongly
depends on the interaction of its constituent algorithms.
Current methods for optimizing the overall image quality
are ad-hoc, time consuming and don’t guarantee the best
possible result. In this paper we propose a scalable method
for optimizing a video, taking into consideration the
possibility of adding/removing different components to this
video system. Our method utilizes genetic algorithms
(GAs), which evolves toward the optimum system
configuration (the best image quality). GAs are heuristic
optimization search methods, which when driven by an
objective video quality metric, finds the optimum system
configuration.

1. Introduction

Improving image quality is the backbone of a highly
competitive display industry. As video systems are
constantly  evolving; new video/image processing
algorithms are constantly introduced and older ones are
being refined. However, individual algorithms are generally
developed in isolation, but eventually get implemented as
part of a larger system, e.g., a television set, in which they
interact with other algorithms. Consequently, the final
image quality obtained by a chain of video processing
modules in a television system depends on the interaction of
its constituent algorithms. This interaction depends on the
parameter tuning for each module, the amount of data (bus
width, bit precision) being transferred between cascaded
modules as well as the order of the cascaded modules in the
video processing chain. Ad hoc techniques have been
adopted for a long time to come up with the best settings for
these systems. However, a thorough analysis and a formal
simulation environment of this interaction is required, in
order to find the optimal module order, the best tuning of
the modules’ parameters and the bit precision among the
video processing modules.
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In this paper, we introduce an automated procedure to
tune a set of video processing modules in order to obtain the
best perceptual video quality. Parameter tuning, modules’
order as well as the data precision among different modules
will be addressed. We examine a case study (a simplified
video processing chain) consisting of a noise reduction and
a sharpness enhancement module. The effect of altering
their order, their parameter settings as well as the bit
precision between them is automatically analyzed and
illustrated. Automatic means of measuring the resultant
video quality and a structured procedure to maximize the
correlation between these objective measures and human
perception is introduced.

This paper is organized as follows: section two
describes the cost function, which is the automatic means of
video quality assessment. Section three describes the
evolution process setup and the gene’s construction for a
random video processing system. Section four shows the
structure and exact experimental procedure for a simplified
video processing system. The results of running a video
system design using the GAs and the objective image
quality metric are introduced in section five. In section six,
we make our concluding remarks and propose directions for
future developments and research.

2. Cost Function: A Composite Objective
Image Quality METRIC

Evaluation of video quality has always been achieved using
subjective methods.” Since the subjective results vary
according to the variability between the viewing audiences,
subjective results, which are solely based on perception,
have to be statistically post-processed in order to remove
the ambiguity resulting from the non-deterministic nature of
these results. Linear and Non-linear heuristic statistical
models'" have been proposed to normalize these results, and
come up with certain figures of merit to represent the
goodness/degradation of the video quality. However,
relying on human evaluation is expensive and sometimes
impossible to adopt. Thus, a need emerges for automatic
methods to evaluate video quality. Automatic (objective)
means of assessing the video quality are evaluated by the
highest degree of correlation they achieve with subjective
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testing."” The higher the correlation, the better the objective
method is.

Different methods are investigated for objective image
quality measurement." They vary widely in complexity and
performance. They can be categorized in many different
ways: measuring traditional analog vs. digital artifacts,
measuring the general perceptual quality of a video
sequence vs. measuring a specific artifact only, and finally
still image (frame/field) evaluation vs. temporal evaluation.
Nine models were proposed to the Video Quality Expert
Group (VQEG)." They varied in performance and
complexity."** Some methods performed well under
certain conditions but failed under others, e.g., peak signal
to noise ratio (PSNR) is a good method to measure white
noise presence but is not very suitable for measuring coding
errors like blocking. We propose a composite scalable
objective metric, which consists of a set of metrics, each of
which is geared toward measuring a certain feature of the
video sequence. Each of these n metrics gives a reading, f,,
(1 <i <n), which measures a certain feature of the video
sequence. These readings are weighted by a weight factor
each, w, (I <i < n) and linearly combined in order to
maximize the correlation factor (R) between human
perceptual models and the composite objective measure F.

F:max{iwif,} )
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Figure 1 gives a schematic diagram of the system we
adopted for automatically evaluating video sequence image
quality.
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Figure 1 A schematic diagram for a scalable dynamic objective
metric

Either the Pearson linear correlation factor or the
Spearman rank order” can measure the correlation between
the subjective and objective measures. The former assumes
a linear relationship between the subjective and objective
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results, while the Ilatter only assumes a monotonic
relationship between them (could be linear or non-linear).
We use the Spearman rank order (equation 2) to measure
the correlation factor R between the subjective data set X,
and the objective data set Y.

6* 3 (X, -1,)’
n(n® -1)

where the sum goes from / to n and # is the number of data
samples in either set.

R =1- )

3. Applying Genetic Algorithms to Video
System Design

A Genetic Algorithm (GA) is based on a natural concept
that diversity helps to ensure a population’s survival under
changing environmental conditions. They are simple and
robust methods for optimization and search and have
intrinsic parallelism. GAs are iterative procedures that
maintain a population of candidate solutions encoded in the
form of chromosome strings. The initial population can be
selected heuristically or randomly. For each generation,
each candidate is evaluated and is assigned a fitness value,
which is the cost function as defined in section two. These
candidates are selected for reproduction in the next
generation based on their fitness values. The selected
candidates are combined using the genetic recombination
operation crossover. The crossover operator exchanges
portions of bit strings to hopefully produce better candidates
with higher fitness for the next generation. The mutation is
then applied to perturb the bits of the chromosomes so as to
guarantee that the probability of searching a particular
subspace of the problem space is never zero.' It also
prevents the algorithm from becoming trapped at local
optima.”® The whole population is evaluated again in the
next generation and the process continues until it reaches
the termination criterion. The termination criterion may be
triggered by finding an acceptable approximate solution,
reaching a specific number of generations, or until the
solution converges.

We propose a flexible optimization paradigm. The
optimization process utilizes GAs to come up with choices
for the parameter settings, implementation alternatives and
an interconnection scheme that achieve the best objective
picture quality. In optimizing the video-processing scheme,
a chromosome defines a certain way in which different
video processing modules are connected and thus, the way
video sequences are processed. A chromosome consists of a
number of genes. The genes in the video optimization
process are the video processing functions as well as their
order, (which determines the connection scheme). Figure
2.a shows a general structure for the chromosome
representing a video processing chain.

However, scaling the overall system design requires the
ability to change the number of modules in a chain. Figure
2.a shows a chromosome representation for a video system,
which consists of n cascaded modules. Should this process
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be scaled down, a smaller number of video processing
modules is used instead. This is a typical situation in
commercial products, when there are many lines of a certain
product. Each line will have a certain degree of complexity,
which is directly proportional to its performance. Figure 2.b
and 2.c shows an exemplary case of two chromosome
structures, which reflect the difference in two video
systems. The former one has three video processing
modules, and the latter has five modules.

functions’ | function, function,
order gene gene
gene

Figure 2.a A general structure for the chromosome representing a
video processing chain
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Figure 2.b A chromosome structure for representing a three-video-
processing-modules video processing chain
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Figure 2.c A chromosome structure for representing a five-video-
processing-modules video processing chain

Regardless the number of video modules comprising a
video system, optimizing the system is carried out in the
same fashion. Thus the proposed method allows for a
scalable optimization of video systems.

4. Optimizing A Video Processing System

We optimized a video processing system, which consisted
of four cascaded video processing modules, namely: a
spatial poly-phase scalar, a noise reducer, a sharpness
enhancer and a histogram modification module. The
optimization algorithm deals with each module as
generically as possible. It assumes no prior information
about this module or its connectivity constraints (the
casdaded modules’ order). The optimization module
perturbs each module’s pre-defined set of parameters. The
data precision (number of bits in a data bus, i.e., bus width)
between two cascaded modules is considered a parameter to
be optimized. We elected to use this set of video processing
modules because of their vital role in any video system.’
Moreover, some of these modules are competing modules,”

293

e.g., increasing the sharpness would enhance the perceived
existing noise and reducing the noise will blur the picture,
resulting in the loss of its appealing crispness. The system
consists mainly of the video processing system, the
objective image quality measurement component and the
genetic algorithm optimizer. The computational bottleneck
in this scheme results from the complexity of the video
processing system. We run a number of video processing
systems in parallel (depending on the available processors
on a parallel computer), as well as a number of the objective
image quality metric components. This step of parallelizing
the computationally greedy portions of the system enhances
the performance significantly. Figure 3 shows a schematic
diagram of the overall system.
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processors)
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Figure 3 A schematic diagram for optimizing a video system

A detailed description of the video processing modules
is introduced in section 4.1. Section 4.2 gives the details
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about the objective metric used and, finally, section 4.3
describes the optimization operation.

4.1. Cascading a Simplified Four-Module Video
Processing Chain

The video-processing filter to be optimized comprises
video-processing modules which are considered to be
essential for high-end and top-end television sets. We deal
primarily with video signals in the YUV and RGB domains,
i.e., with image enhancement and display adaptation
functions. Tuning, IF/color decoding, and channel/source
decoding are not considered for now. The functions used
are luminance peaking by sharpness enhancement, spatial
scaling, noise reduction and histogram modification.

Sharpness enhancement, which nowadays is a fairly
common feature in TV sets, focuses on improving the
perceived sharpness of the luminance signal. Boosting the
higher frequencies in the luminance signal basically
enhances the sharpness. This may, however, lead to aliasing
artifacts, which obviously needs to be prevented; that is
achieved by a set of different sub-algorithms - contrast
control, clipping prevention, dynamic range control and
adaptive coring - which compete to reduce the aliasing
artifacts. Each of them provides a gain factor that can safely
boost the higher frequencies. A selector sub-unit decides
which one of these competing gain factors will be used.

The noise reduction unit reduces the higher frequency
components based on measuring the presence of noise, as
will be explained in section 4.2.

The scalers are implemented using polyphase FIR
filters. The horizontal scalers process each line of input
video data and generate a horizontally scaled line of output
video data. In the case of expansion, this is done by up-
sampling that is performed either by a polyphase filter for
which the horizontal expansion factor determines the filter
phases required to generate each output pixel, or by a filter
that uses this factor to interpolate the output pixels from the
input pixels. In the case of compression, a transposed
polyphase filter is used to down-sample the input data, and
the horizontal compression factor determines the required
filter phases. The vertical scalers, however, generate a
different number of output video lines than were input to
the module, with input and output lines having the same
numbers of pixels. In the case of expansion, at least one line
of video data is output for each line that is input to a
polyphase filter, for which the vertical expansion factor
determines the number of up-sampled lines generated in
response to an input line, along with the required filter
phases, or by a VPD filter that uses this factor to interpolate
the output lines from the input line. In the case of
compression, at most one line of video data is output for
each line that is input to a transposed or non-transposed
polyphase filter for which the vertical compression factor
determines whether a down-sampled line is generated in
response to an input line, along with the required filter
phases.

Histogram modification stretches the luminance values
for the black color and the white color to better represent
the color content of the video sequence.
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4.2. Building a Composite Objective Image Quality
Metric

The video sequences could be contaminated with
analog noise, which can be well approximated by white
noise. However, the current growth of digital compression
and multimedia video processing introduce a new set of
artifacts, namely: blocking, ringing and mosquito artifacts.
Among these, blocking artifacts are the most irritating to the
human eye.” We are using a composite objective metric,
which blends the evaluation of a white noise measurement
unit, a blocking detector, a contrast-measuring unit and
luminance signal clipping. The readings of these modules f;
, as in Figure 2, are weighted by weight factors w, 1 <i < 4,
and are linearly combined. The weights are calculated to
maximize the correlation (as in equation 2) between the
overall objective image quality measure and the subjective
evaluation on a pre-defined set of video sequences.

The noise measurement unit basically assumes
variation in the flat areas of an image (low spatial
frequency) is nothing but noise. To identify these areas, the
image is divided into a number of small blocks and a
measure of intensity variation is computed for every block.
Assuming that the intensity of the noise is much smaller in
magnitude than the signal, the block with least variation
should correspond to a constant brightness region
(described above). A high-pass filter or band-pass filter
filters out the DC component and adds the filtered outputs
to get a measure of the variance. The filters model the
human visual perception characteristics and hence we get an
estimate of the perceptually significant noise in the image.
The output is clipped using a clipping function, which
ensures that only the noise that contributes perceptually is
counted. The clipping function thresholds are derived from
Watson’s model of perception threshold. He used this
model to design a perceptually lossless quantization matrix
for an image compression technique based on the Discrete
Wavelet Transform (DWT). The model is described by
equation 3

0.466(log( £)+0.4)>=0.31

Y(f)=10 (3)

The blocking impairment metric (BIM) is primarily
based on the measurement of intensity difference across
block edges of the decoded image.”™"* A rough measurement
of the amount of blocking in a picture can be obtained by
adding up the squared differences across the block
boundaries of an image. The measurement is done
separately for horizontal and vertical blocking. The metric
for horizontal blocking (vertical edges) may be expressed
mathematically as:

M, = ”WDc (f)” = z Hwi (fc(Si) _fc(8i+1) )”2 4)

where fis the image, D, is the difference operator across
columns, W is a weighting matrix defined according to the
visual prominence of the blocking effect and w, is the
weight vector corresponding to the pixels of the image
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column f. The weights are computed as follows. For the
difference of pixels at (ij) and (i,j+1) the weight w, is
defined as:

VH;
1.152%Inf 1+—7
1+6,j

255-u;;

140,

]if,uij <=281.0
J otherwise

w

ij:
In| 1+

where |1, is the mean of the 1-line strip of pixels on either
side of the difference and G, is their standard deviation. The
factor |, is a measure of the average brightness of the
portion of the picture and hence takes care of the
brightness-related property of human vision. The factor G,
is a measure of variation of intensity and is therefore used in
the denominator of the weight. For the final metric, the
above value is further normalized by the average inter-pixel
variation inside the blocks. The normalizing factor E, is
defined as:

i

1 7
E=-YM, ©)

=

The contrast-measuring unit averages out the difference

between the maximum and the minimum luminance values
per block in the image. The clipping unit simply counts the
number of times the luminance value exceeds 95% of the
maximum allowed value or falls below 5% of the minimum
allowed luminance level.

4.3. Utilizing Genetic Algorithms to Optimize the Video
Chain

The optimization algorithm uses a variant of the
standard genetic search.' Here the initial population (n
chromosomes) is generated randomly and each of the
chromosomes is evaluated. An intermediate population is
generated in the following fashion;
e The current population is copied to the intermediate
population.
Each chromosome in the current population is randomly
paired with another chromosome and crossover is
performed if the difference criterion is satisfied (see
divergence below). The user can specify the crossover
operator. The resulting children are evaluated and added
to the intermediate population.

The resulting intermediate population has more than n
chromosomes (2 if all the chromosomes pairs are different
enough). The best n chromosomes from the intermediate
population are selected and passed to the next generation.
Note that no mutation is performed during this stage. Two
chromosomes are crossed over only if the difference
between them is above a threshold. This threshold is
lowered when no chromosome pairs can be found with a
difference above the threshold. When the threshold reaches
0, a re-initialization (divergence) of the population is done.
Here the best chromosome available is selected as a
representative and copied over to the next generation.
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Mutating a percentage (35 %) of the bits of this template
chromosome generates the rest of the chromosomes.

The algorithm terminates when the number of
divergences or failed divergences (those which did not
improve the result) reaches a specified number. The user
can also specify the maximum trials (evaluations) allowed,
over all system structure and gene structure

5. Experiments

The video processing filter as proposed in section 4 has
60,000 possible variations; the noise reduction unit has a
smearing factor of four settings (2 bits are needed to
represent it), the sharpness enhancement has a parameter
with five settings (3 bits are needed to represent it), the
number of bits transferred between any two cascaded video
processing units could range between 8 and 12 (5 settings; 3
bits are needed to represent it). Having 4 video processing
modules, 24 possible ways of cascading them (4!) are
possible (5 bits are needed to represent it). Thus, the
chromosome needed to represent this video-processing filter
comprises 19 bits.

The GAs improve the overall performance of a
generation (a set of configurations for the video- processing
filter, which resulted after crossover and mutation). Thus
the average cost for each generation gets reduced. This is an
indication that the GAs are pointing the solution in the right
direction. Figure 4 shows the image quality improvement of
the best video chain configuration over the path of
evolution. The horizontal axis is the trial number over the
whole path of evolution, which simply maps to the time of
the optimization process, and the vertical axis is an absolute
measure of the perceptual quality of the resulting image.
The main goal of the optimization is to find a configuration
with the best possible image quality. Thus, the best
performance of a generation is the candidate for the global
best configuration. Yet, it is being improved from one
generation to the next. A stopping criterion is either hitting
the hypothetical best or being unable to better improve the
resulting image quality any further. After running almost
3800 video system configurations, the performance settled
as shown in Figure 4. The resulting video sequences from
the best configuration were examined as well as a number
of random samples from the 3800 configurations and the
results correlate highly with the subjective evaluation.
Figures 6a — 6¢ show one frame from a processed video
sequence, which resulted at different points in the evolution
path. Figure 6a shows this frame at an early stage of the
evolution process while Figure 6¢ shows the same frame
when processed by a well-evolved video system, which
resulted at the end of the evolution path. The quality
improves for the resulting image, especially the picture’s
appealing crispness and the reduction of the noise.
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Figure 5 Best performance over the evolution process

Figure 6a The resulting picture at the beginning of the evolution
process.

Figure 6b The resulting picture at the middle of the evolution

process.

Figure 6¢ The resulting picture at the end of the evolution process.

6. Conclusions

In this paper, we presented our method for automatically
optimizing a complicated video processing system, without
any prior information about the constituent video processing
components. We utilized a modified version of the genetic
algorithm to improve its performance. Using an automatic
optimization method necessitates the use of a cost function,
which evaluates the perceptual image quality automatically.
We introduced a method to combine a number of image
quality metrics to maximize the correlation between the
perceived quality and the measured objective quality.
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