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Abstract 

Segmenting an image can yield large objects whose generic 
color may be classified as memory colors. Typically sky, 
skin, foliage, and/or water are the dominant memory colors 
and can be found in the majority of personal photographs. 
An algorithm identifies potential memory color objects and 
uses their chromatic signature to predict the scene 
illuminant from a limited class of common light sources. 

Overview 

Because a DSC (Digital Still Camera) records an image as 
the product of the scene reflectance times the source 
illuminant times camera sensitivity at each pixel, the 
captured image represents a radiometric description of the 
scene. Late sunset images are very yellow in cast, whereas 
cloudy afternoon images are very blue in cast. This is an 
accurate representation of the chromatic information that a 
camera’s CCD array receives. This is contrasted with the 
human visual system (HVS) that “discounts the illuminant” 
and remembers all the white scene objects as “white” even 
though the radiometric description given by the camera will 
be yellow-white for the sunset scene and blue-white for the 
cloudy day scene. To compensate for scene lighting 
conditions, it is necessary to predict the scene illuminant so 
that adjustments can be made to the raw camera data to 
make it acceptable and pleasing to the human eye. 

A broad range of techniques is described in the 
literature to estimate the scene illuminant1-9. At one extreme 
exists the assumption that the mixture of scene reflectances 
is random and broadly distributed, so that a gray world 
approximation is valid. This permits the scene illuminant to 
be extracted from the pixel information by assuming that 
the average chromaticity for the entire ensemble of the 
image depends only on the illuminant’s chromatic mixture. 
For a large number of typical scene conditions, this 
approxima-tion is valid, and the chromaticity of the scene is 
the chromaticity of the illuminant. But in a number of cases, 
dominant colored objects exist in the scene, and the gray 
world approximation fails. Techniques using statistical 
modeling of possible colors available under various 
standard illuminants have been employed. Their success 
depends largely on how chromatically distributed are the 
objects in the image. If bright blue and green objects are 
present, then these statistical models can reasonably 

maximize the probability that only a few types of 
illuminants would have that mixture possible. If two or 
more illuminants could yield the same type of chromatic 
results, then the statistics relating to the most probable 
mixture of colored objects will result in the final selection. 
If a scene composed of soft yellow-orange pastels were to 
be captured, then almost any illuminant from daylight to 
fluorescent could generate the chromatic mixtures of 
objects. The probabilistic methods would be at a severe 
disadvantage for such mildly colored images. Other 
illumination estimation methods rely upon hypothesis 
testing of standard illuminants incorporating basis vectors 
for both the illuminants and standard reflectance patches 
which might be found in the scene. 

All of these methods depend upon a random or 
distributed mixture of colored objects in the scene to give a 
probabilistic selection of a given illuminant. This paper 
deals with an illuminant detection method that presupposes 
a specific type of object in the scene – not a random 
collection. This method assumes that at least one of a very 
limited set of memory color has been imaged. Having found 
such an object, an algorithm searches for a chromatic color 
signature for that object which is consistent with a specific 
illuminant. 

Studies by Kodak in the photofinishing business have 
shown that 80% of all consumer film images contain 
people, plants, trees, and/or sky. Most pictures involve 
capturing people or landscapes. Almost all outdoor images 
will capture some form of foliage, in the various forms of 
trees, grass, plants, flower leaves, or bushes. With the 
exception of indoor product images (like brochure 
photographs of watches and jewelry), there is a very high 
probability that skin, sky, or foliage will be present. 

In a previous paper, the use of memory colors was 
added to an algorithm for White Balancing (WB) as a way 
to provide robustness when near-neutral objects were not 
present10. The use of memory colors was a “safety net” for 
those rare instances when neutrals were not present but 
when sky, skin, and foliage might be. The limited results 
showed that memory color could predict a limited set of 
possible scene illuminants. This paper extends that work by 
adding a new memory color – water – and attempts to 
provide a statistical measure of how accurately the use 
memory colors can correctly impute the scene illuminant. 
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Methodology 

The algorithm first employs a segmentation operation1 to 
find all the large objects in the image (the methods are 
described in the previous paper). The size of the object is 
restricted by demanding that potential objects be 8-way 
contiguous with their neighboring pixels, and that it 
represent at least 0.5% of the total pixels in the scene. The 
algorithm permits heuristic growth of chromatic and 
luminance values of potential objects to find their full extent 
knowing that large brightness and minor chromaticity 
changes are expected because contoured shapes. In the 
previous paper, these large objects were then constrained to 
be near-neutral in chromaticity, and so a discrimination took 
place to remove any strongly colored objects. Of the four 
classes of memory colors considered in this paper, only skin 
comes near to being considered a near neutral object. The 
search for sky, foliage, and water typically requires fairly 
colorful chromaticity and so the algorithm had to be “tuned” 
to look for specific regions of color in order to identify 
memory color objects. 

A choice of color space was necessary in order to take 
the raw CCD data and compose an image containing 
objects. RGB, L*a*b*, and HSL were all tested to see if one 
space had more robustness or speed over the others. The 
results indicated that camera RGB offered the most 
advantages. Since the raw RGB data has not been white 
balanced, it is very difficult to impute a white point for the 
L*a*b* space which is meaningful for this experiment. HSL 
suffers from the same problem to compute a luminance, L. 
In camera RGB space, an equal energy white (EEW) 
calibration of the raw data was performed so that color 
regions for red, green, and blue look realistic as a first order 
approximation. This pre-whitening step helps offset the 
large green multiplication factor present in most CCD 
arrays. Even with this EEW approximation, a fluorescent 
image will still exhibit a slight green cast. Similarly, an 
incandescent image will have a noticeable yellow cast. In 
either case, the green leaves of a tree will still fall in the 
green portion of the color spectrum and apples fall into the 
red. 

The fundamental EEW calibration for the cameras 
employed in our measurements is close to D50 illumination, 
and typically had a Correlated Color Temperature (CCT) 
near 4900° Kelvin. Figures 1a and 2a show an indoor and 
outdoor scene with the EEW rendering from the raw data. 
Both images have foliage content and a MacBeth color 
checker chart to help test the accuracy of the memory color 
algorithm. With a LightSpex spectroradiometer, the two 
scenes had measured CCT values of 3565° K and 6637° K, 
respectively. 

Figures 3a and 4a show the results for two outdoor 
images that have large bodies of water present. Because 
swimming pool water has such a tremendously different 
color spectrum than that of the ocean harbor scene, the 
segmentation algorithm had to be specially tuned to look for 
several different classes of water. Experimentation showed 
that the following classes were the most successful: azure 
water (pools, Caribbean coastlines, etc), and sea green water 

(deep ocean water and deep lakes). No special segmentation 
classifications were required for sky, skin, or foliage – aside 
from the considerations mentioned in the results section. 

Once segmentation is completed, the algorithm needs 
to classify the large objects according to the general ranges 
of memory colors: sky, skin, foliage, water1 (azure), and 
water2 (sea). When at least one object is found, the 
algorithm sets confidence levels on the object(s) based on 
spatial location (are they horizontally or vertically oriented), 
and closeness to the central color region of the memory 
color class. 

The algorithm then proceeds to verify the consistency 
of the illuminant predictions from the object(s). If two or 
more objects are found, do they all give the same illuminant 
type (daylight versus fluorescent versus incandescent)? If 
there is an inconsistency, the algorithm looks for the objects 
of the largest pixel extent. While the algorithm is still under 
development, most of the test cases involving known 
memory color objects have been correctly identified, and 
yield the correct illuminant type. Figures 1-4b show the 
rendering of the raw data based upon the imputed illuminant 
from the memory color objects that were found. 

Results 

Most memory colors are biased towards outdoor 
environments where daylight is the dominant illuminant. 
With the exception of skin and indoor plants, all of the 
natural occurrences of sky, skin, foliage, and large bodies of 
water are found outdoors. In capturing images for this 
research, special attention had to be paid in the selection of 
scenes so that a significant number of indoor light sources 
(fluorescent and incandescent) were present. This mostly 
was satisfied by human portrait scenes and capturing of 
large-leafed indoor plants. 

Having selected camera RGB as the color space of 
choice, next the mathematical form to represent 
chromaticity was needed. Previous research with film drum 
scanners and flatbed scanners has shown that R/G and B/G 
give a meaningful chromatic representation11. Since green 
filters typically transmit more luminance information that 
blue or red, the R/G and B/G ratios are always less than one 
for all practical camera and scanner filter arrays. With this 
historical background, the R/G and B/G chromaticity 
measure was selected. After completion of the initial 
research, it was decided to reprocess all the data in a G/B 
and R/B chromaticity space to determine if other color 
representations would yield conflicting results. G/B and R/B 
ratios resulted in the same illuminant prediction. However, 
the noise level increased because many of the memory 
colors possess small blue components, and hence the small 
denominator often increased the noise level. The other color 
space of G/R and B/R was processed, but it provided even 
more noise enhancement for the water samples since very 
little red is present. 

Figures 5 through 8 graph the results for images 
captured under various illuminants with memory color 
objects present. The R/G and B/G ratios of these segmented 
objects are compared with the equivalent ratios for the set of 
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illuminants: D65, D50, CW fluorescent, Horizon, U30 
fluorescent, type-A incandescent, and a 3200 Kelvin studio 
light. In all cases, the correct type of illuminant (daylight, 
fluorescent, incandescent) was chosen. In some instances, 
D50 was closer to the result but D65 more closely matched 
the measured CCT for the scene. However, the minor 
difference of daylight illuminants would not significantly 
alter the white balance of the scene rendering compared to 
the white balance of the measured illuminant. The P2, P3, 
and P4 notations in the figures refer to the MacBeth patches 
for Light Skin, Blue Sky, and Foliage, respectively. The 
large symbols in these figures are reserved from the 
MacBeth patch under different illuminations to act as a 
reference. The small symbols indicate actual measurements 
from various images, including one P2 patch in the scene. 

Sky, skin, and foliage gave very consistent results for 
outdoor scenes. More error was encountered for indoor 
scenes with fluorescent illuminants, but this only accounted 
for a single error out of 25 test scenes. The largest error 
resulted from the use of water as a memory color. Even 
with the sub-division of water into a dark blue and light 
blue components, there were 7 cases out of 14 where water 
classification of specific illuminant was incorrect. But even 
for water objects, only 1 case was identified where the 
wrong type of illuminant (daylight, fluorescent, 
incandescent) was selected. As can be seen in Figure 8, the 
dark sea objects span a large range of R/G. The P6 patch 
(Bluish Green) is the closest MacBeth patch to match dark 
sea, and is used for illustrative purposes only. The P6 patch 
is a much better match for azure water (like swimming 
pools). Extreme care must be taken when using water 
memory color objects not to include specular type 
reflections in the segmentation area. When this happens, the 
water takes on the dominant color of the reflected object. 
This can be avoided by restricting the segmentation routine 
to ignore “bright islands” within the water region. Typically 
this is handled by brightness restrictions within the 
segmentation routine. 

Figures 9 and 10 show the large distribution of R/G and 
B/G ratios for two types of water, pool and ocean 
respectively. The large symbols in these two figures are 
reserved to indicate water patches for which medium to 
strong surface reflections are included. Note how the 
addition of surface reflections in Figure 9 significantly 
extends the R/G and B/G range. Some pool water 
reflections showed enough red content to belong to a 
horizon illuminant, even when the scene was captured in 
mid-afternoon with a CCT for D68. In Figure 10, the sea 
green ocean patches also occupy a large span in the R/G 
direction. However, they do not show any significant 
changes when areas with surface reflections are included. 
This results from the fact that ocean water contains a large 
amount of algae and suspended solids. There is a strong 
chromatic cast to the light reflected both on and below the 
surface of the water. 

The results of this research indicate that sky, skin, and 
foliage objects retain good signatures of the scene 
illuminant. Dark skin proved unreliable under certain 
lighting conditions (A and Horizon) and reliable under 

others. Typically with low luminance levels, the low 
reflectance produced very erratic R/G and B/G values. The 
use of water as a memory color is very problematic. If a 
green sea image has half the horizon filed with ocean, the 
algorithm will indicate the daylight source with no problem. 
When the size of the “water” object becomes less than 15% 
of the image, the potential water object can very often be a 
blue wall or a blue-green couch. More research needs to be 
conducted on water scenes to see if additional constraints on 
the objects surrounding the potential water object can 
increase the confidence level in predicting a water memory 
color. Constraints such as requiring earth colors or sand to 
be adjacent to the potential water object could significantly 
reduce false positive identifications. 

The memory colors of sky, skin, and foliage reliably 
return the source illuminant type (daylight, fluorescent, 
incandescent). Water for dark sea green works well when 
large areas of the image contain the memory color object. 

Conclusions 

The dominant memory colors of sky, skin, and foliage 
worked successfully 96% of the time. Even the single 
failure in our 25 test cases occurred because the foliage was 
very dried out and dying. Sky gives the most accurate 
illuminant because it is always involved in daylight cases. 
The only problem that can be encountered with sky 
segmentation is including too much cloud material along 
with the blue sky. However, when this occurs, the clouds 
represent very strong near neutral objects. When clouds are 
present, the CCR white balance algorithm works correctly 
in all observed instances. 

Skin is the best overall memory color because it is 
found both indoors and outdoors so all forms of 
illumination are encountered. All of our skin tests algorithm 
results yielded the correct illuminant. Some cases occurred 
where the measured CCT of the scene was between D50 
and D65 so either answer was accepted as a correct answer. 
Skin appears to have the strongest discrimination between 
daylight and fluorescent sources. This is very important 
since a switch between daylight and fluorescent, where both 
might possess the same CCT value, has a dramatic effect on 
the final image reproduction. The 3200 studio light has 
roughly the same CCT as U30 fluorescent, but the resulting 
amplifier gains needed to provide good white balance are 
significantly different. 

The worst performer as a memory color is water. The 
azure water is extremely bad because, for swimming pools 
and shallow bodies of clear water, little color reflection 
occurs since there is not enough material to cause chromatic 
dispersion. The addition of surface specular reflection can 
completely shift the chromatic content of the reflected light 
from light blue towards red, green, or white depending of 
the reflection content. Alternatively, sea green water, even 
with specular reflections present, provides a much better 
memory color results. However, the dispersion of R/G and 
B/G ratios for sea green water did not allow us to separate 
D65 from D50 or D50 from Horizon conditions. In our test 
images of boats in a marina, it was always possible to find 
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an ocean reflection where a red or yellow boat would cause 
the resulting patch of ocean to have a Horizon or 
incandescent A illuminant signature, even though the real 
scene illuminant was D50. If a large enough region of the 
ocean can be captured (or a large variety of boats at a 
marina), then the global average of the sea green water does 
provide a good illuminant signature. However, this is really 
more of a gray world approximation for sea water than a 
success of memory colors. 

In conclusion, the memory colors of sky, skin, and 
foliage are very good indicators of scene illuminant. Water 
has a limited success for ocean water but probably is too 
unreliable to be trusted as anything else than supporting 
evidence that a given illuminant has been detected by other 
means. Future research needs to investigate how to 
construct simplistic segmentation routines that give a high 
confidence that sky, skin, or foliage are present in an 
arbitrary image. 
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Figure 1. a) Indoor scene with Plant; b) after U30 fluorescent rending 

Figure 2. a) Outdoor scene with grass; b)after D65 rending applied 

Figure 3. a) Swimming pool in afternoon sun; b)after D65 rendering applied 

IS&T/SID Ninth Color Imaging Conference

150



 

 

Figure 4. a) Boats in marina in afternoon sun b)after D65 rendering applied 

 

 Figure 5. r/g versus b/g ratios for sky        Figure 6. r/g versus b/g ratios for skin 

 

Figure 7. r/g versus b/g ratios for foliage     Figure 8. r/g versus b/g ratios for sea water 
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Pool Water normal & with suface reflections (_R)
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Figure 9. r/g versus b/g ratios for Pool Water with and without surface reflections  

 

Figure 10. r/g versus b/g ratios for Ocean water with and without surface reflections
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