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Abstract 

Due to the strong connections between research on 
illuminant estimation problems and chromatic adaptation 
phenomena, it was believed that application of chromatic 
adaptation models would be helpful in solving the problems 
of illuminant estimation. This article introduced an 
illuminant estimation method based on the fundamental 
chromatic adaptation model, the von Kries Model. Through 
image transformation and the comparison between image 
gamuts and reference gamut, the method is designed to 
simulate the adjustment of visual systems, transforming the 
image to be as if taken under the reference illuminant. Then, 
the estimation of scene illuminant was deduced from the 
transformation coefficients. Gamut comparison was 
repeated at each intensity level in the three-dimensional (x, 
y, Y) color space to maintain the three-channel color 
information of images and to simplify the calculation. 
Experimental results illustrate the efficiency of this 
proposed method. 

Introduction 

Illuminant estimation from images has been a problem 
studied for a long time, and also has been receiving more 
attention during recent years because of the demands of 
many imaging areas, such as digital photography and 
machine vision. An increasing number of algorithms have 
been proposed based on various viewpoints to this problem. 
The most widely known algorithms are Gray World,1-2 
Maximum RGB,3-4 Maloney-Wandell,5 and Dichromatic 
model.6-7 Since Forsyth proposed the idea of using gamut to 
estimate scene illuminant,8 many methods based on gamut-
mapping technique have been studied because of its 
simplicity and accuracy. 

On another research front, for more than 100 years the 
color constancy abilities of human eyes have prompted 
scientists to study the mechanism of the human visual 
systems. A series of chromatic adaptation models have been 
proposed, from the oldest von Kries Model to the recent 
RLAB and LLAB Models.9 

The researches on illuminant estimation and chromatic 
adaptation have their common points, in that both of them 
concern the illuminant factors in images. While studies in 
illuminant estimation concentrate on determining the 

unknown illuminant from image colors, chromatic 
adaptation research attempts to find out what mechanisms 
the visual systems uses to discount the effect of illumination 
change. The application of a chromatic adaptation model is 
therefore potentially helpful in illuminant estimation 
problems.  

In this article, we will introduce an illuminant 
estimation method which applies the von Kries Model as an 
image processing step. von Kries is used because it is 
simple and still highly effective.10 A gamut comparison 
technique follows to detect the best transformation, which 
reveals the most likely scene illuminant for the original 
image.  

Gamut calculation and comparison is based on the 
color space where gamuts are described. There are different 
selections of color space in describing gamuts, for example, 
(R, G, B) color space,8 and some two-dimensional color 
space as (r, g), (R/B, G/B) and (R, B).11-13 As we know, when 
gamuts are expressed in three-dimensional space, for 
example (R, G, B), they are normally described as 
polyhedrons. And gamut calculation and comparison may 
involve intensive computation because of the complexities 
in calculating polyhedron volumes and intersections. On the 
other hand, when describing gamuts in two-dimensional 
color space, the original three-channel information of 
images may not be used thoroughly. 

In this method, the color space (x, y, Y) is selected to 
describe gamuts in order to keep the three-dimensional 
information of images and to simplify the calculation. The 
gamut comparison is performed as two-dimensional 
geometric calculation at each Y level. Another reason for 
this selection is to avoid the gamut differences caused by 
different kinds of camera sensors when doing gamut 
comparison. Besides, in order to avoid null estimation, a 
outstretch tolerance is introduced to permit transformed 
gamuts to have some exceeding out of the reference gamut. 

The evaluation of this method is divided to the testing 
of synthetic images and the testing of real images, and the 
evaluation errors are compared with some other methods. 

Method 

Application of von Kries Transformation 
In 1902, von Kries proposed a simple model of 

chromatic adaptation, which laid the foundation for all 
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modern chromatic-adaptation models. In his article, he 
outlined his hypothesis that “the individual components 
present in the organ of vision are completely independent of 
one another and each is fatigued or adapted exclusively 
according to its own function”.9 The interpretation of his 
hypothesis can be expressed in Equation (1), which is 
referred as the von Kries Model. 

  















⋅
















=

















′
′
′

S
M
L

k
k

k

S
M
L

S

M

L

00
00
00

    (1) 

L, M, S and L’, M’, S’ are the initial and post-adaptation 
cone signals, while kL, kM and kS are the scaling coefficients.  

The original image is transformed with von Kries 
model to show the effect as if taken under another 
illuminant, defined as the transformed illuminant. The three 
scaling coefficients kL, kM and kS can be expressed as the 
ratio between cone responses of white point under the 
transformed illuminant and those under the original 
illuminant, that is, 
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The subscript WT means white point under transformed 
illuminant and WO means white point under original 
illuminant. 

In this method, one typical illuminant, for example 
Illuminant D65, is defined as reference illuminant. With one 
group of suitable coefficients 

RLk , 
RM

k  and 
RS

k , the 
transformed image could have the chromaticities of the 
transformed illuminant the same as those of the reference 
illuminant. Then the cone responses of white point under 
the original illuminant can be calculated as: 
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Here 
RW

L , 
RW

M  and 
RW

S  are L, M, S values of white point 
under reference illuminant. For the original image, the 
relationship between L, M, S and the chromatic tristimulus 
value X, Y, Z can be presented as Equation (4). 
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After the transformation as Equation (1), the tristimulus 
values X’, Y’, Z’ of the transformed image can be 
transformed from L’, M’, S’ as Equation (5). 
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With the above transformation, original images’ 
chromatic tristimulus values can be transformed into cone 
responses, which are used in von Kries transformation, and 
the transformed cone responses can be returned back to 
chromatic tristimulus values. 

Gamut Comparison in Color Space (x, y, Y) 
From the above analysis, we know that when the 

transformed illuminant has the chromaticities the same as 
the reference illuminant, the original illuminant 
chromaticities can be calculated from Equation (3). But 
since the chromaticities of both the original illuminant and 
the transformed illuminant are unknown, there should be 
some criterion to detect the coincidence of the transformed 
illuminant and the reference illuminant. The criterion in this 
article is based on the comparison of the transformed image 
gamut and the reference gamut, where the reference gamut 
refers to the possible color ranges under the reference 
illuminant. 

In order to keep the three-channel information of 
images, it’s better to describe gamuts in a three-dimensional 
color space. But the process in finding the vertices of gamut 
polyhedrons and the calculation of volume and intersection 
of gamuts in three-dimensional spaces are normally 
complex and with intensive computation. Here, gamut 
comparison is performed in (x, y, Y) space. Three-
dimensional gamut calculations are divided into a series of 
two-dimensional geometric calculation in (x, y) space with 
spaced Y steps. This color space has the characteristics that 
the (x, y) ranges with lower Y values are always larger than 
the (x, y) ranges with higher Y values. Then (x, y) range at 
each Y step is the convex polygon envelope that covers all 
the (x, y) values of image pixels with larger Y values. So the 
calculation could be simplified. Another reason for this 
color space is to make the gamut comparison process not be 
affected by the variation in camera sensors. For example, 
when describing gamut in (R, G, B) space, both the 
reference gamut and the transformed image gamuts would 
be changed according to the selection of camera sensors. 
Figure 1 shows an example of such gamut description. It is 
the gamut of optimal colors14-15 under Illuminant D65 with 
spaced Y step equal to 10.  
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Figure 1. Optimal color gamut under Illuminant D65. 

 
The next step is the comparison of the transformed 

image gamuts with the reference gamut. Normally, when 
the transformed illuminant has the same chromaticities as 
the reference illuminant, the transformed gamut should be 
inside the reference gamut. But because of the possibility 
that some object reflectances exceed the range of reference 
reflectance database, or because of some errors in 
transformations and due to noise, it is possible for the 
transformed gamuts to have some parts outstretch the 
reference gamut even when the transformed illuminant is 
the same as the reference illuminant. In order to avoid the 
problem of null estimation resulted from no possible 
transformation to make the transformed gamut be totally 
inside the reference gamut, an outstretch tolerance is set to 
permit a little exceeding of the reference gamut. The 
tolerance is defined as the area ratio between the gamut 
intersection part and the transformed image gamut. The 
tolerance is first set at a high value, for example 0.99, then 
for those images that still have null estimations, the ratio is 
decreased finely until one estimation is found. 

Since three-dimensional gamut calculation has been 
simplified as a series of two-dimensional geometry 
calculations, the intersection of two gamuts can also be 
treated as the polygon intersection in (x, y) space at each Y 
step. Figure 2 shows an example of the gamut intersection 
at one Y step. 

The calculation of polygon intersection areas involves 
two steps: (1) find the vertices of the common region which 
describes the intersection of the two polygons; and (2) 
calculate the area of the common region. The vertices of the 
common region are composed of the line intersecting points 
of the two polygons and the vertices of one polygon inside 
the other polygon. The area of the common region can be 
calculated using Equation (6). 
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Here (x1, y1) to (xn, yn) are the coordinate values of the 
common region vertices. Since gamuts in lower intensity 
levels have larger areas than those in higher intensity levels, 
in order to treat each intensity level the same weight, the 
overlapping degree at each Y step is defined as the ratio 
between the areas of the common region and the areas of 
the reference gamut range. Then the overlapping degree for 
the whole gamut comparison can be expressed as: 
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Here, n is the number of Y steps, i
PI
S  is the intersection 

polygon area at ith Y step, and i
PR
S  is the reference gamut 

(x, y) polygon area at ith Y step. When the transformed 
gamut and the reference gamut have the maximum 
overlapping degree, the transformed illuminant is assumed 
to have the same chromaticities as the reference illuminant, 
and the chromaticities of the original illuminant can be 
deduced from the transformation coefficients kL, kM and ks as 
Equation (3). 
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Figure 2. Gamut intersection at each Y step can be calculated as 
polygon intersection. 

Experiments 

In this work, the establishment of the reference gamut was 
based on the database made by 1373 spectral reflectance 
samples. These include Vrhel database16 (354 samples), and 
other objects including patches from the Munsell Color 
Book, paint samples, flowers and leaves, and additional 
manmade and natural objects.  

The testing of the method is divided in two parts. The 
first is the testing of synthetic images, and the second is the 
testing of some real images. 

In the testing of synthetic image, four groups of 
synthetic images were established. Each group contains 
1000 images composed of 8, 16, 32, 64 surfaces. The 
surfaces are randomly selected from the reference spectral 
reflectance database. The simulated sensor sensitivities are 
composed of cubic spline functions peaked at 450nm, 
550nm and 590nm with half-width 40nm, 60nm and 60nm. 
Image illuminants are randomly selected from 13 blackbody 
radiation with color temperature ranging from 2500K to 
8500K. 
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The testing results are compared with Gray World 
method and Maximum RGB method. In addition, Barnard 
proposed a new method as three-dimensional color by 
correlation.17 Although the method in this article was not 
inspired or referred from Barnard’s new method, the two 
have some main common points, such as doing gamut 
comparison at different intensity levels. One main 
difference between the two methods is the selection of color 
space, where three-dimensional color by correlation is 
performed in (r, g, L) color space. In order to see the effect 
of this difference, the method was also tested in (r, g, L) 
color space, where L=R+G+B, and r=R/L, g=G/L. And the 
image transformation is also performed on (R, G, B) sensor 
output values as  
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The error metric is defined as the Euclidean distance of 
the chromaticity of estimated illuminant and real illuminant 
in (r, g) space. The comparison results of minimum, mean 
and maximum errors for different methods for each 
synthetic image group are shown in Table 1. And Figure 3 
shows the mean estimation errors for each method. 

Table 1. Estimation error comparison of different 
methods for synthetic images with different surface 
number. 

 Minimum Mean Maximum 
 8 surfaces 
Gray World 0.003 0.072 0.27 
Max RGB 0 0.061 0.29 
Proposed method 0 0.063 0.25 
In (r,g,L) space 0 0.059 0.25 
 16 surfaces 
Gray World 0.003 0.064 0.21 
Max RGB 0.001 0.043 0.20 
Proposed method 0 0.041 0.21 
In (r,g,L) space 0 0.040 0.21 
 32 surfaces 
Gray World 0.002 0.063 0.16 
Max RGB 0 0.027 0.14 
Proposed method 0 0.020 0.13 
In (r,g,L) space 0 0.019 0.15 
 64 surfaces 
Gray World 0.001 0.061 0.12 
Max RGB 0 0.018 0.082 
Proposed method 0 0.012 0.074 
In (r,g,L) space 0 0.012 0.11 

 
 
The results show that for synthetic images, normally 

the proposed method has better performance than Gray 
World and Maximum RGB, except that Maximum RGB 
works a little better when surface number is 8. On the other 
hand, when gamuts are described in (r, g, L) space, and the 
transformation is on (R, G, B), the performance is a little 

better than those in (x, y, Y) space, especially when surface 
number is lower. That is partly because there are less 
transformations when doing transformation on (R, G, B), 
and also because the (L, M, S) response curves are normally 
wider than sensor sensitivity curves. 

 

8 16 32 64
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of surfaces

M
ea

n 
es

tim
at

io
n 

er
ro

r:
 E

uc
lid

ea
n 

di
st

an
ce

 in
 (

r,
g)

Gray World
Maximum RGB
proposed Method
in (r,g,L) space

 

Figure 3. Mean estimation errors of different methods for each 
surface number. 

 
For testing real images, the experimental images were 

taken by Sony DTS-ST5 digital camera. Their properties 
were determined through the measurement of color patches 
with known spectral reflectance. The initial camera output 
data were linearized and transferred into tristimulus values 
(X, Y, Z). The original illuminants included light sources in 
light booth and in photo studio, and also some natural 
daylights. Their spectral power distributions were measured 
at the same time with PhotoResearch PR650 spectro-
radiometer. The experimental images included 5 scenes of 
the GretagMacbeth ColorChecker rendition chart, fruits and 
vegetables, groups of small objects, doll and painting. Each 
scene was taken under 9 illuminants ranging from 2300K to 
8000K, altogether 45 images. The testing results are 
compared with the method of Gray World and Maximum 
RGB. The estimation error results are shown as Table 2. 

Table 2. Estimation error comparison of different 
methods for real images. 

 Minimum Mean Maximum 
Gray World 0.035 0.102 0.136 
Max RGB 0.059 0.130 0.293 
Proposed method 0.010 0.058 0.128 

 
 
The results show that the method in this article 

obviously outperforms Gray World and Maximum RGB 
methods for real images. Here, Maximum RGB method was 
not as efficiency as Gray World method as for synthetic 
images because of the existence of saturated highlights in 
real images. Besides, the estimation efficiencies are also 
affected by image scenes. The scenes with colorful surfaces 
or objects, for example the Macbeth ColorChecker has more 
accurate illuminant estimations than those with dull colors. 
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Conclusions 

The article has introduced an illuminant estimation method 
based on von Kries transformation and gamut comparison. 
By simulating the color constancy abilities of the visual 
system, the method applied the von Kries model to 
transform the chromaticities of the original image, 
simulating the effect of being taken under a reference 
illuminant. The method used the three-dimensional color 
space (x, y, Y) to describe gamuts, which keeps the three-
channel information of images and simplified the 
computations of gamut volumes and intersections as a series 
of two-dimensional geometric calculations. And the method 
used only one illuminant reference gamut. Through the 
comparison between transformed image gamuts and the 
reference gamut, the method detected the coincidence of the 
transformed illuminant and the reference illuminant. The 
original scene illuminant was deduced through the 
transformation coefficients. The performance of this method 
was tested through both synthetic and real images, and the 
estimation errors were compared with some other methods. 
The experimental results illustrated the efficiency of this 
proposed method. 
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