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Abstract

Digital image archives may store images in either device-
dependent or device-independent form, but the latter places
more stringent demands on the image capture process.
Multispectral image archives can reduce the problems of
colour inconstancy associated with trichromatic images. An
experimental study was conducted to determine the
efficiency of a new method for encoding multispectral
images, using three orthogonal basis functions derived from
cone fundamentals plus additional principal components.
The results indicated that the encoding method gave a good
approximation to the original, and that images of reasonable
quality could be reconstructed from files compressed by
spatial sub-sampling of the components, with an overall
compression ratio in the range 20-40.

Multispectral Image Capture

The digital reproduction of a colour image typically
involves a chain of processes from original scene to
destination image. The original scene may be captured
directly by means of a digital camera or digitised from a
photograph, then stored in a source image file. This file may
subsequently be processed by suitable image processing
algorithms, often with the interactive control of a human
operator for editorial correction or enhancement, and the
result stored in a destination image file. This may then be
transmitted to a destination device or process to reproduce
the image in a particular medium, for example printed with
coloured ink on paper.

The multispectral digital image, in terms of its place in
the reproduction chain, is an alternative representation of
the original scene or object in the digital source image file.
Because it carries more detailed spectral information than a
conventional three-band digital image, it can provide a more
complete representation of the colorants of the original and
hence a more accurate record of the reflectance under
different sources of illumination. Thus it has potential to
overcome many of the problems of metamerism or colour
inconstancy associated with conventional image archives.'

An ideal archival image would contain all the
information present in the original scene or object. If the
final medium, rendering intent, application and task are not
known at image capture time then the archive image should
ideally be able to support any and every possible
combination. It should allow the user to ‘zoom in’ close
enough to discern the finest detail present in the original, or
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to visualise the scene from any angle or viewpoint, or to
simulate its appearance under any type of lighting in any
viewing environment. In practice, such an objective is only
possible for a computer-rendered model, where the image
has been synthesised from a specified parameter set.

A real archival image must always differ from the
original scene or object, as it is a representation acquired
through optical projection and sampling, including:

e geometry of illumination source(s) and camera relative to
the scene;

3-D original optically projected onto the 2-D image plane
within camera;

sampled in time, either a static (one-off) image or a
progressive series;

sampled in wavelength into specified number of spectral
channels;

sampled spatially across the 2-D image plane.

Limits of Resolution

Because reflectance spectra are functions of wavelength,
which can be expressed as cycles per nm, they can be
represented by Fourier spectra. The Uniform Sampling
Theorem® states that “if x(f) is band-limited with no
components greater than f, Hz, then it is completely
specified by samples taken at the frequency f, > 2 f, Hz”.
The minimum sampling frequency f is the Nyquist
frequency. The problem that the spectral reflectance data is
not a continuous function of wavelength but a finite set of
values sampled at regular intervals (typically 5 or 10 nm)
can be overcome via the Discrete Fourier Transform (DFT).
The restriction of the limited range of the visible spectrum
(approximately 400 to 700 nm) can be corrected by a
Hanning window, which prevents the introduction of
spurious frequency components into the Fourier spectrum,
as shown in Figure 1. If reflectance spectra were sampled
by a spectrophotometer at 31 points in the visible range
400-700 nm, i.e. at 10 nm intervals, the maximum
detectable frequency would be constrained to 15 cycles per
300 nm or 0.05 cycles/nm.

It is interesting to consider the relationship between
spectral frequency and colour saturation. Higher spectral
frequencies correspond to steeper slopes and more rapid
rates of change of reflectance as a function of wavelength.
Hence a colour that has more power at high spectral
frequencies will exhibit more chromatic purity, so will be
further from the white point and nearer to the gamut
boundary of the colour space.’” The limiting case is for
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monochromatic colours, where all the power is concentrated
at a single wavelength, i.e. at infinite spectral frequency,
corresponding to a point on the spectral locus of the CIE
chromaticity diagram, as shown in Figure 2. Theoretical
‘block dyes’, used in the analysis of subtractive colour
reproduction systems, also have infinite spectral frequency
components, because of their infinite slopes in reflectance
space, and lie close to the spectral locus.*
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Figure 1 Fourier analysis of a typical reflectance spectrum (left)
showing the Fourier amplitude after Hanning correction (right)
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Figure 2 Effect of increasing spectral frequency on chromatic
purity. The solid curve shows the gamut of colours corresponding
to band-limited spectral frequencies of 0.005 cycles/nm. NTSC
primaries are shown for comparison (triangle). (Adapted from
Buchsbaum & Gottschalk’®)

For multispectral image capture, a key question is: How
many spectral components should be captured? Studies of
images using Principal Component Analysis (PCA) have
revealed that the spectral reflectances of both natural scenes
and man-made scenes can in most cases be approximated
accurately with five or six basis functions.” It follows that
for efficient storage of multispectral images, instead of
storing the reflectance of each waveband, it is better to
derive and store the coefficients of the basis functions for
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each pixel of the image, constructed as linear combinations
of the spectral channels from the capture device.

Man-made objects, however, have an inherent
resolution limit, excluding the micro-structure of the
medium. Fine-art painting has a maximum resolvable detail
of about 10 lines/mm, and transparency photographs about
50 lines/mm. For man-made objects, therefore, once the
medium has been properly characterised, it is possible to
establish a spatial sampling limit which can be guaranteed
to capture all the spatial information in the original object.

The human visual system has significantly higher
spatial sensitivity for luminance components than for
chrominance.® The contrast sensitivity function (CSF) for
luminance is band-pass in nature, peaking at about 6 cycles
per degree of visual angle (cpd) and approaching zero at
both very low (less than 0.1 cpd) and very high (greater
than 50 cpd) spatial frequencies. The peak sensitivity for
luminance is about 10 times that for chrominance, and for a
given level of sensitivity, the luminance channel can detect
spatial frequencies about 10 times higher than the
chrominance channel. It follows that the chrominance
components of an image can be down-sampled by up to 10
times in linear dimension without perceptible degradation of
image quality, provided that the luminance component is
maintained. It also follows that image sharpness processing
(enhancement of edges or fine detail in an image) can be
performed effectively on the luminance component alone,
leaving the chrominance components unchanged’.

Proposal for a Multispectral Image Archive
Format

A new technique was recently proposed’ for encoding
multispectral images, with the dual benefits of data
compression (reducing the volume of data required for
multispectral image archive storage) and greater processing
efficiency (being better suited to image processing
operations for colour reproduction). The archived image
data would consist of:

e A broad-band monochromatic representation of the
image at the highest available spatial resolution,
designated /um(A), calculated as a weighted sum of the
channels to give an overall spectral responsivity close
to the standard spectral luminous efficiency function
VA,

Two orthogonal components closely related to the
opponent colour channels of the human visual system,
designated rg(A) and by(A).

A set of additional spectral components representing all
of the remaining chromatic information, reduced to a
significantly lower spatial resolution, with coefficients
derived from principal components analysis.

Such a format would be well suited to the needs of
colour image reproduction because of the reduced spatial
sensitivity of the human visual system to chromatic
information, as described in the previous section. For
standard colorimetry, the X and Z tristimulus values could
readily be calculated as linear combinations of the



IS8 T/SD Ninth Color Imaging Conference

chromatic components. The low-resolution chromatic
components could be interpolated, if necessary, for the
required spatial resolution of the colorimetric image. Spatial
sub-sampling of higher-order principal components has
previously been tested for multispectral images in which all
components were extracted by PCA™".

Opponent coding serves in the human visual system as
a mechanism for information compression and redundancy
reduction of perceived colour information. The
transformation  from cone fundamentals can be
parameterised in terms of A when the expected response of
the three vision channels for monochromatic stimuli is
considered. The transformation can be expressed as:

lum L
rg |=w'|\M )
by S

where W' is defined as the transpose of the matrix of
eigenvectors, and L(A), M(A1) and S(A) are the long-,
medium- and short-wavelength cone fundamentals. The Vos
and Walraven (1971) cone fundamentals' were used in this
study, as illustrated in Figure 3a, and can be obtained from
the following transformations:

5(2)=0.0073215z(1)
M(2)=—-0.1551646x(2 )+ 0.4569237 (1) +0.02969462(1 )

L(1)=0.1551646x(1)+0.5430763y(2.)—0.0370161z(2) @
where  x(A),»(1)and z(A)are the CIE XYZ color
matching functions modified by Judd. Note that L(A) +
ML) + S(A) = V).

Applying singular value decomposition (SVD) to the
Vos & Walraven cone fundamental functions yields the
three principal components illustrated in Figure 3b, as
follows:

lum) (0.887 0.461 0.0009) (L
re |=|-046 088 0.01 M 3)
by | | 0.004 001 0.99 S

The eigenvector transformation of L(4), M(A) and S(A)
is unique, and has the basic property that the components
lum(R), rg(A) and by(A) are mathematically orthogonal, i.e.

Slum) rg) dh = [lum(A) by(A) dh =[rgA) by(A) dh = 0 (4)

The expected monochromatic signal energy of the
channels /um(A), rg(A) and by(A) has the ratio I, : I, : T,
where I}, =TI, = I,are the eigenvalues, i.e.

Slum? &) d\ - [rg? ) dh - Jyb? (A dh=T;:T,: T; )
where lum(X), rg(A) and yb(A) are mathematically
orthogonal the eigenvalue ratio provides the optimum in
signal energy compaction, corresponding to the relative
power of the three components:
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TAZ) dh: [P dh: [P dh=T,:T,:T;

=972:2.78:0.015  (6)

Normalised sensitivitv

Wavelength (nm)

Relative value

-0.2
400

L L L L
&00 560 600 650

Wavelength (nm)

L
450 700

Figure 3 (Top) Vos & Walraven (1971) cone fundamentals; and
(Bottom) the three orthogonal basis functions derived from them.

Approximation by Principal Components

A study was undertaken to determine the effectiveness of
the proposed image encoding technique. A set of 22
hyperspectral images was selected from the database of
natural scenes compiled by Ciao et al”, consisting of 12
images of forest scenes and 10 images of coral reef scenes.
Each image was of size 128x128 pixels with 40 channels at
wavelength intervals of approximately 7 nm throughout the
visible spectrum 403-696 nm.

Each test image was analysed to determine the best fit
(by minimisation of mean-square error) to the three
orthogonal basis functions defined by Eq. 3. Figure 4 (top
left) shows a typical result. The approximation is reasonable
in the centre of the visible spectrum but large errors occur at
the ends where the cone fundamentals approach zero and
the differences are less visible. The mean and maximum
colour differences in CIELAB space over all pixels for ten
test images were calculated as given in Table 1, indicating a
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reasonable accuracy of approximation, with a mean AE*
error value in the range 0.5 to 1.8.

Table 1 Mean and maximum colour differences between
original images and approximations with three basis
functions, for ten test images.

Test image Mean AE*,, Maximum AE*,,
Barrine2 0.88 3.94
Coottha8 1.71 7.96

Hillside 1.59 4.51
Park2 0.85 4.95
Park4 0.89 8.06

Horshe10 1.77 4.96
Horshe29 0.70 3.98
Horshe32 0.69 4.16
Hoshoe12 0.58 4.73
Hoshoe24 0.46 2.49
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Figure 4 Spectral
reflectance and best fit by
three basis functions (top
left) plus one (top right),
two (bottom left) and three
(bottom right) principal
components, for one pixel
at co-ordinates (64,80) of
the ‘Hoshoe24’ test image.

Principal component analysis was then applied to the
residues, i.e. the difference between the true spectral
reflectance distribution at each pixel and the approximation
by the three basis functions. Figure 4 shows clearly how the
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approximation to the original spectral reflectance distri-
bution successively improved as additional components
were included in the summation. The mean AE*, colour
difference reduced to a value less than 0.1 for two or more
principal components (i.e. five or more basis functions in
the approximation), as shown in Figure 5.

Mean error AE*,;,

4 5

o 1 z 3
Number of principal components

Figure 5 Mean colour difference (AE*,) between original
reflectance spectrum and reconstruction with three basis functions
plus 0-5 principal components

Compression by Spatial Sub-Sampling

Use of 3 orthogonal basis functions (derived from the Vos
& Walraven cone fundamentals) plus 3 principal
components (derived from PCA of the residual differences)
gave an approximation of each test image with 6
coefficients per pixel. This represented a data compression
factor of 6.7 times relative to the original 40-channel
hyperspectral image. If only 2 additional components were
used, a compression factor of 8 would be achieved. The
proposed image encoding technique was then tested by
three different schemes, as set out in Table 2.

Table 2 Encoding schemes

Scheme | 1% pasis | 2" 3™basis | Principal | Compress-
function functions | components | ion ratio
1 1:1 1:4 1:16 3.56
2 1:1 1.9 1:16 4.26
3 1:1 1:16 1:64 5.12

The first basis function (equivalent to luminance V(}))
was not changed, but the other two basis functions and the
three principal components were sub-sampled. For example
in the first scheme, each 2x2 pixel block of the image
channels corresponding to the 2™ and 3" basis functions was
averaged. In reconstruction, this mean pixel value was
replicated in each of the four corresponding pixel positions.
For each of the three principal components a 4x4 pixel
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block was averaged. The overall compression ratio was
1/(1+2/4+3/16) = 96/27 = 3.56.

Table 3 Mean and maximum colour differences between
the uncompressed images and reconstructed images, for
ten test images under three encoding schemes.

Scheme 1 Scheme 2 Scheme 3

Image Mean Max Mean Max Mean Max
AE*y AE* AE%,  AE%,  AEY, AEY,
Barrine2 4.04 41.8 5.2 45.2 6.0 62.5
Coottha8 15.2 51.9 15.3 58.4 14.9 68.0
Hillside 12.6 51.6 12.7 67.9 12.9 68.9
Park2 12.9 66.8 12.7 76.9 12.6 74.4
Park4 114 79.9 14.0 1028 159 1023
Horshe10 6.8 76.1 8.5 91.4 10.8 82.3
Horshe29 10.4 64.9 12.9 70.7 15.8 771
Horshe32 6.4 69.3 8.7 68.1 104 68.6
Hoshoe12 6.9 59.9 9.2 71.4 10.9 72.9
Hoshoe24 5.8 437 6.3 60.4 7.6 64.6

Uncompressed x8 + 128 Reconstructed
image image
Difference
image

Figure 6 Enhanced difference between an uncompressed and a
reconstructed image under Encoding Scheme 1, for the image
‘Park2’.

Colour differences between the original and
reconstructed images under the three encoding schemes are
given in Table 3. The mean errors were relatively large, in
the range 4-15 AE* ,, and increased with larger compression
ratios. The errors were evenly distributed throughout the
image and gave the appearance of high frequency pixel
noise. Figure 6 shows an example for the image Park2, in
which the values of the pixel differences between the
uncompressed image (six-component approximation) and
the image encoded and reconstructed under Scheme 1 are
multiplied by 8 and added to 128 to make them clearer.
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Psychophysical Experiments

To evaluate image quality, two psychophysical experiments
were performed, using side-by-side forced-choice
comparison of image pairs on a Barco Calibrator V CRT
display. Image pixel data were converted from spectral
reflectance to XYZ via the CIE 2° colour matching
functions, thence to display RGB via the GOG model” to
ensure colour-accurate rendering of the images. All images
were doubled in size to 256x256, using spatial interpolation,
to facilitate visual comparison. The experiments were
performed in a dark room at normal viewing distance
(approximately 60 cm). Eight observers participated, and
were instructed to say which image in each pair was of
higher quality.

In the first experiment, five versions of each of 10 test
images were assessed: the original and the representations
using 3 orthogonal basis functions plus 0,1,3 and 5 principal
components. This resulted in 100 image pairs per observer.
The results are given in Table 4 as mean z-scores, averaged
over all 8 observers and 10 test images. The z-scores are
small, resulting from the visual similarity of all the images —
differences between the various image versions in this
experiment were not easily perceived. Curiously the
representation with 3 principal components was judged to
be better than that with 5, suggesting that the additional two
components carry more noise than information (see also
Figure 5).

Table 4 Results of first experiment: mean z-scores and
rank.

Original 3B 3B-1PC 3B-3PC 3B-5PC
MEAN 0.135 -0.072 -0.044 0.050 -0.069
RANK 1 5 3 2 4

Table 5 Results of second experiment: mean z-scores
and rank.

3B-3PC 3B-3PC 3B-3PC 3B-3PC
Scheme1 Scheme2 Scheme 3
MEAN 1.365 0.659 -0.214 -1.810
RANK 1 2 3 4

In the second experiment, four versions of each of 10
test images were assessed: the uncompressed representation
using 3 orthogonal basis functions plus 3 principal
components and the reconstructed images using the three
encoding schemes. This resulted in 60 image pairs per
observer. The results are given in Table 5 as mean z-scores,
averaged over all 8 observers and 10 test images. The z-
scores are larger in this case, indicating greater visual
differences between the images. Similar results were
evident for all the individual images. The ranking followed
the same order as for the magnitude of colour differences of
the three encoding schemes, as given in Table 3.
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Conclusions

The study demonstrated that it is feasible to encode
multispectral images using three orthogonal basis functions
derived from human cone fundamentals, plus additional
principal components. This is an important conclusion,
because it provides a method of multispectral image
representation  that is ‘upward compatible’ with
conventional trichromatic encoding. The standard
colorimetric image, such as XYZ, is easily extracted from
the first three channels of the encoded image. The
experiments showed that very good colorimetric accuracy
could be achieved for multispectral images of natural scenes
with only two or three additional components derived by
PCA of the residues.

The study also showed the feasibility of compression of
the encoded image by spatial sub-sampling of all
components except the first. The reconstructed images were
of reasonable visual quality, although artefacts arising from
the process were visible. Further study is required with
more sophisticated sampling methods (e.g. use of sinc
functions for decimation and bicubic interpolation for
reconstruction) in order to assess the capabilities of the
method. Compression ratios of 6-8 were achieved for the
encoding and 3-5 for the spatial sub-sampling, yielding
overall image file compression ratios of 20-40.
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