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Abstract 

A computational model of a multispectral imaging system 
was constructed and used to simulate the recovery of the 
spectral reflectance of surfaces imaged by the system. The 
model allows parameters such as number of sensors, sensor 
spectral sensitivity and quantization noise to be evaluated in 
terms of their effect on the accuracy of recovery. A set of 
1269 Munsell surface reflectance factors were used to test 
the model. The recovery process employs a linear system 
whereby spectral reflectance functions are represented by a 
small number of basis functions. The results show that 
increasing the number of sensors in the system or increasing 
the number of basis functions in the linear model does not 
necessarily increase recovery performance. However, in 
general, error does monotonically decrease with increasing 
sensor number when the number of basis functions used in 
the linear model is allowed to vary independently of sensor 
number. These performance aspects of the system are 
closely correlated with the condition number of the solution 
matrix.  

Introduction 

Conventional color imaging using trichromatic imaging 
systems suffers from two problems which can inhibit 
successful color management of the image. The first of 
these problems is that the image captured is device 
dependent. That is, the image is specified in terms of the 
primaries (usually RGB) of the capture device. This 
problem can be overcome by transforming the image into a 
suitable device-independent color space such as CIE XYZ or 
sRGB. The second problem is that the image captured is 
illuminant dependent. If the image is captured under a 
particular light source (for example, corresponding to CIE 
illuminant D65) and subsequently reproduced for view 
under the same light source then the illuminant dependency 
may not be a problem. The need for more flexible color-
management strategies has driven research methods towards 
the design of multispectral imaging systems that use more 
than three color channels1,2. A further motivating force for 
the development of multispectral imaging is the emergence 
of multispectral image reproduction systems3 that would be 
best exploited by images that are inherently more than three 

dimensional in their color content. However, although the 
mathematics underlying potential solutions for multispectral 
imaging is well understood the relative merits of these 
solutions for practical color imaging are less well 
understood. This manuscript describes research that is 
underway to develop a computational model of 
multispectral color imaging that will be used to investigate 
the impact of design features on the effectiveness of a 
multispectral imaging system. 

Multispectral and hy Perspectral Imaging 
Traditional trichromatic imaging system capture three 

signals R, G and B at each pixel location corresponding to 
the activations of three color channels. The RGB responses 
can be expressed discretely by the following equations,  
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where r, g and b are the channel sensitivities, E is the 
spectral power distribution of the light source, and S is the 
spectral reflectance of the surface being imaged, each as a 
function of wavelength λ. In this, and subsequent 
representations, we consider only the case for a single pixel.  

Equation 1 can be conveniently expressed as a linear 
system in matrix notation (assuming that spectral properties 
are specified at 31 intervals in the visible spectrum 400-700 
nm) thus, 
 

p = Gs,         (2) 
 
where p is a 3×1 row matrix of the camera response, G is a 
3×31 matrix representing the product of the camera 
sensitivity of each channel with the light source, and s is a 
31×1 row matrix representing the reflectance of the 
surface4. In conventional trichromatic imaging the camera 
responses p only are recorded. However, consideration of 
Equation 2 shows that it is possible to recover the spectral 
reflectance of the surface s from the camera responses by 
rearranging Equation 2 to yield 
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s = G-1p.           (3) 

 
The inverse matrix G-1 can be computed easily but, 

since the rank of G is three at most, estimates of s obtained 
from Equation 3 are not likely to be accurate if s is defined 
at 31 wavelengths. Ideally we would like the matrix G to be 
square, but this could only be achieved by reducing our 
estimate of spectral reflectance to 3, or by increasing the 
number of channels to 31, or more generally by matching 
the number of channels to some appropriate dimensionality 
of surface reflectance factors.  

The obvious question is what is the minimum number 
of sensors that we can use to obtain reliable estimates of 
surface reflectance? The reflectance spectra of most natural 
and manufactured surfaces are known to be smooth 
functions of wavelength. Certainly if we used 31 channels 
then we would expect to be able to recover the reflectance 
spectra of such surfaces exactly. An imaging device with 31 
narrowband channels could be called an imaging 
spectrophotometer. This type of imaging, where the spectral 
properties of the image are effectively measured – as 
opposed to estimated – is also referred to as hyperspectral 
imaging. However, reasonable estimates of reflectance can 
be obtained with as few as six channels because the 
reflectance spectra of surfaces are highly constrained. 
Whereas hyperspectral imaging refers to an imaging device 
with a large number of channels and which effectively 
measures the spectral properties of the surfaces, 
multispectral imaging refers to an imaging device with a 
relatively small number (but usually greater than 3) of 
channels and which estimates the spectral properties of the 
surfaces in the scene. 

Estimates of Reflectance Constraints 
The statistical properties of reflectance spectra for 

natural surfaces have been extensively studied. It is known 
that a linear model with as few as six parameters can 
account for greater than 98% of the variance for any 
particular data set5. More recently, several studies of 
manufactured surfaces such as plastics and painted 
materials (including the Munsell set of surfaces) have 
shown that their reflectance spectra are similarly 
constrained6-8. The smoothness of reflectance spectra can 
also be expressed in terms of the functions being band-
limited in wavelength space with an upper band limit of 
about 0.015 cycles / nm. The natural smoothness of most 
reflectance spectra suggests that about 6 channels should be 
sufficient to obtain reasonable estimates of the reflectance 
properties of a scene. The redundancy in spectral 
reflectance measurements thus allows them to be 
represented by a linear model with a small number of 
parameters. For example, assuming 6 channels, we could 
write 
 

ii isS ∑≈ ω  , for i = 1, … 6          (4) 

 

where si are the basis functions of the linear system and ωi 
are the weights for a particular sample S. Substitution of 
Equation 4 into Equation 3 allows the recovery of the 
weights ωi that allow an approximate recovery of the 
reflectance spectrum.  

Although in principle a multispectral imaging system 
with 6 channels can recover six-dimensional estimates of 
surface reflectance spectra, such an analysis does not take 
into account the wavelength properties of these channels. 
For example, a system with channels whose spectral 
sensitivities are highly correlated with each other will not 
extract as much useful information as a similar system 
whose spectral sensitivities are orthogonal. Also, what 
effect does the wavelength of maximum sensitivity for each 
channel and the spectral profile of each channel have on the 
accuracy of the system in terms of recovering spectral 
reflectance factors? These are the questions that we address 
using our computational model. 

Experimental 

The camera model is an ideal image-capture system based 
upon a simple mathematical model of the interactions 
between surfaces, light sources, filters and the camera 
sensitivities. This model assumes that the camera is a 
completely linear system thus 
 

∑= )()()( λλλ SEpP ii
,      (5) 

   i = 1, 2…, N, and  λ= 400, 410, 420, … 700 nm. 
 
Here Pi is the output of the ith channel, pi is the sensitivity of 
the ith channel as a function of wavelength and E(λ) and 
S(λ) are the spectral power distribution of the illuminant 
and the spectral reflectance function of the surface. The 
sensors are always assumed to be Gaussian functions of 
wavelength, characterised by variable half-widths and 
wavelengths of peak sensitivity. They are normalised such 
that the integral of each sensor over the visible spectrum is 
exactly 1.  

Reflectance recovery is carried out using a linear 
modelling approach to derive a set of basis functions from a 
set of reflectance spectra. The basis functions were derived 
from a singular value decomposition (SVD) of a matrix 
whose columns represent the reflectance spectra for 1269 
Munsell surfaces9. The result of the SVD is a set of ordered 
basis vectors for the reflectance set. They are ordered such 
that those vectors which account for the most variance take 
precedence. Any given reflectance function can be 
described as the weighted sum of the set of basis vectors 
(see equation 4). Expressed in matrix form this gives 
 

p = GBw         (6) 
 
where B is a 31×31 matrix whose columns are the basis 
vectors, and w is a 31×1 column vector whose values are 
the weights of the basis functions. This problem is still 
intractable while the dimension of p is less than the 
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dimension of w, but by reducing the number of basis 
functions used in the approximation of reflectance, the 
matrix L = GB becomes closer and closer to being square. 
By using the same number of basis functions as there are 
sensors, L becomes square and inverting L gives an 
approximate solution to the original equation.14 Thus 
 

p = Lw       (7 ) 
 

w = L-1p         (8) 
and  

Bw ≅≅≅≅ s.            (9) 

 
The resulting reflectance Bw can only be an 

approximation to s because we have reduced the number of 
basis functions used in the linear model (Equation 6). 

In order to simulate more realistic imaging conditions it 
is necessary to introduce noise into the equations. The 
approach adopted here is to incorporate a variable random 
component e into the sensor response, i.e.  
 

∑ += iii eSEpP )()()( λλλ .      (10) 

 
It is also necessary to consider quantization noise, 

which was simulated by rounding the sensor responses to  
8-,  10- and 12-bit accuracy.  

Results 

The performance of the system is quantified by the CIELAB 
∆E color difference under D65 between the true reflectance 
spectrum and the recovered reflectance spectrum for each 
sample in the dataset. Figure 1 shows the ∆E error obtained 
using four different illuminants in the model.  

The number of sensors varies between 3-10 in Figure 1. 
The number of basis functions was set to equal the number 
of sensors in each case. As the number of sensors is 
increased so the half-width of each sensor decreases. This 
ensures that the sensors retain the same mutual 
orthogonality. However, it means that sensor half-width and 
number of sensors are confounded. The figure shows that 
increasing the number of sensors (and consequently 
increasing the number of basis functions) does not 
necessarily improve performance.  

In order to untangle the effect of changing the half-
width and the number of the sensors, the experiment was 
repeated for different half-widths independent of number of 
sensors. Figure 2 shows the ∆E error plotted against sensor 
half-width for 3-10 sensors.  

There are two main features to note. Firstly, with the 
exception of the case where there are three sensors, the ∆E 
error generally increases with increasing sensor half width. 
Secondly, the results for six sensors are markedly worse 
than for five and seven sensors (there is also some evidence 
of this in Figure 1).  

The effect of adding random sensor noise is illustrated 
by Figure 3 where it can be seen that performance is 
deteriorated for all sensor numbers but the deterioration is 
worst for illuminants F11 and A. 
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Figure 1: DE as a function of number of sensors for CIE 
illuminants A, D65, F11 and an illuminant with a uniform spectral 
power distribution. 
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Figure 2: DE reconstruction as a function of sensor half width for 
3 to 10 sensors 
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Figure 3: Reconstruction performance as a function of sensor 
number for four different illuminants. Results are shown in the 
presence of random sensor noise. 
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Figure 4: Reconstruction error plotted against sensor number for 
four quantization regimes (half-width = 110nm, spectrally uniform 
illuminant) 

 
Figure 4 shows the result of applying quantization 

noise. In this case no effect is observed for small numbers 
of sensors, but deterioration increases with increasing 
quantization for large numbers of sensors. In a related set of 
experiments we found that this only occurs for broad band 
sensors.  
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Figure 5: Reconstruction error plotted against number of sensors 
for sensors in the presence of a small amount of random noise 
(1.25%) using illuminant F11. 
 

Figure 5 plots the results for the case where, in the 
presence of a small amount of random noise, the number of 
sensors and the number of basis functions for reconstruction 
not necessarily equal. The upper curve represents the 
performance when the number of basis functions is equal to 
the number of sensors, i.e. when the solution matrix L (see 
equation 7) is square. The lower curve shows the best 
possible results when the number of basis functions is 
allowed to vary between 1 and 10 for each number of 
sensors. Coincidentally, in this case, the optimum 
performance is for achieved using three basis functions for 
all sensor numbers, but this is not the case for all illuminant 
and half-width combinations. Furthermore, the results from 
a separate investigation suggest that allowing the number of 
basis functions to vary for each sensor number is only 
advantageous when noise is present in the system.   

Table 1: Condition numbers of the solution matrix L for 
different model parameters. 

 Sensor half-width 
No. Sensors 30nm 70nm 110nm 

3 1.28 1.42 2.04 
4 1.57 1.96 4.26 
5 1.85 2.87 9.85 
6 7.89 21.62 198.00 
7 3.19 6.69 53.47 
8 8.39 27.94 437.81 
9 5.80 20.55 815.91 

10 31.09 48.96 1848.36 

 
 
Table 1 shows the condition number10 of the solution 

matrix L, computed by L×L-1, as a function of both 
sensor half-width and number of sensors in the case of a 
spectrally uniform illuminant. The condition number tends 
to rise with both sensor number and sensor half-width. It is 
also clear that the condition number rises abnormally for six 
sensors, which is likely to have a role in the larger errors 
observed when using six sensors (see figures 1, 2 and 4). 

Discussion 

The results obtained so far demonstrate that choosing the 
correct number of parameters for a multi-spectral imaging 
system is not straightforward. The most striking result is 
that increasing the number of sensors and basis functions 
does not guarantee an increase in reconstruction 
performance using this method. This confirms findings 
made independently by Hernández-Andrés et al.11 who 
found that when illumination spectra were estimated from a 
small number of channels the reconstruction error did not 
consistently fall as the number of channels was increased. 
This is further backed up by results obtained from related 
studies using a variety of reflectance reconstruction 
techniques.12 

Our results suggest that, in order to improve the 
robustness of the system to noise it is beneficial to use 
fewer basis functions than sensors. This is supported by the 
work of Hill,13 who uses this method in a real multi-spectral 
imaging system. We found that the precise number of basis 
functions needed to produce optimum performance is 
dependent upon the illuminant, number of sensors and noise 
condition. 

In our study the sensors are constructed as Gaussian 
functions of wavelength whose peaks are evenly distributed 
through the visible spectrum.  Many of the results presented 
here may be specific to this particular case. However, it may 
be possible to draw more general conclusions. We find that 
as the sensor half-width and sensor number increases, so 
does the condition number of the solution matrix L.  The 
condition number is also disproportionately large when 
using six sensors. Furthermore, we found that the condition 
number is increased when using illuminants that deviate 
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from uniform spectral power distributions (e.g. CIE 
illuminants A and F11), and that allowing L to become non-
square often reduces its condition number. Therefore, the 
cases where L has a high condition number seem to be 
closely associated with the situations where the system is 
sensitive to noise. This is supported by standard linear 
systems theory, which states that the condition number of a 
solution matrix determines its sensitivity to noise10. 
Therefore, since the elements of L are constructed as the 
matrix multiplication of G and B, where the columns of B 
are the basis functions and the rows of G are the product of 
the camera sensitivities and E(λ), it seems plausible that we 
should choose B, E(λ) and the camera sensitivities to 
minimise the condition number of L. However, it is 
certainly not sufficient simply to minimise the condition 
number of L. Taken to extremes, this could result in only 
using one sensor and one basis function in the model, which 
would clearly lead to poor performance. Nonetheless, given 
a case where, for example, the system has a restricted set of 
possible filters, such a criterion may be useful. 

The next stage of this project is to build a real 
multispectral imaging system in order to validate the results 
we find with the model. It is hoped that the results obtained 
with the real system will also allow us to further improve 
the accuracy of the model. 
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