IS8 T/SD Ninth Color Imaging Conference

Non-Linear Embeddings and the Underlying
Dimensionality of Reflectance Spectra and
Chromaticity Histograms

Brian Funt and Dejan Kulpinski
School of Computing Science
Simon Fraser University, Vancouver, Canada
and
Viad Cardei
Polaroid Corporation
Wayland, Massachusetts

Abstract

We have used the locally linear embedding® and Isomap'
techniques to process high-dimensional color and spectral
data. These techniques allowed us to create low-
dimensional embeddings of the original data. In particular,
the dimensionality is significantly lower than that obtained
by principal components analysis. The data that we
processed included spectral reflectances, illuminant spectra
(both 101 dimensional) and chromaticity histograms (251
dimensional).

Isomap was useful in determining the dimensionality of
the data in question. Using the Isomap technique, we found
that the dimensionality for the spectral reflectances is
between 3 and 4. For the chromaticity histograms, we found
that the 251 original histogram dimensions were
transformed into 5 to 6 dimensional space. In addition to
providing an estimate of the underlying dimensionality of
the data, both Isomap and LLE technique were used in
producing the low-dimensional embeddings of the high
dimensional data.

Introduction

There has been a lot of interest recently in non-linear
embedding techniques. In this paper we investigate the
application of these techniques to the problem of
dimensionality reduction in the context of color. The non-
linear embedding techniques are intended to uncover
manifolds embedded within higher dimensional spaces. In
other application areas, the methods have been shown to be
quite effective. Intuitively speaking, in contrast to linear
methods which linearly project the data onto a basis, the
non-linear methods cling to the underlying manifold by
tracing from one data point to its neighboring data points in
the high dimensional space. For example, the underlying
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two-dimensional structure of a coiled spring can be
discovered and unraveled into the plane (see the ‘Swiss roll’
example in Isomap' and LLE?).

In the color field, linear models of surface reflectance
and illumination based on PCA (principal components
analysis) have been widely used.*"” In general, the lower the
dimension obtained by the analysis the better. Some
methods such as the Maloney-Wandell’ color constancy
algorithm, require the dimensionality of reflectance spectra
to be strictly less than the number of sensor classes.
Previous approaches to dimensionality reduction include
considering linear models of logarithms of reflectance
spectra’® and analyzing the structure of the linear model
coefficients' of illumination spectra. Although non-linear
methods cannot simply be substituted for the linear ones in
most of these applications, it is still interesting to establish
whether the data might have a lower dimensional
description than previously realized.

Spectral Reflectance and Illuminant Spectra

We analyzed a set of 1996 reflectance spectra which include
the Krinov"” Kodak' and Munsell data sets. The results of
PCA and Isomap are compared in Figures 1 and 2. As can
be seen, the residual variance drops much more quickly in
the Isomap case than the PCA case.

Generally speaking, the Isomap residual variance is
similar to the PCA residual variance but a full dimension
lower. For example, the non-linear embedding requires only
3 dimensions to reduce the residual variance to 0.03 while
the PCA requires 4. Tenenbaum et. al.' suggest looking for
the “elbow” in the each curve as a method of estimating the
underlying dimensionality. Using this technique, we
conclude the dimensionality of the structure Isomap finds is
3 or less.
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We also did an Isomap analysis of a set of spectra of
real 102 illuminant sources’ that are available on the web.’
Plots of the residual variance as a function of
dimensionality are shown in Figures 3 and 4. The residual
variance is very low even for just 1 dimension, although it
is only at 3 dimensions that the residual variance levels off.

Of course, correlated color temperature is a standard
one-dimensional parameterization for illuminants, so it is
not unexpected to find a low-dimensional representation;
however, it is reassuring to see how closely the data can be
modeled by a non-linear 1-dimensional model. One
application of 1-dimensional approximations for illuminants
has been in some illumination estimation algorithms.""

Chromaticity Histograms

Color histograms and chromaticity histograms have been
used widely in object recognition*’ and illumination
estimation.”"' Here we use Isomap to analyze the structure
of the space of binarized chromaticity histograms.

A chromaticity histogram of an image is a count of the
number of pixels occurring in the image as a function of the
pixels’ chromaticities. A binarized chromaticity histogram
is simply a chromaticity histogram in which the histogram
bin counts have been set to zero or one depending on
whether the original count was above or below a small
threshold. A ‘1’ in a binarized chromaticity histogram
indicates the presence of that chromaticity in the image.
Using a threshold avoids the problem of noise causing
spurious chromaticities to appear in the histograms. For this
analysis, we tried both rg and rb chromaticity spaces, where

r=R/(R+G+B); g=R/(R+G+B); b=R/(R+G+B)

R,G, and B are raw digital camera output values.

We used a library of 1050 images taken using different
digital cameras, under different lighting conditions, both
indoors and out, and including, for example, portraits of
people, scenes from nature, Macbeth charts, buildings, cars.
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Each image contains a standard grey card somewhere
within it for use in evaluating its color cast. The images
were also taken using a variety of settings on the cameras in
terms of flash or no flash, automatic white balance on or
off, manual white balance set to tungsten or daylight, and so
forth. The cameras did not have a gamma option, so we
presume some gamma-like tone correction was applied to
all images.

Before generating an image’s chromaticity histogram,
the image is first pre-processed to remove very bright or
clipped pixels (i.e., R or G or B near to the camera
maximum) and very dark pixels. Both clipped and dark
pixels lead to unreliable chromaticity data. The chromaticity
space (a triangle with vertices at the origin, (0,1) and (1,0))
is coarsely quantized into 450 distinct chromaticity values.
The resulting histograms therefore also contain 450 bins.
We can think of the histograms as points in a 450-
dimensional space. Although in principle all 450 bins could
get used, in practice only 251 of them actually do get used
by at least one of the 1050 images. Hence, the effective
dimensionality of the space of chromaticity histograms of
the entire set of images is only 251.

We hypothesized that the chromaticity histogram data
might have a much lower dimensionality then initial 251
dimensions of the input space. In, addition we hypothesized
that the main dimensions might correspond to variations in
image color cast caused by scene illumination conditions
and camera white balance settings.

We processed the chromaticity histogram data using
both the LLE and Isomap algorithms. Incidentally, the
computation times for this amount of data can be up to an
hour. Figure 5 shows the residual variance versus the sub-
space dimension. Once again using the Isomap “elbow”
technique to establish the dimensionality of the data, it
appears that the histograms fall in a subspace of 5 to 6
dimensions.
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To visualize the nature of the embedding we have
plotted thumbnails of the images at the embedding location
of their histograms. The columns of Figure 6 show slices
orthogonal to the first 2 dimensions of the embedding of the
histograms. We have also plotted, but do not show due to
space limitations, similar plots with the chromaticity of the
each image’s grey card at the histogram’s embedding
location. In either representation (especially with larger and
more numerous slices than we can show here), there
appears to be a clear variation in color cast along
dimensions 2 and 3. Roughly speaking, dimension 2 reflects
an orange-to-cyan variation. This corresponds to a variation
in red versus blue for a roughly constant amount of green.
Similarly, dimension 3 reflects a change from cyan to
purple. This corresponds to a variation in red versus yellow.
We were somewhat surprised that color casts do not appear
to be the dominant aspect of dimension 1. Our impression is
that dimension 1 reflects the number of non-zero histogram
bins. In other words, the primary variation along dimension
1 appears to be the number of distinct colors in the image.

Conclusion

Reflectance spectra lie in a non-linear subspace of
dimension possibly as low as 3. This is a significant
reduction in dimension for the equivalent dimensionality of
a linear subspace, which for our reflectance data is at least
4. Chromaticity histograms also lie in a subspace of quite
low dimension, with some of the primary dimensions
reflecting the overall color cast of the corresponding image.
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Figure 6 Each of the 4 panesin the left column shows a slice orthogonal to dimension 1 of the
subspace embedding with subspace dimension 2 varying vertically and 3 horizontally. The slices
are ordered from top to bottom according to the inter section point along the dimension-1 axis
from negative to positive. Each pane shows a collage of thumbnail images with each thumbnail
plotted at the embedding location of the corresponding image’ s chromaticity histogram. The
right-hand column is similar except each of the 4 panes shows a slice orthogonal to dimension 2
of the subspace embedding with subspace dimension 1 varying vertically and 3 horizontally.
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