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Abstract 

The world of color image difference modeling can be 
considered relatively young, when compared with the rich 
history of general color difference equations. While young, 
this area of research is well beyond the primordial soup 
stage. In this paper we present a framework for describing 
the evolution of color image difference models. This 
framework builds upon the S-CIELAB model, which in turn 
was built upon the CIELAB model and the CIE color 
difference equations.1 The goal is to create a modular, 
extendable color image difference model. 

Origin of Species 

Equations and models for specifying color difference have 
been a topic of study for many years. This research has 
culminated in the CIE DE94/2000 color difference 
equations. These equations have proven to be successful in 
the prediction of color differences for simple color patches, 
as well as instrumental based color tolerances. Since they 
were derived using color patches in well defined viewing 
conditions, their use in color imaging is less apparent. 
While these models were never designed for color imaging 
applications, the successes they enjoy, as well as industry 
ubiquitousness, serve as a good foundation with which to 
build upon. 

Zhang and Wandell build upon color difference equa-
tions nicely with S-CIELAB, a simple extension to CIE-
LAB. S-CIELAB adds a preprocessing step to the standard 
CIELAB equations, which relates to the spatial and color 
pattern abilities of the human visual system. While this 
equation has proven to be successful, both with its simpli-
city and with accuracy, it only represents the first step in the 
evolution of a more complete Color Image Difference 
Model. 

CSF Growing Pains 

S-CIELAB extends upon CIELAB by adding spatial 
contrast sensitivity filtering as a preprocessing step. The 
filtering is performed on opponent color channels repre-
senting a luminance channel and two chrominance 
channels, red-green and yellow-blue. The spatial filtering 
itself is performed using a series of separable one-
dimensional convolution kernels. These convolution 
calculations represent computational and programmatical 

simplification. It is possible to further extend the S-
CIELAB model by replacing the convolution kernels with 
other, possibly more accurate, contrast sensitivity functions 
(CSF). 

The opponent color space described by Zhang1 appears 
to be well suited for the contrast sensitivity modulation, and 
is shown in Figure 1. 

 
Figure 1. S-CIELAB Opponent Color Space 

 
Figure 2. Contrast Sensitivity Functions of S-CIELAB 

 
The contrast sensitivity filters used in the S-CIELAB 

model are based in turn on pattern color separability 
experiments described by Poirson and Wandell.2 A series of 
discrete convolution kernels approximate the filters, as 
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shown in Figure 2. Fourier theory dictates that the discrete 
convolution kernels allow only for the sum or difference of 
cosine waves. These cosine waves are in effect only an 
approximation of more accurate contrast sensitivity 
functions. This approximation is balanced out by the ease of 
implementation and computation of the convolution. 

Specifying and implementing the contrast sensitivity 
filters purely in the frequency, rather than spatial domain, 
allows for more precise control over the filters. Much 
research has gone into specifying the luminance contrast 
sensitivity function.3,4,5,6 The CSF functions described by 
Barten3 and Daly4 are fully featured models that accurately 
account for such conditions as luminance level, degree of 
adaptation, eccentricity, orientation, and many other factors. 
While all those factors do strongly influence the contrast 
sensitivity of the human eye, they make for a very 
complicated model. One of the goals of our model evolution 
is simplicity, so we have examined a compromise between 
the very complex CSF models and the convolution model of 
S-CIELAB. Movshon and Kiorpes describe a three 
parameter exponential model, as shown in Equation 1, 
which is a simple description of the general shape of the 
luminance CSF.7 

csflum(f) = a • fc • e-b • f    (1) 

This equation can be fit to existing luminance contrast 
sensitivity data sets, when available. Example values for the 
three parameters are 75, 0.2, 0.8 for a, b, and c respectively, 
while f is represented in cycles per degree (cpd) of visual 
angle.8 This function is then normalized, to produce a filter 
that modulates between 0.0 and 1.0. 

The band-pass nature of the luminance CSF lends itself 
to certain issues, with respect to its use in imaging 
applications. Existing color difference equations predict 
color differences of large uniform areas very well, so it is 
important that a color image difference metric predict the 
same results when dealing with uniform patches. In order to 
do this, it is necessary to maintain the integrity of the DC 
component (zero cpd). This can be done by converting the 
band-pass filter to a low pass filter, or by normalizing the 
CSF so that the DC modulation is set to 1.0. Figure 3 
illustrates the differences between these two approaches. 

The low-pass CSF function acts to filter out high 
frequency image differences, similarly to S-CIELAB. The 
band-pass CSF behaves in a different manner. The relative 
sensitivities include values that are greater than 1.0, and 
peak around 4 cycles per degree of visual angle. This serves 
to enhance any image differences where the human visual 
system is most sensitive to them. When attempting to 
predict the perceived visual differences between two 
images, this enhancement might prove beneficial. 

There is considerably less information available 
regarding the chrominance contrast sensitivity functions. 
Mullen9, Van der Horst and Bouman10, and Poirson and 
Wandell2 provide insight into the opponent color contrast 
sensitivity functions. We have found that the sum of two 
Gaussian functions, as shown in Equation 2, fit the available 
data well. 
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The Van der Horst and Poirson data sets were fit 
independently and combined, and were shown to have 
excellent correlation. Table 1 shows the values of the six 
parameters, for the red-green, and blue-yellow equations 
that best fit the combined data sets. Figure 4 shows the 
normalized sensitivities of the two chrominance channels, 
as a function of cycles per degree of visual angle. 

 

 

Figure 3. DC Frequency Maintaining CSFs 

Table 1. Parameters for Chrominance CSFs 
Paramete

r 
Red-Green Blue-Yellow 

a1 109.14130 7.032845 
b1 -0.00038 -0.000004 
c1 3.42436 4.258205 
a2 93.59711 40.690950 
b2 -0.00367 -0.103909 
c2 2.16771 1.648658 

 

Figure 4. Chrominance CSFs From Eq. 2 and Table 1. The Blue-
Yellow CSF is the Dashed Line 

Localized Attention 

The contrast sensitivity filters as described above generally 
serve to decrease the perceived differences for high 
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frequency image information, such as halftone dots. 
However, it is often observed that the human visual system 
is especially sensitive to position of edges. The contrast 
sensitivity functions seem to counter this theory, as edges 
contain very high frequencies. This contradiction can be 
resolved if we consider this a type of localization.  

The ability to distinguish, or localize, edges and lines 
beyond the resolution of the cone distribution itself is well 
documented.6 While the actual mechanisms of the human 
visual system might not be known, it is possible to create a 
simple extension to the existing color image difference 
models to account for this ability to detect edges. 

The simplest such approach is borrowed from the 
image-processing world. After filtering the opponent 
channels with the contrast sensitivity functions, a simple 
edge-enhancing kernel can be applied. We have found that 
convolution with a common Sobel kernel, such as that 
shown if Equation 3, works well. 
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Similar, or perhaps finer tuned filters could be utilized 

in the frequency domain. This particular Sobel technique 
does not take into account the cycles-per-degree of the 
viewing situation, so as a result is not as well tuned for all 
applications. More research is currently being conducted to 
produce a more adaptable local attention filter. If this is the 
case, the filters could even be combined with the above 
CSFs. Keeping the edge detection separate from the 
frequency filtering allows for more model freedom, as the 
actual technique used can be easily swapped with other 
kernels or filters. 

Local and Global Contrast 

The ability of an image difference model to predict both 
local and global perceived contrast differences is very 
important.11 This can be considered another area where 
localization and attention play a factor. Image contrast can 
often be thought about in terms of image tone reproduction. 
Moroney12 presented a local color correction technique 
based on non-linear masking, which essentially provided a 
local tone reproduction curve for every pixel in an image. 
This technique, with its similarity to unsharp masking, can 
be adapted to provide a method for detection and 
enhancement of image contrast differences. 

This color correction technique generates a family of 
gamma-correction curves based upon the value of a low-
frequency image mask. This can be extended to an image 
difference model by generating a family of gamma curves 
for each of the opponent color channels, based not only on 
the low frequency information at each channel, but also the 
global contrast of each channel. The low-frequency mask 
for each image can be generated by filtering each image 
with a low-pass Gaussian curve. It is often helpful to use a 

modified Hanning window to reduce ringing artifacts in the 
mask. The contrast curves can then be generated using 
Equation 4. This equation is similar in form to Moroney’s 
technique, while accounting for a positive image mask. 
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By using the maximum, minimum, and median value of 
each channel, these gamma curves now become functions of 
the global image contrast. Care must be taken with the 
chrominance channels, as they contain both positive and 
negative values. This can be alleviated by creating families 
of curves for positive and negative values, or by using 
absolute values of the input channels. This technique can be 
easily modified or extended by manipulating the form or 
parameters of Equation 4. 

Orientation and Masking 

Orientation selectivity, both in the contrast sensitivity 
functions as well as in cortical processing can play an 
important role in the prediction of differences in color 
images. An evolutionary enhancement to S-CIELAB, and 
thus our proposed models, has already been formulated with 
the Color Visual Difference Metric (CVDM).13 This model 
uses the Daly modified cortex transform to generate a 
family of radial and orientation specific spatial frequency 
reprentations.4,14 The CVDM uses these representation to 
create models of visual masking, as well as local contrast. It 
is easy to extend this model with any of the enhancements 
described above. 

Data Reduction 

The output of all of the color image difference models 
described so far is an error image, where each pixel 
represents the CIE∆E94 error between an original and a 
reproduction. While this image might be very valuable for 
locating specific problems within an imaging system, often 
times we would like to reduce the error image to a single 
error metric. How to perform this reduction is still subject to 
further research. We have examined many techniques, 
mostly involving image statistics. One general technique is 
to simply take the mean color difference of the image. 
There is no reason to believe that overall perceived 
difference is a simple averaged weighting. The mean might 
also mask other valuable information. One common 
example of this is when comparing images with large 
variations of individual pixels, such as noise artifacts, with 
images that have large areas of color difference and 
similarly large areas with no color differences. The mean 
error of these two images might be the same, but the large 
area color difference image will be more perceptibly 
noticeable. Other image statistics, such as median, image 
percentiles, skewness, and standard deviation, have also 
been used with moderate success. In our experience, higher 
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order image percentiles, standard deviation, and standard 
deviation normalized by mean-error have proven to have 
the most success in experimental prediction. 
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Figure 5. Experimental Verification. The x-axis represents interval 
difference scale, while the y-axis represents model prediction 
(standard deviation of error images) 

Experimental Verification 

We have examined the effects of each of these evolutionary 
model features on data comparing image sharpness. These 

data represent an interval scale of perceived sharpness 
differences between an original image, and 71 varying 
reproductions. The data reduced output from an ideal color 
image difference model would have a linear relationship 
with the interval scale. Figure 5 shows the interval 
difference scale plotted against the standard deviation of the 
model outputs. Standard deviation of the error image is 
thought to correlate well with perception. If two images 
were to appear to be identical, the resulting error images 
would have little to no error, and thus a low standard 
deviation. Likewise, if two images have areas of large error, 
as well as areas of small error, such as the case for 
systematic color shifts, the standard deviation will be large. 
This correlates well with the perception of large systematic 
errors. Each plot in Figure 5 represents an evolutionary step 
in complexity. The top plot illustrates the results of S-
CIELAB, which serves as base level. The second plot 
shows S-CIELAB with the modified band-pass enhancing 
CSF. The third plot adds in the Sobel filter, and the forth 
adds the contrast detection metric. It can be seen that each 
modification makes the relationship between the model 
output and the experimental data become more linear. The 
forth plot also illustrates the limitations of data reduction to 
a single number, in this case standard deviation. While more 
linear, the forth plot also shows a clustering nature, with 
each cluster representing a certain error artifact. Without 
more information, it is difficult to separate the clusters into 
more meaningful representations. This is why care must be 
taken when reducing error images into single numbers. 

Conclusion and Future Work 

Using S-CIELAB as a guide, a modular framework for the 
evolution of color image difference models has been 
described. The first module began with the simple S-
CIELAB contrast sensitivity functions and was extended 
with more precise filters, as well as a method for enhancing 
image differences where the human visual system is most 
sensitive. A simple technique for accounting for localization 
using edge-enhancing filters was then introduced. Methods 
for contrast enhancement, orientation, masking, and data 
reduction were also discussed. 

The goal of this framework is to create a viable metric 
of image fidelity. This metric can be used to test the output 
of various imaging systems. One such example might be the 
evaluation of image compression techniques, to determine 
the perceptual difference caused by the compression. The 
ultimate goal from this work is to create a foundation for a 
model of image quality that can predict both image 
degradations as well as enhancements.  
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