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Abstract

An inter-band decorrelation and quantization method of
multispectral data are proposed, which are suitable for lossy
compression of multispectral images used for high fidelity
color reproduction. The proposed inter-band decorrelation
method is a modified version of Karhunen-Loeve transform
(KLT), called weighted KLT (WKLT), which is designed to
minimize the color difference between the color images
reconstructed from original and restored multispectral
images. For quantization of WKLT coefficients, adaptive
quantization (AQ) is introduced in order to equalize the
partiality of the perceived error which is caused by the
visual nonlinearity between the luminance and the
perceived lightness of the color. Through the experiments
using 16-band multispectral image of an oil painting, it is
confirmed that WKLT followed by AQ reduces the average
and the maximum color differences in L*a*b* color space
in comparison with the conventional methods composed of
KLT and linear quantization.

Introduction

Multispectral imaging becomes an important technology for
various color imaging applications that need high fidelity
color reproduction; tele-medicine," electronic museum’ and
on-line shopping etc. Using multispectral images and the
spectral distribution of illumination light, the spectral reflec-
tances of objects are estimated accurately, so that high
fidelity color reproduction is possible under various kinds
of viewing illuminations. However, for the efficient trans-
mission, compression technique becomes indispensable.
The compression of multispectral images has been
investigated mainly in the filed of remote sensing.”” The
compression performance in lossy compression is measured
by the difference between the original and the restored
multispectral image signal from the compressed bit streams.
However, even if the error in the multispectral image signal
is small, it cannot be always said that the error in the
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reconstructed color image from the restored multispectral
image is small.

In this paper we propose an inter-band decorrelation
method and a quantization method for lossy compression of
multispectral images in visual applications, which are
designed using the difference between the color images
reconstructed from original and restored multispectral
images as a degradation measure.

Inter-band decorrelation by WKLT

Weighted KLT

KLT gives the optimum low-dimensional approxi-
mation of high-dimensional data through linear transforma-
tion and it is often utilized in transform coding. The basis
vectors of KLT are chosen to minimize the error

s

where <> is an averaging operator, f is an original vector
and "7 is M-dimensional approximation of f expressed by

(1

£KLT
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where superscript 7 denotes the transpose of the vector.
Based on KLT algorithm, u, are eigen vectors of the
correlation matrix of f as

(f" ), =ou,, 3)
where o, is j-th eigen value.
In WKLT, we define WKLT approximation error as
Ear = <||Wf N 2> , @)
where W is a diagonal matrix and /" is the

approximation of f by WKLT basis functions. If we regard

Wf as an original vector and W )" as its approximation,
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757 can be derived in the same way as Egs. (2) and (3) as

follows:

£ —W'Sa v, (5)
j=1
o, =v, Wf, (6)
and
(WI'W)v, =o,v,. )
WKLT for Spectral Data

Let us consider the color of the object with the spectral
reflectance f, denoted by a three dimensional column vector
¢,. Since the color depends on the illumination spectrum, k&
represents the type of the illumination, where the spectral
intensity is given by a column vector e,. Then we have

Xy ekTTX
¢ =| Y |= ekTTY , ®)
Zy ekTTZ

where T,, T, and T, are M-by-M diagonal matrices whose
diagonal elements indicate the color matching functions,
such as CIE 1931 XYZ color matching functions. We
define the measure of the approximation error of f as the
norm in CIE 1931 XYZ color space under L kinds of
viewing illuminants, denoted by

e=3{le.-&)

e T,
L ~\T A
=3 (f—f) (e,T,.e,T,.eT,)e,T, f—f) ©)
ekTZ
- <(f—f)T(TXReTX,TYRgTy,TZRgTZ )(f—f)>.
where ¢, is the color vector of f and
L T
R, =2Xee, . (10)

i=1

If the number of the illuminants L gets closer to
infinite, M-by-M matrix R, is thought to be in proportion to
the correlation matrix of the illumination spectra. Here, we
substitute the correlation matrix of the illumination spectra
by a scalar multiple of an identity, which means each
spectrum is independent and identically distributed at each
wavelength. Though real illumination spectra are usually
correlated, this assumption is reasonable because the
viewing illuminants have not been decided at all. Then, we

e i)=Y

()

where
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T, =T, +T +T, . (12)

As T,,, is a diagonal matrix, we can apply WKLT with W=
T, Then f;**" becomes the approximation of f which
minimizes the mean square error in XYZ color space.

Inter-Band Decorrelation by WKLT

The process to obtain the WKLT coefficients from
multispectral image is described below. First, the spectral
reflectance function is estimated from multispectral data
through an estimation method such as Wiener estimation.
WKLT bases are calculated from estimated spectral
reflectance functions of all pixels in the image using the
relation of Eq. (7). Next, the spectral reflectance is
transformed to the WKLT coefficients through WKLT
given by Eq. (6).
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Figure 1. Weight coefficients used in WKLT.

Adaptive Quantization

Error Distribution in Linear Quantization of WKLT
Coefficients

Figure 2 shows the error in the uniform color space
when WKLT coefficients are linearly quantized, i.e., the
color differences vs. the normalized luminance. 16-band
multispectral image of an oil painting is transformed by
WKLT, and the difference between the colors of the
original multispectral image and the color from quantized
WKLT coefficients is calculated in CIE L*a*b* uniform
color space, E',, under D65 viewing illuminant.
Normalized luminance of each pixel, Y/Y, where Y, is the
luminance of a white object, is divided into 20 levels, then
the average error of the corresponding pixels are plotted.
This graph shows that the error in the low-luminance colors
is extremely large comparing to the high-luminance colors.

The main reason of the error partiality can be thought
to be the nonlinearity of visual perception; i.e. the
luminance of the light and its perceived lightness are
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connected with a nonlinear function. One of the models of
the relationship is

L=Y", (13)

where L is a perceived lightness. Based on this
characteristic, the method called contrast quantization’ has
been used for monochrome image quantization. In this
method, linear quantization is applied after an image signal
is transformed to its lightness through the luminance-
lightness model function like Eq. (13). Though we cannot
show the results of the experiments in which the contrast
quantization is directly applied to the WKLT coefficients,
because of the restriction on space, it is confirmed that the
method cannot improve the performance. The reason can
be thought that every WKLT coefficient does not correlate
with the luminance of the pixel.
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Figure 2. The average E, caused by linear quantization of WKLT
coefficients over normalized Y.

Adaptive Quantization

To equalize the error distribution, we propose adaptive
quantization (AQ), in which every pixel is classified into
several classes depending on its inherent parameter p which
is defined to be highly correlated with the average
luminance of the reconstructed color pixels under various
viewing illuminants. Then, the pixel is quantized at a
quantization step decided by the class. As a definition of p,
we use

(14)

where B, is i-th WKLT coefficients of white object.

Before the explanation of class division, we describe
here the model of the error distribution respect with p. If p
is defined so that it is highly correlated with the luminance,
we can approximate the average perceived lightness L of
p-value pixels as

L=p'", 15)

where 7is a constant. Differentiation of Eq. (15) gives
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Afs%w'z”Ap.

(16)
Based on the £elati0nship of Eq. (16), we make the model of
the average £, of p-value pixels as

E*, (p.q)=®(p.q)=p""q, (17)

where ¢ is a quantization step and a proportional constant is
omitted for simplicity.

While there can be several methods for class division,
in this paper, it is carried out using the model of Eq. (17) as
follows. Let quantization steps of N classes be s, s,, ..., S, ,
where steps are listed in ascending order. N-1 class
divisions d’s (i=1,...,N-1) are decided as the intersecting
points between ®(s.,, ¢)’s and p=e, , where e, is the
parameter to be used for class division. The pixel with p
between d, and d,,, is classified into (i+1)-th class. Figure 3
shows those relationships taking an example for N=4. The
error can be restrained under e, over all range of p.
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Figure 3. The relationship between e, , P(p, s)’s and d.’s in case
of N=4. Error distribution by AQ is indicated by bold line.

Increasing the number of the classes proceeds with the
equalization of the error. However, in AQ, each pixel
should has the class information whose number of the kinds
is the same as the one of the classes. Therefore, increasing
the number of the classes also increases the additional
information. Though the investigation on the number of the
classes is important issue, this paper shows the results in the
case of N=4; the further investigations will be reported in
the future publications.

Experimental Results

The multispectral image of an oil painting is captured using
multispectral camera (Olympus Opt. Co.,Ltd.) with sixteen
narrow band color filters arranged over visible wavelength
for the experiments. A band image consists of 640 * 480
pixels having 8 bits gray-level dynamic resolution. The
spectral reflectance is obtained by Wiener estimation pixel
by pixel using the correlation from 170 spectral reflectances
of various natural objects.® The KLT and WKLT bases are
calculated from the estimated spectral reflectance of all
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pixels in advance. The estimated spectral reflectances are
also used as original to measure the compression error; we
call them original spectral reflectances.

Comparison Between KLT and WKLT

To compare the performance of KLT and WKLT, the
average and the maximum E°,, vs. the entropy of the
linearly quantized transform coefficients of KLT and
WKLT are shown in Fig. 4. In AQ, N=4 and four kinds of
quantization steps are s, 2s, 4s and 8s, where s is the
minimum step. The Viewing illuminant is D65. We can see

that WKLT improves the compression performance
comparing KLT.
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Figure 4. KLT vs. WKLT in compression performance, the upper is
average and the lower is maximum.

Comparison Between LQ and AQ

Next, average and maximum E*ab supposing D65
viewing illuminant caused by linearly and adaptively
quantized WKLT coefficients are shown in Fig. 5. The
results of LQ of KLT are also plotted. From this result, the
maximum error is greatly reduced by introducing the AQ,
although there is a little improvement in average error.
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Figure 5. KLT vs. WKLT in compression performance, the upper is
average and the lower is maximum.

Table Average and Maximum E’,, of the compressed
multispectral image to about 1/2 and 1/4.

Average/Maximum F *ab
KLT+LQ
(63.41) 0.14/3.47 0.13/2.67 0.16/4.14
1/ | WKLT+LQ
(65.66) 0.059/1.40 | 0.062/1.48 | 0.059/1.52
WKLT+AQ
(63.70) 0.057/0.61 | 0.061/0.56 | 0.056/0.69
KLT+LQ
(31.02) 1.19/24.91 | 1.10/20.74 | 1.32/31.11
+
L WKLTHLQ 0.60/15.36 | 0.58/11.36 | 0.62/15.41
(31.88)
WKLT+AQ
(31.67) 0.61/6.32 0.62/5.38 0.59/7.75

Average and Maximum E”,;, of the multispectral image
compressed to about 1/2 and 1/4 are presented in Table 1;
1/2 corresponds about 64bits/pixel and 1/4 corresponds
about 32bits/pixel since original data is 8bits * 16 = 128
bits/pixel. Exact entropy values are presented in parentheses
and viewing illuminants are D65, A, F1. From this results,
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we can see that average error becomes about half by
introducing WKLT while the AQ has little effect. In
addition, maximum error becomes about half by WKLT and
additionally becomes about half by AQ; totally becomes
about quarter. This tendency can be seen at every viewing
illuminant.

Conclusion

We present WKLT minimizing the mean square XYZ error
and AQ which equalizes the E", distribution. As the result
of the experiments using 16-band multispectral image of an
oil painting, it is confirmed that the proposed method
reduces the error in color space in comparison with the
conventional method that combines KLT and LQ; average
and maximum E ', becomes about half and quarter
respectively. The combination of the inner-band decorre-
lation method is being carried out.
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