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Abstract 

A spectral match ensures a colour match of two object 
colours for all observers across different illuminants. 
Developing a spectral based colour reproduction system 
requires a spectral analysis in which the spectral 
reflectance of each pixel must be known.  

This paper describes a method for estimating the 
surface reflectance values of objects in a scene (or image) 
under a given illuminant and sensors of a digital camera. 
This work is motivated by the work of van Trigt 1,2 using 
the smoothness condition for recovering reflectance of a 
given set of CIE tristimulus values X,Y,Z corresponding 
to a particular illuminant. He used integration of the 
square of the first derivative of the reflectance function as 
the smoothness restriction, and the functional analysis 
approach to develop a method for recovering the 
reflectance values. In this work, by using numerical 
integration techniques, the smoothness constraint is 
replaced by the square of the two norm of a vector, which 
is the multiplication of the smooth operator matrix and 
the reflectance vector. The proposed method is to solve a 
constrained-least-square problem. The testing results 
showed that the current method performed consistently 
better than those from the basis functions were compared 
with those from the basis-functions.  

Introduction 

In many colour applications such as colour measurement, 
computer vision, computer graphics, and colour image 
reproduction, it is required to obtain the surface spectral 
reflectance of objects in a scene. In this paper we consider 
the recovery of the reflectance values of objects in an 
image. Let p be the camera data for a pixel in the image, 
R(λ) be the reflectance function of the corresponding 
object, E(λ) be the illuminant used by the camera, and  
S(λ)T = (S1(λ),S2(λ),…,Sn(λ)) be camera sensors vector. 
Thus they have the following relationship: 
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Since S(λ) is a n-component column vector, therefore 
p must be a n-component column vector. Here the range 
(a, b) is the visible spectrum (a=400 nm and b=700 nm 

for typical industry applications). For a trichromatic 
digital camera, there are only three spectrally broad and 
overlapping sensors corresponding to the red, green and 
blue channels. While for multispectral imaging systems n 
can be quite large (say 10). By uniformly sampling the 
spectra at N-1 wavelength intervals equation (1) can be 
rewritten as the following in the matrix vector form: 

p = WTr.      (2) 

Here W is a N by n matrix derived from the 
illuminant function and the sensors’ vector, and r is the 
N-component vector defined by rT = (R(λ1), 
R(λ2),…,R(λN)). Thus, the problem is to determine r for 
given W and p. If the number of the sensors (n) equals to 
N, then the spectral vector r can be uniquely determined 
by equation (2). However, this is not the case. N is 
normally greater than n since the larger the n, the more 
expensive the camera. Therefore, how to accurately 
recover the spectral vector r from the given W and p 
becomes a problem.  

One approach for solving the problem is to use the 
basis functions 3-7 to reduce the dimensionality of the 
reflectance vector. The main opportunity to improve 
spectral estimation performance is to use statistical 
information about the set of spectral reflectance 
functions, which one is likely to find in the input 
materials. Suppose we have collected a representative set 
of reflectance values. Then we can use the singular value 
decomposition (SVD) 8 or the principle component 
analysis (PCA) 9 to obtain the orthogonal basis vectors: 
r(1), r(2),…, r(N). The first basis vector corresponds to the 
largest singular value and the second basis vector 
corresponds to the second largest singular value, and so 
on. Any spectral reflectance vector r can be a linear 
combination of the basis vectors, i.e. 
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Here the coefficients, cis, are uniquely determined by 
vector r. Several researchers suggested that the naturally 
occurring spectral reflectance curves are highly 
constrained, smoother, and can be well represented by 
only a few basis vectors, say the first k basis vectors. i.e. 
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Set Bk = (r(1), r(2), …,r(k)) be the N by k matrix and the 
coefficient vector cT = (c1,c2,…,ck), then the problem is to 
find vector c so that the desired reflectance vector r is 
given by: 

 cBr k= .      (3) 

If vector r in equation (2) is replaced by equation (3), then 
equation (4) can be obtained. 

p = WTBkc.     (4) 

Thus if the number of sensors (n) equals to the 
number of the basis vectors (k) used, then vector c = 
(WTBk)

-1p. However, this method has some shortcomings. 
Firstly, the basis vectors depend on the collection of a 
particular data set. As mentioned in reference 10 and 
reference 6, there is a strong dependence of the spectral 
reconstruction performance on the data-base used for the 
principal component analysis. Secondly, the reflectance 
vector given by equation (3) may exceed the boundaries, 
i.e., some components of it may be greater than 1 or less 
than 0. The simplest remedy method is to force those 
components to be the nearest boundaries. In this case, the 
exact matches under the illuminants used for recovering 
the reflectance values cannot be met. Finally, it was found 
that the recovery accuracy does not necessarily become 
better with the increase of the number of sensors. Figure 1 
illustrates this phenomenon. Suppose there is a need to 
recover a neutral colour with the reflectance values of 0.5 
across visible spectrum, a perfect smooth curve. We use 
multi-illuminant plus colour matching functions to 
simulate the multi-sensors. Figure 1 shows the simulated 
spectral reflectances using one illuminant to simulate 
three sensors and 2 illuminants to simulate 6 sensors, and 
so on. It is clear that no one case gives the right 
reflectance values. 

Another approach for finding the spectral reflectance 
R(λ) is to add the smoothness restriction 1,2 : 
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on R(λ). When the number of sensors (n) is 3, and the 
sensors are the colour matching functions, the p vector in 
equation (2) is the CIE tristimulus values, i.e., pT = 
(X,Y,Z) with  
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van Trigt gave an algorithm for estimating the 
reflectance functions satisfying equations (5) & (6). 
Troost and de Weert11 compared the van Trigt’s method 

and the method using 3 basis functions for estimating the 
reflectance values from a given set of X,Y,Z under one 
illuminant . They found that the two methods gave the 
same performance. Lucassen 12 investigated the van Trigt 
method by visualizing spectral changes due to the change 
of illuminant. The advantage of van Trigt’s method is that 
it does not depend on the basis functions.  

One of the possible drawback of the van Trigt’s 
algorithm as mentioned by Lucassen12 is that the 
recovered smoothness reflectance for a given X,Y,Z under 
one illuminant has 16 types of solutions, each type being 
valid in a certain domain of the colour space. In order to 
guarantee that the smoothness reflectance values are all 
within 0 and 1 across visible wavelengths, there are some 
restrictions on the values of X,Y,Z. Since the domain of 
the reflectance function types depends on the property of 
colour matching functions, it seems also complicated to 
generalize the smoothest method to multi-sensors. On the 
other hand, the smoothest reflectance function may not be 
close to the actual reflectance function under a trichro-
matic system. Figure 2 demonstrates this phenomena.  

From the above discussions, it seems that the 
smoothness constraint under 3 sensors is insufficient to 
recovering the real reflectance more accurately (close to 
the original). In the next section, the smoothness 
constraint condition (5) is replaced by minimizing the 
square of the 2-norm of the vector Gr, by using a 
numerical integration technique. Here G is a N-by-N 
matrix, and is called the smooth operator or smooth 
matrix, and the vector r is the reflectance vector defined 
in equation (2). Thus, the smoothness condition can be 
easily combined with multi-sensors in equation (1) 

The Proposed Method 

As in the last section, by uniformly sampling the visible 
spectra at N-1 wavelength intervals with the length of the 
intervals being ∆λ the integration in the equation (5) can 
be approximated by the following: 
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The details were described by Kockler.13 Here 

λ
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is the derivative of the spectral function R(λ) at point λk. 
If we replace the derivatives by  
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, k = 1,2,…,N - 1. 
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then equation (7) becomes: 
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Here, the N by N matrix G and the vector r are given by 
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and here for any N-component vector y, 
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which is called the 2-norm of the vector y. Since ∆λ is a 
constant, by equation (8), the smoothness constraint (5) 
can be replaced by the following: 
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The above equation is called the smooth equation and 
the matrix G is called the smooth operator or smooth 
matrix. The main advantage of the present approach is 
that the smooth equation (10) can be freely combined 
with either equation (1) or (2) in the multi-sensors or 
equation (6) in CIE space. Thus the following method is 
proposed for recovering the reflectance vector r from 
given camera response vector p. 
 
The Proposed Method 
1. Given camera data p, sensors Si(λ), i = 1,…,n and the 

illuminant E(λ) 
2. Solve the following constrained least squares 

problem for the reflectance vector r:  
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Here W is n-by-N matrix and is consisted of sensors 
Si(λk), and the illuminant E(λk) 
 

Performance of the Proposed Method 

a) Simulation Design 
Since there is a lack of the digital sensors’ spectral 

sensitivity data, CIE colour matching functions and multi-
illuminants approach are used to simulate the digital 
camera response vector p in equation (2). The CIE 1964 
colour matching functions, and some CIE illuminants 
(D65, A, F11, D50, F2, and F7) are used to form the 
weighting tables or equivalently the matrix W in equation 
(2). In order to simulate the camera response vector p, 
reflectance vector r is required from equation (2). 1560 
Munsell glossy samples were measured by a spectro-
photometer. These reflectance vectors were used as inputs 
to obtain the 1560 simulated response vectors p. These 
spectral reflectances are also used to derive the basis 
functions.  

 
b) Performance Measures 

Two measures were used to indicate the performance 
of each method: RMS and metamerism Index (MI). For 
the former, let r be the reflectance values from the 
Munsell data set and r  be the estimated reflectance 
vector. The measure of fit used was the root mean square 
(RMS) defined below.  

 NrrNrrRMS
N
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The MI is the colour difference between the original 
measured reflectance vector (r) and the estimated 
reflectance vector ( r ) under a specified illuminant. Here, 
the CIE 1994 colour difference equation14 is used.  

 
c) Results 

The 1560 Munsell colours were also used to test the 
current method and the method based upon basis 
functions. The results are listed in Tables 1 to 10. Note 
that the 6 illuminants used are in the following order: 
D65, A, F11, D50, F2 and F7. For example, ‘one 
illuminant’ in Table 1 means that the first illuminant D65 
was used for estimating the reflectance vectors and the 
other five illuminants A, F11, D50, F2 and F7 were used 
to compute the MI. If ’ two illuminants’ are used, this 
means that the first two illuminants D65 and A were used 
for estimating the reflectance vectors and the other four 
illuminants F11, D50, F2 and F7 were used for 
computing the MI, and so on. ‘Ave’ in the tables means 
that the average (or mean) of either RMS measurements 
or MI under each illuminant. While, ‘Max’ means that the 
worst case for the 1560 Munsell colours either in RMS or 
MI measures.  

Tables 1 to 5 showed that the current method 
performs better with the increase of the number of 
illuminants. Considering the RMS measure, not much 
difference was found when more than three illuminants (9 
sensors) are used. From the MI measure, the current 
method always ensures exact matches under the 
illuminants used for the recovering the reflectance values. 
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Considering the MI measure under illuminants D50, F2 
and F7, the results indicate that two illuminants (6 
sensors) are sufficient for estimating the reflectance 
vectors in many applications.  

Tables 6 to 10 list the testing results for the basis 
function method. The results from the averaged measures 
showed that the basis function method and the current 
method gave roughly same performance. However, the 
basis function method seems not stable with the increase 
of the number of illuminants (sensors) used for the 
recovering the real reflectance vectors, i.e., the increase of 
the illuminants used does not correspond to the decrease 
of the maximum ∆E values. Besides, the basis function 
method cannot ensure the exact matches under the 
illuminants used for estimating the spectral information. 
The reason for causing this is that after obtaining the 
coefficient vector c form equation (4), the reflectance 
values computed from equation (3) exceed the lower or 
upper boundaries. Whenever the reflectance values are 
beyond the boundaries, they are forced to be the nearer 
boundary. This will violate the equation (4). 

Conclusion 

A method for recovering the real reflectance functions 
form the digital image under the knowledge of illuminant 
and the multi-sensors for capturing the image is 
developed. This work is based upon the smoothness 
measure derived by van Trigt.1,2 However, the use of the 
smoothness constraint condition between the current and 
the van Tright is different. The numerical integration 
approach is used to replace the smoothness condition (5) 
by minimizing the square of the two norm of the vector 
obtained by multiplying the reflectance vector r by a 
smooth operator G. In this way, the smoothness condition 
can be freely combined with the multi-sensors. The 
current method and the basis function method were 
compared. The results show that: 
• The current method is quite stable and performing 

better with the increase of the number of illuminants 
(sensors) used.  

• Two illuminants (6 sensors) are sufficient for the 
current method for many applications.  

• The basis function method is not stable. This may be 
limited to the way of our simulation. Further 
investigation is needed.  

• Finally, the current method gives the exact 
reflectance for the neutral colour under one or more 
illuminants, while the basis functions approach 

cannot gives the exact reflectance for the neutral 
colours no matter how many illuminants are used. 
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Figure 1. The basis functions based method is used to recovering 
the reflectance values of the object. The original reflectance values 
are all equal to 0.5. Five estimated reflectance functions are 
obtained using one, two, …, and five illuminants respectively, and 
shown in the diagram. 

 

Figure 2. The smoothness approach is used to estimate the 
reflectance function for given a colour and one illuminant. The full 
line is the original one, and the dashed line is the estimated one. 

 
 

 

 Table 1: One illuminant (3 sensors) for the proposed method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.04 0.00 1.22 1.53 0.37 1.08 0.28 
Max 0.20 0.00 5.92 7.33 2.04 6.62 1.08 

 

  Table 2: Two illuminants (6 sensors) for the proposed method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.02 0.00 0.00 0.99 0.02 0.24 0.16 
Max 0.08 0.00 0.00 5.52 0.13 1.19 0.79 

 

  Table 3: Three illuminants(9 sensors) for the proposed method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.01 0.00 0.00 0.00 0.01 0.13 0.04 
Max 0.07 0.00 0.00 0.00 0.09 1.17 0.19 

 
 

 Table 4: Four illuminants (12 sensors) for the proposed method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.01 0.00 0.00 0.00 0.00 0.06 0.03 
Max 0.07 0.00 0.00 0.00 0.00 0.53 0.13 

 
 

 Table 5: Five illuminants (15 sensors) for the proposed method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.01 0.00 0.00 0.00 0.00 0.00 0.02 
Max 0.07 0.00 0.00 0.00 0.00 0.00 0.17 
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 Table 6: One illuminant (3 sensors) for the basis functions based method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.03 0.11 1.10 1.57 0.37 1.14 0.33 
Max 0.19 4.31 5.22 7.10 4.07 7.70 4.68 

 
 

 Table 7: Two illuminants (6 sensors) for the basis functions based method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.01 0.00 0.00 0.91 0.01 0.24 0.13 
Max 0.06 0.88 1.50 10.79 0.89 3.63 1.89 

 
 

 Table 8: Three illuminants (9 sensors) for the basis functions based method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.05 0.18 0.25 0.13 0.21 0.73 0.22 
Max 0.28 12.85 14.19 10.73 13.21 18.50 13.81 

 
 

 Table 9: Four illuminants (12 sensors) for the basis functions based method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.00 0.00 0.00 0.00 0.00 0.04 0.02 
Max 0.03 0.07 0.15 0.06 0.08 0.39 0.16 

 
 

 Table 10: Five illuminants (15 sensors) for the basis functions based method 
 RMS MI/D65 MI/A MI/F11 MI/D50 MI/F2 MI/F7 

Ave 0.01 0.01 0.01 0.01 0.01 0.02 0.06 
Max 0.09 4.14 5.97 3.72 4.62 6.20 4.53 
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