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Abstract
The physical properties of color are usually described by
their spectra, eigenvector expansions or low-dimensional
descriptors such as RGB or CIE-Lab. In the first part of the
paper we show that many of the traditional methods can be
unified in a framework where color spectra are elements of
an infinite-dimensional Hilbert space that are described by
projections onto low-dimensional spaces. We derive some
fundamental geometrical properties of the subset of the
Hilbert space formed by all color spectra. We describe the
projection operators that map the elements of the Hilbert
space to elements in a finite dimensional vector space. This
leads to a generalization of the concepts of spectral locus
and purple line. It will be shown that for geometrical rea-
sons the color space is topologically equivalent to a cone.
In the second part of the paper we illustrate the theoretical
concepts with four large databases of spectra from color
systems and a series of multi-spectral images of natural
scenes. We verify the conical property of color space for
these databases and compute their, geometrically defined,
spectral locus and chromaticity properties. In the last sec-
tion we relate the natural co-ordinate system in the conical
color space to the traditional polar co-ordinates in CIE-
Lab. We show that there is a good agreement between the
geometrically defined hue-variable and the angular part of
the polar co-ordinate system in CIE-Lab. There is also a
clear correlation between the geometrical and the CIE-Lab
saturation descriptors.

1. Introduction

Traditionally colors are either described by their spectral
distribution functions f(λ) (where λ is the wavelength)
or by three-dimensional vectors in coordinate spaces like
CIEXYZ, CIELab, RGB etc.. The spectral description of
color is complete in the sense that it contains all informa-
tion about the physical properties of the color. It is how-
ever difficult to handle in practice and it gives no explicit
description of the intuitive properties of the color. The
three-dimensional color coordinates on the other hand are
designed to give a compact description of the color and
they are often closely associated with special color devices
such as monitors, computers, printers or human color vi-
sion. The restriction to only three coordinates is however

too restrictive in many applications.
Apart from the three-dimensional color spaces and the

spectral descriptions other systems based on eigenvector
expansions have been used to describe colors (see [4, 10]).
In this case the coefficients in the series expansion are used
as color coordinates. The eigenvector description has the
advantage that it is optimal in a minimum-least-squared-
error sense, it gives a compact description of the color
spectra and it is not limited to three dimensions. It has
the drawback that its coefficients have no obvious intuitive
interpretation.

In this paper we will put all of these approaches into
a unifying framework. By doing so we will show that
color spaces are convex sets in infinite-dimensional Hilbert
spaces which project to a conical set under all reasonable
projection operators. This conical structure will be verified
for a number of spectral databases and for multi-spectral
images of real-world scenes. We showed earlier that this
conical structure has profound consequences for further
processing in, for example, computer vision and pattern
recognition [6, 8, 9]. In contrast to these earlier inves-
tigations were we motivated the conical structure by the
non-negativity of color spectra we give here a more pre-
cise description of the origin and the structure of the cone.

Since the color coordinates are all located in a cone
it is natural to describe the conical structure by the axis
of the cone and a plane perpendicular to this axis. For
the color description this means that we separate the in-
tensity and the chromaticity of a color. This leads to the
introduction of perspective projections which projects the
full color coordinate vector to its chromaticity vector. Un-
der the perspective projection the color cone is projected
to a two-dimensional set which is topologically equivalent
to a disk. We will therefore call it the chromaticity disk.
We also show that the boundary of the chromaticity disk is
pointwise fixed under illumination changes and the effect
of illumination changes is therefore a deformation of the
inner geometry of the chromaticity disk.

Many of the underlying ideas in this paper can be found
in [5]. Here we connect them to our earlier work on coni-
cal color spaces, we verify their applicability with the help
of various databases of spectral data and illustrate the em-
pirical properties of some of the models.

The conical structure of the color cone has been in-
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vestigated before (see [1, 11, 12]). These approaches are
however all aimed at an understanding of human color per-
ception. They thus start from some basic properties of the
human color vision system and derive from them the geo-
metrical properties of the space of perceived colors. In this
paper we are not primarily interested in the space of per-
ceived colors but in the space of spectral distributions of
light. We will derive some of the properties of this space
which are independent of the sensor system used to mea-
sure the spectral distributions. We will assume that the
sensor system defines a linear projection of the space of
spectral distributions and will have to require that this pro-
jection operator preserves convexity. Human color percep-
tion enters our investigation only when we demonstrate
how well human color perception matches the properties
of the mathematical operators introduced in this paper. We
will not discuss the question were such a correspondence
comes from but we want to mention that these findings
seem to confirm the theory that there is a close connection
between the statistics of natural scenes and the properties
of human perception.

2. Color stimuli space

In an abstract mathematical context the vector space, the
traditional linear color spaces and the eigenvector based
descriptions of color spectra can be investigated in the fol-
lowing framework: The color stimulus (the radiation which
enters the sensor) is an element f(λ) in the Hilbert space
H(I) of square integrable functions defined on the inter-
val I = [λmin, λmax]. Here λmin, λmax are the shortest
and the longest wavelength that have an effect on the sen-
sor. A typical interval is given by I = [380nm, 800nm].
Next a finite dimensional subspace HN (I) of H(I) is se-
lected. In this subspace a basis bn(λ), n = 0, . . . N is in-
troduced and the elements f ∈ H(I) are approximated by
their projections Of onto HN (I) :

f(λ) ≈ Of(λ) = f̃(λ) =
∑

n=0..N

βnbn(λ) (1)

The basis vectors are not necessary orthogonal or of unit
length. For an orthonormal basis the coefficients are com-
puted as βn = 〈f, bn〉 where 〈f1, f2〉 is the scalar product
in the Hilbert space.

For the finite-dimensional vector space description the
basis functions bn(λ) are the Dirac functions δn located
at the sampling points in the interval I. For the traditional
color spaces such as CIEXYZ the basis functions are the
color matching functions. In the eigenvector system the
basis functions are the eigenvectors.

The set of all color stimuli S is obviously a proper
subset of the complete Hilbert space H(I). Next we in-
troduce the monochromatic color stimuli mλ0(λ) as those

spectral distributions that are concentrated at one given
wavelength λ0 ∈ I . They are given by the generalized
function δλ0 . Sometimes we think of them as the func-
tions mλ0(λ0) = 1 and mλ0(λ) = 0 elsewhere. We in-
troduce two special color stimuli in S: the color black (de-
fined by the function that is zero everywhere on I) and the
equal energy stimulus u(λ) = 1 for all λ ∈ I defining
the color white. The half-line {cmλ0(λ0), c ≥ 0} lies on
the border of the set S. This can be easily checked by ob-
serving that the line connecting the monochromatic stimu-
lus mλ0(λ) with the white point u(λ) crosses the boundary
of S at mλ0(λ). From Grassmann’s laws it follows that for
two color stimuli fi(λ) ∈ S, i ∈ {1, 2} the linear combi-
nations cf1(λ) + (1 − c)f2(λ), 0 ≤ c ≤ 1 are also color
stimuli. Thus the set S is convex and therefore the convex
closure of the monochromatic stimuli.

The image SN = {Of : f ∈ S} of S is a subset of
the finite dimensional subspace HN (I). The image of the
set of monochromatic stimuli {mλ0(λ), λ0 ∈ I} forms a
curve in HN (I). Following traditional color science this
curve is called the spectral locus. Since the monochro-
matic spectra lie on the boundary of S we will require that
the spectral locus is on the boundary of SN. This is a
non-trivial restriction on the projection operators O. The
line in HN (I) which connects the projections of the end-
points mλmin

(λ) and mλmax
(λ) is called the purple line.

We will often assume that the closed curve formed by the
spectral locus and the purple line is topologically equiva-
lent to a circle, ie. that it has no intersection points.

The color space S and its image SN consist of half-
lines originating in the color black. Both, S and SN, have
therefore a natural decomposition as a direct product be-
tween the positive half-axis (related to the intensity of the
colors) and a space we call the chromaticity space. For-
mally we define two elements f1, f2 in H(HN ,S or SN)
as equivalent if f2 = cf1 for a positive number c. A point
in the chromaticity space is an equivalence class of ele-
ments in the original space. We are primarily interested
in the sets S,SN and for them we define the chromatic-
ity spaces C,CN as the equivalence classes formed by
their elements. We thus have S = R+

⊕
C and SN =

R+
⊕

CN where R+ is the group of positive real num-
bers under multiplication. The projection from S to C de-
fines a perspective projection operator P which cancels the
influence of the intensity parameter and maps a color vec-
tor to its chromaticity description.

Next we observe that a color stimulus is formed by the
interaction of the illumination light l(λ) and the object re-
flectance function o(λ). The reflectance function o(λ) de-
fines how much of the incoming light of wavelength λ is
reflected from an object point. Its values are between zero
and one: 0 ≤ o(λ) ≤ 1. We exclude effects like fluores-
cence and assume that the stimulus is given by the product
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of the illumination and the reflectance: f(λ) = l(λ)o(λ).
For a given stimulus the factorization into illumination and
reflectance is not unique since a multiplication of l by a
positive factor c > 0 and o by its inverse 1/c does not
change the stimulus. For the orthogonal projection O from
H(I) to HN (I) we find that

O(cf)(λ) = O((cl)(λ)o(λ)) = O(l(λ)(co)(λ))

Therefore we combine the orthogonal projection O is with
a perspective projection P. An example of such a projec-
tion is a = Pb with vector elements (see Eq.(1)):

αn =
βn

β0
(2)

The general projection is obtained by a = PMb where M
is a non-singular matrix of size (N + 1)× (N + 1) and P
is the special projection defined in Eq.(2). An example
is the three-dimensional color space defined by the matrix

M =
(

1 1 1
1 0 0
0 1 0

)
. It leads to the intensity value r + g + b and

chromaticity vector (r/(r + g + b), g/(r + g + b)) where
we used r, g, b instead of βn for n = 0, 1, 2.

For a monochromatic object reflectance function o at
wavelength λ0 wave have: o(λ) = cmλ0(λ) and

f(λ) = l(λ)o(λ) = cl(λ)mλ0(λ) = cl(λ0)mλ0(λ).

But cl(λ0) is a number and we see that the chromatic-
ity POf = PO(lo) is independent of l. This shows that
the spectral locus is independent of the illumination char-
acteristics.

The spectral locus defines together with the purple line
a closed curve. For a given point w (in the following called
the white point) in the interior of this closed curve we de-
fine the polar co-ordinates (ρ, ϕ) for a selected point x in-
side or on the curve as follows: the radius is the euclidean
distance between x and w. The angular coordinate ϕ is the
angle between the line connecting x and w and the positive
x-axis. In the following we will assume that the spectral
locus and the purple line define a curve which is topolog-
ically equivalent to a circle. For a point b on the spectral
locus or the purple line with coordinates (ρ(b), ϕ(b)) we
define: R(ϕ) = R(ϕ(b)) = ρ(b). This defines a func-
tion on the unit circle. For a point inside the spectral locus
with coordinates (ρ, ϕ) we define the normalized polar co-
ordinates as (ρ/R(ϕ), ϕ) = (r, ϕ). This construction de-
pends only on the selected white-point and maps the spec-
tral locus and the purple line to the unit circle. The operator
which maps the chromaticity coordinates to the unit circle
which depends only on the white point will be denoted by

Cw : x = (ρ, ϕ) �→ (r, ϕ) (3)

The complete mapping from the Hilbert space to the unit
circle is thus given by CwPMO where the matrix M de-
fines the chromaticity plane and w the center of the chro-
maticity circle.

Up to now we have not introduced metric structures in
the spaces considered so far. Since all vectors are located
in cones we can consider them as elements in the usual
euclidean spaces or as elements in conical spaces. It is
therefore natural to measure their length with either the
euclidean or the hyperbolic norm. For a stimulus with a
coordinate vector β =

(
β0 β1 . . . βN

)
this leads to:

‖β‖2
e =β2

0 + β2
1 + . . . + β2

N

‖β‖2
h =β2

0 − β2
1 − . . . − β2

N (4)

For the special case of three-dimensional coordinates
{β0, β1, β2} = ρ{coshα, sinhα cos ϕ, sinhα cos ϕ} we
find the following relations:

coordinates: ρ(cosh α, sinhα cos ϕ, sinhα cos ϕ)
chromaticity: tanhα(cos ϕ, sin ϕ)

euclidean norm: ‖β‖2
e = ρ2 · (2 cosh2 α − 1)

hyperbolic norm: ‖β‖2
h = ρ2.

3. The spectral databases

The results described so far are based on mathematical and
geometrical arguments only. These arguments show that
there are strong theoretical reasons in favor of a conical
coordinate system in color space. In our experiments we
used several large databases of color spectra and investi-
gated how their properties fit into this framework. The
main result was that eigenvector based color descriptions
are good representatives of the class of conical color spaces
and that the geometrical chromaticity coordinates have a
strong correlation to the perceptually defined chromaticity
coordinates in the CIE-Lab and CIE-Luv system.

In our experiments we used databases of spectra mea-
sured from the Munsell, the NCS and the Pantone color
systems. We also investigated multispectral images of nat-
ural scenes and spectral measurements from the GOME
satellite. The Munsell database consists of 1269 spectra
measured from 380nm to 800nm at 1nm steps [7]. The
spectra from the NCS color system were collected in two
databases. The older database consists of 1513 samples
measured from 380nm to 780nm at 5nm intervals. The
newer collection consists of 1750 spectra measured with
10nm increments between 400nm and 700nm. In some
experiments we combined the old NCS database and the
Munsell database to one large database with spectra de-
fined in the range 380nm to 780nm sampled in 5nm steps.
The Pantone database has 922 color spectra measured in
1nm increments between 380 and 780nm.

For each of these databases we restricted the wave-
length range to 400nm to 700nm. Then we computed the
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eigenvectors for each of the systems. The first three eigen-
vectors define an orthogonal projection operator to a three-
dimensional space. Simple perspective projection as de-
fined in Eq.(2) is then used to project the three-dimensional
vectors to a plane. The location of the spectral locus for the
four databases is shown in Figure 1. In the Figure we also
show the location of the white-points of these databases
where the white-point is defined by the equal energy spec-
tral distribution u(λ).

For all the databases we computed the projection of
the spectra to the chromaticity disk. The Figure 2 shows
the location of the spectra in the new NCS database in the
chromaticity disk defined by the chromaticity plane given
by the unit matrix M and the white point defined by the
equal energy spectrum u.

4. Multi-spectral images

The second source of color spectra comes from 22 multi-
spectral images, 10 taken in coral reefs and 12 in forests
(for a detailed description of the images see [2, 3]). From
these images we computed two eigenvector systems: one
from the coral and one from the forest images. We then de-
scribed the spectra from these images in both the Munsell-
NCS coordinate system and in the system computed from
the spectra in the same class.

For the forrest images we find that only three spec-
tra lie outside the cone. For the underwater images we
found that around 200 (out of 10 × 1282) spectra are lo-
cated outside the unit cone. Most of them are from the
images horshe5 and horshe30 and we found that many of
these outliers have a very low intensity. The results for the
cones defined by the NCS-Munsell system and defined by
the spectra in the same class were comparable. We assume
that many of the spectra outside the cone may be effected
by noise during the measurement process.

The chromaticity diagrams with the spectral locus and
the white point for the coral database is shown in Figures 3.

5. GOME Spectrometer Data

The Global Ozone Monitoring Experiment (GOME) was
launched on April 21st 1995. It is a spectrometer that mea-
sures the solar radiation scattered by the atmosphere in the
spectral region from 240 to 790 nm with a spectral reso-
lution of 0.2 to 0.4 nm, sensed by four individual linear
detector arrays each with 1024 detector pixels. The field
of view may be varied from 40 km along track and 320 km
across track to 40 km along track and 40 km across track.
In our experiments we extracted data from two detectors
and interpolated the measurements so that the final spectra
represented the satellite data in the range 407nm to 794nm

with 1nm sampling. In the conversion we rejected spec-
tra which were obviously flawed (for example spectra with
negative values or spectra with very low measurement val-
ues). In this way we collected 59975 spectra from 31 orig-
inal files. For these spectra we computed the eigenvectors,
the spectral locus and the coordinates of the spectra in the
first three eigenvector coordinate axis. We found that 619
spectra were located outside the cone. An inspection of
these outliers showed that almost all of them came from
the same file. The exceptional spectra in this file were all
measured at consecutive time steps and for all of them the
data in the third band had very low values whereas the data
vectors from the fourth band had normal values. We there-
fore concluded that these spectra were obtained while one
of the sensors did not work properly. The spectral locus
and the white point for this database is shown in Figure 4

6. Relation to CIELab co-ordinates

One of the most important coordinate systems in color sci-
ence is the CIE-Lab system where L describes the bright-
ness of the color spectrum and the two-dimensional vector
(a,b) its chromatic properties. Instead of using the (a,b) co-
ordinates directly one can use polar coordinates (p, ψ) in
the (a,b)-plane. The values of p and ψ indicate the satura-
tion and the hue of the color spectrum. These coordinates
are designed to mirror the properties of human color vi-
sion and are highly non-linear functions of the spectra. It
is therefore interesting to see how they relate to the projec-
tion based measures r, ϕ as defined in equation (3). In Fig-
ure (5) the values of the Lab-hues ψ and the corresponding
values of ϕ are illustrated. The comparison between the
saturation variables p in Lab-space and r in the projec-
tions is found in Figure 6. These figures show that there
is a good correspondence between the hue variables and a
strong correlation between the saturation descriptors.

7. Conclusions

We derived a purely geometrical description of color spec-
tra. This description is derived by a combination of an
orthogonal and a perspective projection. The resulting de-
scription is closely related to traditional color systems that
describe colors in terms of intensity, hue and saturation.
Experimental studies show that this framework holds for a
wide variety of color spectra.
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