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Abstract

In this paper, we present a novel concept of color correc-
tion for consumer digital still camera (DSC) images. This
concept is based on a hierarchical Bayesian image con-
tent analysis consisting of feature extraction and unsuper-
vised clustering and on a set of color correction algorithms
that have been optimized on the obtained characteristic im-
age classes. Since the concept uses Bayesian inference to
combine several color correction results, further available
information (e.g., obtained from camera metadata) can be
easily integrated into the color correction process.

Introduction

Many images generated by today’s consumer DSC still
suffer from color casts. Photofinishing labs report that up
to 50% of all images need to be manually color corrected
before printing in order to achieve a satisfying quality, re-
sulting in very high labor costs. Therefore, automatic al-
gorithms for color correction are highly desirable.

However, many automatic color correction algorithms
assume calibrated systems and do not work for images of
consumer DSC that already make automatic white balance
and that provide image data in the sRGB color space. The
sRGB color space is an output color space and is obtained
from the colorimetric color space in the camera (e.g., ISO
RGB) by a rendering step. Therefore, algorithms that es-
timate the illumination from the distribution of colors in
some color space (e.g., “gamut mapping color constancy”
or “color by correlation” [1]) are of very limited use for the
output of consumer DSCs.

A frequently made observation for all simple color cor-
rection algorithms (such as “white patch”, “grey world”, or
“Retinex”) is that each algorithm performs well for some
images, but very badly for others. Therefore, if a particular
algorithm is adjusted in such a way that on the average the
color correction provides some benefit, then the algorithm
will be very weak and it will provide only marginal im-
provements. For some algorithms it might even turn out,
that it is better to abstain from applying a particular color
correction algorithm at all (a similiar observation has been

made when using color constancy to make classification
more robust [2]).

The solution that we propose in this contribution is to
do a classification of the image into certain characteris-
tic classes first and then to apply the mentioned simple
color correction algorithms, which have been optimized
for the individual image classes. These image classes can
be either semantic classes (certain scene types, e.g., “in-
door scene”, “vegetation scene”, or “mountain scene”) or
signal-oriented, generic classes (e.g., “scene of high color
complexity”). After the class-specific application of a set
of simple color correction algorithms, we combine the re-
sults of these algorithms in such a way as to take into ac-
count the class-specific reliabilities of each algorithm. We
do this in a step of Bayesian inference that allows us to take
all available information into consideration: from values of
certain features, via characteristic image classes up to im-
age meta data provided by the DSC image file [3], such
as the camera model or details of the image exposure. Al-
together, this results in a hierarchical system of automatic
color correction that significantly reduces the number of
consumer DSC images that require manual color correc-
tion.

This paper is structured as follows. In the next sec-
tion, we sketch the hierarchical image analysis that pro-
vides us with a signal-oriented description of the content in
the image. Then we use this description to perform several
class-specific color corrections, which we combine using
Bayesian inference and the set of class probabilities ob-
tained by the initial image content description. We present
quantitative experimental results using a test database of
typical DSC images before we conclude with a short sum-
mary.

Generic content-based image analysis

In the recent years, research on generic image content de-
scription has been mainly driven by the application for
content-based image retrieval (CBIR; for a recent overview
of the research area see [4]). In this application, a large
database of images can be accessed by content, in most
cases by providing an example image and feedback on the
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Level Description Explanation/examples

5 semantic image classes Aν scene types (e.g., ’outdoor’) or problem types (e.g., ’underexposed’)
4 generic image classes wi classes derived from level 3 via unsupervised clustering

3 image features moments of pixel features (level 1) or statistics of pixel classes (level 2)
2 pixel classes classes derived from level 1 via unsupervised clustering
1 pixel features luminance, color, local contrast, texture, . . .

0 image data Ik digital images (from DSCs, scanners, etc.) including meta information

Table 1: Hierarchic scheme of generic content description: Starting from the actual image data (level 0), we calculate local features
(level 1), which are classified into characteristic pixel classes (level 2). From the distributions of these pixel classes, we can calculated
image features (level 3) that lead (in a second step of unsupervised clustering) to characteristic image classes wi (level 4). These
classes can be used to classify the image into semantic image classes Aν (level 5) such as scene or problem types.

subsequent search results.
In order to answer content-based “query-by-example”

queries, a generic signal-oriented content index has to be
set up and compared with the user examples. Early ap-
proaches [5–7] simply described the image using low-level
features such as color, texture, and shape resulting in large
low-level feature vectors, which can be used to calculate
similarities. However, these straightforward approaches
have not been able to demonstrate the ability to express
content on a higher abstraction level (that is, user seman-
tics such as ’indoor scene’ or ’sunset image’). There-
fore, more advanced approaches [8, 9] apply a hierarchic
scheme and first determine characteristic classes (that is, a
“codebook” of image content) based on low-level features
(e.g., using self-organizing maps or vector quantization)
and then link these classes to semantically meaningful la-
bels.

On the first glance, the application of automatic color
correction has not much in common with CBIR. How-
ever, most of the simple color correction algorithms (white
patch/greyworld/retinex) perform well on some image and
badly on others. Therefore, if we are able to automatically
detect these images then we will be able to apply the sim-
ple algorithms in an optimum way: for each characteristic
image class we can select the optimum parameters of each
algorithm and decide which algorithm or which combina-
tion of algorithm performs best. In addition to character-
istic image classes, which correspond to classes inhererent
in the kind of data used (e.g., a characteristic class of DSC
images are B/W images), methods of CBIR can also be
used to automatically detect semantic image classes, that
is, classes that have a certain meaning to humans, such as
scene types (e.g., ’outdor’ or ’sunset’) or problem types
(e.g., ’underexposed’ or ’strong color cast’).

In order to extract the image content information from
the image data (a large collection of typical image data,
possibly accompanied by information from photographic
experts), we apply an hierarchical scheme of Bayesian
stochastic modeling [10], which attempts to automatically
detect existing, “typical” image content and to describe it

in a robust way. This hierarchic scheme consists of five
levels of different semantic abstraction that are linked via
steps of Bayesian inference. We depict and shortly explain
it in Tab. 1.

We abstain from providing more details on the
Bayesian inference process on levels 1 to 3 and just note
that at the end of this inference process we obtain the pos-
terior class probabilities

p(wi|Ik) ∀i, (1)

of characteristic image classes wi given a particular image
Ik. Similiarly, in a supervised scenario, we obtain the pos-
terior probabilities p(Aν |Ik) of the semantic classes Aν

given Ik. Note that, in the following, we restrict our dis-
cussion of the application to color correction to the case of
the signal classes wi. However, for certain applications,
one might prefer to use the semantic classes Aν instead.

In order to demonstrate the nature of our generic image
content description, we present two examples: characteris-
tic pixel classes (level 2) in Fig. 1 and characteristic image
classes in Fig. 2. Both examples will be explained in more
detail in the “Experimental Results” section later in this
paper.

Class-specific color correction

For a given image class wi (or in the supervised case Aν),
we apply a set of automatic color correction algorithms
{Vj}, each of which has been optimized for that particular
image class and each of which provides us with a certain
color correction transformation θVj ,wi

(Ik). Thereby, the
color correction θ denotes the transformation that is ap-
plied to the image data to remove the color cast. It can
be given as, e.g., the color of the illumination or the three
factors to be applied to the RGB channels.

We can model the relationship between the (unknown)
actual color transformation θ and the resulting transfor-
mation of each automatic color correction algorithm Vj as
likelihood

p(θVj ,wi(Ik)|θ), (2)
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Figure 1: Examples of characteristic pixel classes (level 2) using
density (bottom left) and color (bottom right) as local features.
Each class is depicted as a particular color (or if printed in B/W
as a particular grey value). The characteristic classes have been
obtained via unsupervised clustering over a large dataset of con-
sumer DSC images.

which specifies the probability of the algorithm’s result in
dependence of the true value of θ. A very precise algo-
rithm is modelled by a very sharp distribution, whereas
a very unprecise algorithm (that is, a very bad one) by a
very broad distribution. The detailed shape of this distri-
bution depends on both the algorithm and the signal class
to which it is applied. It can be determined from a train-
ing dataset together with manually corrections by photo-
graphic experts. It’s mathematical model can be, e.g., a
multivariate Gaussian.

In order to combine the result of several algorithms, we
can use the total likelihood of all results, which is given as
product of the individual likelihoods if we assume inde-
pendance of the individual algorithms. Together with the
prior distribution

p(θ|wi,meta data) (3)

of the color transformation, we arrive at the posterior dis-
tribution of the color transformation as

p(θ|wi, Ik) ∝ p(θ|wi,meta data) ·
∏

j

p(θVj,wi(Ik)|θ),

(4)
where the product over j extends over all algorithms Vj .
By maximizing Eq. (4) we obtain the final color transfor-
mation for this image, given it is in the specified class wi.

Figure 2: Examples of characteristic image classes (level 4) re-
sulting from features based on characteristic pixel classes: im-
ages of low and high color complexity (left and right, respec-
tively). We obtain this complexity measure from the distribution
of classes using information theoretical methods. It is not equiv-
alent to conventional features, such as size of the color gamut,
since it takes into account the statistics of characteristic colors in
a large dataset of typical DSC images.

The prior p(θ|wi,meta data) is independent of the cur-
rently analyzed image Ik and models the expected color
corrections for the current image class wi and available
meta data. Later, in Fig. 3, we show an example in which
we demonstrate the dependence of the width of this prior
on a particular image class.

Since the stochastic content description provides us
with the probability distribution p(θ|Ik), we can use
p(θ|wi, Ik) to calculate the posterior probability distribu-
tion of the color transformation as

p(θ|Ik) =
∑

i

p(θ|wi, Ik) · p(wi|Ik), (5)

where the sum over i extends over all image classes wi.
From this posterior probability we can calculate the maxi-
mum a posteriori (MAP) color correction by simply maxi-
mizing it.

Since the computationally intensive task of the whole
procedure is to determine the characteristic classes and to
find image features that unravel useful information on pos-
sible color casts—or on their absence—the actual applica-
tion is very fast. The overall speed is determined by the
number of simple color correction algorithms used and the
number of image classes taken into consideration. If one
or more simple color correction algorithms are very slow,
approximations of Eqns. (4) and (5) can be easily derived
by taking into account only those image classes and algo-
rithms that have a significant contribution.

Experimental Results

We have applied the presented concept to a test database
of about 7300 images taken with 60 standard consumer
DSCs ranging from simple VGA models up to recent
three-megapixel-models.

As image features, we simply use luminance L∗ (of
CIELAB) as measure of pixel brightness and a∗ and b∗
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(of CIELAB) as two-dimensional measure of pixel colour.
After collecting these features from all images in this
dataset, we searched each feature space for characteris-
tic pixel classes (level 2) using unsupervised methods of
exploratory data analysis. This provided us with sets of
characteristic pixel classes for the corresponding features,
such as shown in the example in Fig. 1. We used the statis-
tical description of the pixel classes in a particular image
to derive image features (level 3) that—in a second step of
exploratory data analysis—provided us with characteristic
image classes (level 4), such as shown in the example in
Fig. 2.

1 5 10 15 19
0

5

10

15

20

Image Class No.

A priori Lab error

Figure 3: Average color cast of the images in the training data set
in dependence on the signal classes resulting from unsupervised
segmentation of color complexity. We can clearly identify image
classes that have a high or low a priori probability for a color
cast (classes 9/10/12/14/18 and 7/11/13/17, respectively). The
information on the class-dependent color cast expectation enters
our inference process via p(θ|wi, meta data) in Eq. (4).

In order to demonstrate that the obtained characteristic
image classes (level 4) indeed contain useful information
for color correction, we calculate the average strength of
the observed color casts for each color complexity class
and display it in Fig. 3. There is a significant dependence
of the strength of the color cast on the image class. Note in
particular class 17 which corresponds to B/W images—a
class of images that arouse in a completely un-supervised
way.

The information on the color casts to be expected for
a particular image (that is, the a priori distribution of
the color casts) is a very valuable information and enters
our inference process via p(θ|wi,meta data) in Eq. (4).
In particular, a prior distribution that is sharply localized
around “no correction” prevents us from applying an ag-
gressive color correction algorithm to an image that is very
likely to get harmed by it. On the contrary, if the image is
assigned to a class with a strong prior color cast, the flat
prior will result in comparatively strong changes in color.

In order to demonstrate the overall performance of the
proposed scheme on our dataset, we use two simple color
correction algorithms: white patch (WP) and a variant of
grey world (GW). When performing the classification and
calculating the color correction using our method (that is,
using Eq. 5), the overall result shows a slight improvement,
as we show in Tab. 2.

A priori white grey generic
error patch world classification

mean
error

7.1 6.3 6.8 5.5

Table 2: Mean Lab error for the dataset using white patch, grey
world, and our classification-based method in comparison to the
a priori error (equivalently, “do nothing” algorithm).

This difference between the algorithms might seem to
be marginal. However, if we categorize the image into
color cast classes (on a subjective basis by defining Lab er-
ror intervals for ’no’/’weak’/’strong’/’very strong’), more
practically useful information is obtained as we show in
Tab. 3. The detailed example tables reveil that the glob-
ally optimized algorithms provide only very limited im-
provements: using the white patch (grey world) algorithm,
about 32–41% (13–17%) of the images improve, but 7–
15% (2%) get worse. The detailed statistics of the com-
bination using generic classification shows a significant
higher ratio of improved images (47–58%), with only a
slightly higher ratio of deteriorated images (6–17%).

Summary and Conclusion

We have shown how generic content-based image analy-
sis can be utilized to support automatic color correction.
As main result of the generic content description we ob-
tain characteristic image classes. Their contribution is
two-fold: (1) they can unravel important information on
whether a color cast has to be expected or not for a partic-
ular image and (2) we can make use of them to apply the
individual simple color correction algorithms in an optimal
way. The first information can be incorporated as prior into
the inference process and the latter via class-specific opti-
mizations and models of the algorithm’s performance.

Several extensions are possible. More information
might be integrated into the inference process: information
on the camera model and manufacturer, camera settings
(such as white balance mode, exposure time, and f-stop).
Furthermore, due to its class-dependent nature, interactive
refinements of corrections can be implemented on a per
class basis.

However, we note that the actual “intelligence for color
correction” still originates from the used simple algorithms
and that the presented scheme is only an assistance for
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White Patch

↓before / after→ no weak strong v.str.

no 0.85 0.13 0.02 0.00
weak 0.32 0.61 0.07 0.00
strong 0.05 0.36 0.57 0.02
very strong 0.00 0.02 0.32 0.66

Grey World

↓before / after→ no weak strong v.str.

no 0.98 0.02 0.00 0.00
weak 0.17 0.81 0.02 0.00
strong 0.00 0.17 0.82 0.01
very strong 0.00 0.00 0.13 0.86

Using Generic Classification

↓before / after→ no weak strong v.str.

no 0.83 0.13 0.04 0.00
weak 0.47 0.47 0.06 0.00
strong 0.16 0.42 0.40 0.02
very strong 0.08 0.09 0.41 0.42

Table 3: Distribution of color casts after the application
(columns) of various color correction algorithms given the
strength of color casts before applying the algorithms (rows).
Here we compare the results of white patch (top), grey world
(middle), and the combined algorithm using the method de-
scribed in this paper (bottom). Entries on the diagonals specify
the proportion of images that remain unchanged (printed in bold)
and entries below or above the diagonal specify images that have
a weaker or stronger color cast after applying the algorithm, re-
spectively.

their application (using the best algorithm combination
with optimum parameters for each image). In addition,
since the overall algorithm is more complex than sim-
ple approaches, significantly more training data is needed.
Furthermore, it is critical that this training data represents
an average cross section of future image data to which the
algorithm will be applied. Of course, the latter two draw-
backs have to be taken into account for all color correc-
tion algorithms with many internal parameters (such as ap-
proaches based on neural networks).

Altogether, the described hierarchical system can be
applied for any device or tool in which automatic color
correction of consumer DSCs is needed, such as digi-
tal photofinishing systems, Photo CD systems, and stand-
alone image enhancement tools. It might help to further
improve the quality of fully automatic digital imaging sys-
tems. In addition, further applications of generic image
content characterization to other kinds of image enhance-
ment tasks can be thought of.
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