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Abstract  

Annotating images with a description of the content can be 
useful in processing images, by taking into account the 
scene depicted. We show here that it is possible to relate 
low-level visual features to semantic photo categories, such 
as indoor, outdoor and close-up, using CART classifiers. 
We have designed and experimentally compared several 
classification strategies, producing a classifier that can 
provide a reasonably good performance and on generic 
photographs no matter how acquired. 

Introduction  

The classification of photographs in semantic categories is 
an unresolved challenge in multimedia and imaging 
communities. Annotating images with a description of the 
content can facilitate the organization, storage and retrieval 
of image databases. It can also be useful in processing 
images, by taking into account the scene depicted, in 
intelligent scanners, digital cameras, photocopiers, and 
printers. The most appropriate strategies of image 
enhancement, color processing, compression, and rendering 
algorithms could be automatically adopted by the system (in 
a completely unsupervised manner) if the image content 
were automatically and reliably inferred by analyzing its 
low-level features, that is, features that can be computed 
without any a-priori knowledge of the subject depicted. 

But there have been few efforts to automate the 
classification of digital color documents to date. Athitsos 
and Swain,1 and Gever et al.,2 have proposed automated 
systems for distinguishing photographs and graphics on the 
Word Wide Web. Schettini et. al.3,4 have designed a method 
for distinguishing photographs from graphics and texts 
purely on the basis of low-level feature analysis. Szummer 
and Picard5 have constructed algorithms for indoor/outdoor 
image classification. Vailaya et al.6 have considered the 
hierarchical classification of vacation images: at the highest 
level the images are sorted into indoor/outdoor classes, 
outdoor images are then assigned to city/landscape classes, 
and finally landscape images are classified in sunset, forest, 
and mountain categories. 

We present here our experimentation on indoor/ 
outdoor/close-up image classification. More specifically, we 

report the performance of different classification strategies 
based on the use of tree classifiers and exploiting low-level 
image features, such as color and texture distributions, to 
describe the image content.  

Image Classification  

To perform the classification we used tree classifiers 
constructed according to the CART methodology.3,4,7 
Briefly, these are classifiers produced by recursively 
partitioning the predictor space, each split being formed by 
conditions regarding to the predictor values. In tree 
terminology subsets are called nodes: the predictor space is 
the root node, terminal subsets are terminal nodes, and so 
on. Once a tree has been constructed, a class is assigned to 
each of the terminal nodes, and when a new case is 
processed by the tree, its predicted class is the class 
associated with the terminal node into which the case finally 
moves on the basis of its predictor values. The construction 
process is based on training sets of cases of known class. In 
the two experiments described here the predictors are the 
features indexing the whole image, and those indexing its 
subblocks, and the training sets are composed of images 
whose semantic class is known. 

Tree classifiers compare well with other consolidated 
classifiers. Many simulation studies have shown their 
accuracy to be very good, often close to the achievable 
optimum. Moreover, they provide a clear understanding of 
the conditions that drive the classification process. Finally, 
they imply no distributional assumptions for the predictors, 
and can handle both quantitative and qualitative predictors 
in a very natural way.  

Since in high dimensional and very complex problems, 
as is the case here, it is practically impossible, no matter 
how powerful the chosen class of classifiers, to obtain in 
one step good results in terms of accuracy we decided to 
perform the classification by also using what is called a 
'perturbing and combining' method.8,9 Methods of this kind, 
which generate in various ways multiple versions of a base 
classifier and use these to derive an aggregate classifier, 
have proved very successful in improving accuracy. We 
used bagging (bootstrap aggregating), since it is particularly 
effective when the classifiers are unstable, as trees are, that 
is, when small perturbations in the training sets, or in the 
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construction process of the classifiers, may result in 
significant changes in the resulting prediction. With 
bagging the multiple versions of the base classifier are 
formed by making bootstrap replicates of the training set 
and using them as new training sets. The aggregation is 
made by majority vote. In any particular bootstrap replicate 
each element of the training set may appear repeated times, 
or not at all, since the replicates are obtained by resampling 
with replacement. Figure 1 shows how the resulting 
classifier, called the bagged classifier, is obtained. 
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or Closeup (Cls)

Single tree classifiers
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Figure 1. The scheme of the bagged classifier. 

 
To provide a measure of confidence in the 

classification results and still greater accuracy, we applied 
an ambiguity rejection rule10 to the bagged classifier: the 
classification obtained by means of the majority vote is 
rejected if the percentage of trees that contribute to it is 
lower than a given threshold. In this way only those results 
to which the classifier assigns a given confidence, as set by 
the threshold, are accepted. The rule is 'global' in the sense 
that it is constant over the feature space. 

Image Description Using Low-level Features 

We have used the following features to index the whole 
images and the subblocks identified by a 4 × 4 equally 
spaced grid: 
• Color Distribution, described in terms of the moments 

of inertia (i.e. the mean, variance, skewness and 
kurtosis) of the distribution of hue, saturation and 
value.11 The features of mean (Ei), variance (σi) and 
skewness (Si) and Kurtosis (ki)can be computed for the 
i-th color channel of the image I as follows: 
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• Edge Distribution, the statistical information on image 

edges extracted by Canny's algorithm12:  
 ♦ i) the percentages of low, medium, and high contrast 

edge pixels in the image;  
 ♦ ii) the parametric thresholds on the gradient strength 

corresponding to medium and high contrast edges;  
 ♦ iii) the number of connected regions identified by 

closed high contrast contours;  
 ♦ iv) the percentage of medium contrast edge pixels 

connected to high contrast edges;  
 ♦ v) the histogram of edge direction quantized in 18 

bins; 
•••• Wavelets. Multiresolution wavelet analysis provides 

representations of the image data in which both spatial 
and frequency information are present. In 
multiresolution wavelet analysis we have four bands for 
each level of resolution: a low-pass filtered version of 
the processed image, and three bands of details. Each 
band corresponds to a coefficient matrix one forth the 
size of the processed image. In our procedure the 
features are extracted from the luminance image using 
a three-step Daubechies multiresolution wavelet 
expansion producing ten sub-bands.13 Two energy 
features, the mean and variance, are then computed for 
each subband; 

•••• Texture. The estimate of texture features was based on 
the Neighborhood GrayTone Difference Matrix, i.e. 
coarseness, contrast, busyness, complexity, and 
strength14,15; 

•••• Image Composition. The HSV color space was 
partitioned into eleven color zones corresponding to 
basic color names (red, orange, yellow, green, blue, 
purple, pink, brown, black, gray and white). This 
partition was defined and validated empirically by 
different groups of examiners.20 The spatial 
composition of the color regions identified by the 
process of quantization was described in terms of:  

 ♦ fragmentation (the number of color regions), 
 ♦ distribution of the color regions with respect to the 

center of the image, and 
 ♦ distribution of the color regions with respect to the x 

axis, and with respect to the y axis. 
 ♦ Interested readers may find a description of these 

features in references 16 and 19.  
•••• Skin Pixels, the percentage of skin pixels. We used a 

statistical skin color detector based on the r, g 
chromaticities of the pixel; a training set of 30,000 color 
skin data was used to model the probability distribution 
of skin color.17 

•••• Spatial Chromatic Histogram (SCH),18 extended 
histograms that preserve not only information about the 
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color content of the image, but also the spatial 
distribution of each color within the image. For each 
color, the entry in a SCH is composed of three values: 
the ratio of pixels in the image of the considered 
color(h), the baricenter (in relative coordinates) of the 
spatial distribution of the color (b), and the standard 
deviation of the distribution of color (σ). Combining 
histogram and spatial information requires a new 
distance function. Given two Spatial Chromatic 
Histograms H  and 'H  having c bins, the distance is 
computed as follows. Let  

 
( )(i)h(i)hmin H'H −=iM ,    (5) 

 
where h(i) is the ratio of pixels having color i, and  
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The distance is defined as  
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While all the features must be computed for the images 

in the training sets, only the features actually used by the 
classifier need to be computed for images in the test sets, 
and for new images processed by the classifiers. In general 
the features used in the classifiers we obtained are less then 
one third of the original ones.  

Experimental Results  

As said the problem was to classify a digital image as 
indoor, outdoor, and close-up. The indoor class included 
photographs of rooms, groups of persons, and details in 
which the context also indicated that they were taken inside. 
The outdoor class included natural landscapes, buildings, 
and city shots and details, in which the context concurred to 
indicate that the photographs were taken outside. The close-
up class included portraits and photos of objects in which 
the context supplied no information of where the photo was 
taken.  

The image database used in our experiments contained 
over 7400 images collected from various sources, such as 
images downloaded from the web, or acquired by scanner. 
It included some 1700 indoor images, 4200 outdoor images, 
and 1600 close-ups. All this material varied in size (ranging 
from 150 × 150 pixels to 900x900 pixels), resolution, and 
tonal depth.   

In our first experiment we used as predictors the 
following features computed on the whole image: wavelet 
coefficients, statistical information and the direction 
histogram of image edges, texture estimators, the spatial 
blob composition, spatial-chromatic histogram, and skin 
detector.  

Tables 1 and 2 show the classification accuracy 
achieved using a single tree classifier on the training and 
test sets respectively. The training set was equally 
distributed among the typologies present in the three 
classes, and contained about 4100 images (1100 indoor, 
2100 outdoor and 900 close-up).  

The test set contained some 3300 photos (600 indoor, 
2000 outdoor and 700 close-up) which had not been utilized 
in the training set. 

Table 1. Classification accuracy obtained on the training 
set using a single tree. 

            Predicted class
Indoor Outdoor Closeup

Indoor 0.96 0.02 0.02
Outdoor 0.04 0.93 0.03
Closeup 0.01 0.01 0.98

  T
ru

e 
cl

as
s

 

Table 2. Classification accuracy obtained on the test set 
using a single tree. 

            Predicted class
Indoor Outdoor Closeup

Indoor 0.72 0.14 0.15
Outdoor 0.11 0.81 0.07
Closeup 0.05 0.10 0.86

  T
ru

e 
cl

as
s

 

 
Tables 3 and 4 show, instead, the classification 

accuracy achieved on the training and test sets respectively, 
using a bagged classifier obtained  by aggregating the trees 
based on 25 bootstrap replicates of the training set. As 
expected, the use of the bagged classifier produced a 
marked improvement in classification accuracy: by 7%, 9% 
and 4% in the test set, for the indoor, outdoor and close-up 
classes respectively. The aggregation of a larger number of 
trees brought no significant improvement. 

Table 3 Classification accuracy obtained on the training 
set using the bagged classifier. 

            Predicted class
Indoor Outdoor Closeup

Indoor 0.99 0.01 0.00
Outdoor 0.01 0.98 0.01
Closeup 0.00 0.00 1.00

  T
ru

e 
cl

as
s

 

Table 4. Classification accuracy obtained on the test set 
using the bagged classifier. 

            Predicted class
Indoor Outdoor Closeup

Indoor 0.79 0.12 0.09
Outdoor 0.06 0.90 0.04
Closeup 0.02 0.08 0.90

  T
ru

e 
cl

as
s
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The misclassified images are generally photographs 
that are either overexposed or underexposed, or with a 
background that provide little information about the class to 
which the images belong. Indoor images misclassified as 
outdoor often show a window, while outdoor images 
misclassified as indoor are images of building details, with 
little outdoor background. The misclassification of close-up 
images as indoor or outdoor and viceversa we consider 
acceptable: it simply reveals the overlapping between the 
close-up and the other categories.  

We then performed a second experiment to extract the 
local inter-class differences, using as predictors the 
following features computed on 4 × 4 subblocks of the 
image: wavelet coefficients, statistical information and the 
direction histogram of image edges, texture estimators, the 
moment of inertia of the HSV distribution, and the skin 
detector. The images of the training and test sets are those 
used in the previous experiment.  

Tables 5 and 6 show the classification accuracy 
achieved using a single classifier. 

 

Table 5. Classification accuracy obtained on the training 
set using a single tree, trained with subblock indexing. 

            Predicted class
Indoor Outdoor Closeup

Indoor 0,98 0,00 0,02
Outdoor 0,03 0,95 0,02
Closeup 0,01 0,01 0,98

  T
ru

e 
cl

as
s

 

Table 6. Classification accuracy obtained on  the test set 
using a single tree, trained with subblock indexing. 

            Predicted class
Indoor Outdoor Closeup

Indoor 0.66 0.20 0.14
Outdoor 0.13 0.80 0.07
Closeup 0.06 0.07 0.87

  T
ru

e 
cl

as
s

 

 
Tables 7 and 8, instead, register the accuracy reached 

on the training and test sets respectively using the bagged 
classifier. 

Table 7. Classification accuracy obtained on the training 
set using the bagged classifier, in the case of subblock 
indexing. 

            Predicted class
Indoor Outdoor Closeup

Indoor 1.00 0.00 0.00
Outdoor 0.00 0.99 0.01
Closeup 0.00 0.00 1.00

  T
ru

e 
cl

as
s

 
 

Table 8. Classification accuracy obtained on the test set 
using the bagged classifier, in the case of subblock 
indexing. 

            Predicted class
Indoor Outdoor Closeup

Indoor 0.81 0.13 0.06
Outdoor 0.06 0.90 0.04
Closeup 0.03 0.05 0.92

  T
ru

e 
cl

as
s
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Figure 2. Accuracy-rejection trade-offs for the indoor class test set 
for both the whole (W) and the subblock (SBLK) indexing. 

 
 
In this experiment as well, the application of the 

bagged classifier improved classification accuracy: by 15%, 
10% and 5% for the indoor, outdoor and close-up classes of 
the test set respectively.  

Moreover, the 4 × 4 subblock indexing improved 
classification accuracy by 2% for both the indoor and the 
close-up classes of the test set, with respect to the whole 
image indexing. 

In general the subblock indexing experiment presented 
the same misclassification problems as the whole image 
indexing experiment. 

Figures 2, 3 and 4 show the effects of the application of 
the rejection rule in the accuracy-rejected plane, with 
varying rejection thresholds, for the indoor, outdoor and 
close-up classes respectively. Each figure shows the 
experimental results, for both the whole (W) and the 
subblock (SBLK) indexing, for the test set.  
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Figure 3. Accuracy-rejection trade-offs for the outdoor class test 
set for both the whole (W) and the subblock (SBLK) indexing. 
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Figure 4. Accuracy-rejection trade-offs for the close-up class test 
set for both the whole (W) and the subblock (SBLK) indexing. 

 
The above figures reflect the better performance of the 

classifiers based on the 4 × 4 subblock image indexing. 
Comparing figures 3 and 4 with figure 2, we note again 

the greater difficulty, already registered in Tables 4 and 8, 
in classifying indoor images. For both the outdoor and 
close-up classes, the 30% of rejected images corresponds to 
a near perfect classification accuracy.  

Final Remarks 

With the experiments described here, we have shown that it 
is possible to relate low-level visual features to semantic 
photo categories, such as indoor, outdoor and close-up, 
using CART classifiers. Specifically, we have designed and 
experimentally compared several classification strategies, 
producing a classifier that can provide a reasonably good 
performance and robustness not only on our database (over 
7400 images collected from various sources) but also on 
generic photographs no matter how acquired. The results 
obtained have also allowed us to identify points that would 
benefit from further investigation: 
 

♦♦♦♦ Image Indexing: We have seen that classification 
results were worst when significant parts of the images 
were occupied by skin regions, i.e., by people. As 
people may appear in any photograph of the classes 
considered, this information is not actually an 
discriminant in establishing the category to which a 
photo belongs. We are now refining the skin/people 
detector in order to make it much more stable (still 
assuming uncontrolled lighting conditions). We should 
then like to use significant skin regions to drive 
adaptive image partitions and then classify the parts of 
image that are not “occupied” by people. In fact, it is 
the context in which the subject is depicted that guides 
our interpretation of the scene. 

♦♦♦♦ Classification Strategy: The experiments performed 
have proved the feasibility of using the bagging method 
and the rejection rule to boost classification accuracy. 
These tools, however, could be further refined. In 
particular, we should like to create a more robust 
rejection rule by incorporating, together with the global 
measure proposed here, feature space-dependent 
information, such as the accuracy inside the terminal 
nodes. 
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