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Abstract 

We introduce an active imaging method to measure scene 
illumination. The system implementation is divided into 
four steps. First, the system acquires two images: one is an 
ordinary image of the scene under ambient light and the 
other is a corresponding image in which light from the 
camera flash is added to the scene. Second, the image pair is 
analyzed to obtain an image that represents the scene as if it 
had been illuminated by the flash alone. Third, the flash-
only image is used to estimate object reflectance functions. 
Fourth, using the estimated reflectance functions, the 
ambient illumination spectral power distribution is 
estimated. We present results that evaluate the method’s 
stability with respect to changes in the mean reflectance 
function of the scene. Finally, we discuss limitations of the 
current implementation and alternative implementations. 

Introduction 

Images acquired by either film or digital cameras pass 
through several image-processing stages. The goal of the 
processing is to render the acquired sensor values into an 
image reproduction that is both pleasing and faithful to the 
appearance of the original scene. The performance of 
several of these processing steps can be substantially 
improved when the physical properties of objects or 
illuminants (e.g., distance, shape, motion, reflectance, 
spectral power distribution, etc) in the scene are known. 

Color balancing, one of these processing steps, refers to 
the transformation of the image data to correct for 
differences in color appearance when the image is acquired 
under one illuminant but rendered under a second, different 
illuminant. For example, say an image of a scene is captured 
indoors under a tungsten ambient illumination. If rendered 
without color balancing, the image will have a yellowish 
appearance (color cast) when viewed under natural outdoor 
ambient illumination. When properly color balanced, the 
image appears more similar to the original. Knowledge of 
the ambient illumination is helpful for color balance 
processing. 

We introduce a novel active imaging method (AIM) 
that estimates the scene ambient illumination from image 
data. The method is active because it involves emitting a 
light into a scene in order to measure a scene characteristic. 
The illuminant estimation calculations can be performed 
using a conventional (three-channel) digital imaging system. 

The estimated ambient illuminant derived by the method 
can guide color-balancing transformations. The method can 
be used in any application, such as light metering, which 
requires an estimation of the ambient illumination. 

Background 

The great majority of illuminant estimation algorithms are 
designed to work in a passive mode: the estimation is based 
on light recorded passively by film or a digital image sensor. 
These methods range from calculations based on simple 
image statistics to more sophisticated calculations that 
incorporate knowledge about the likely distribution of 
surfaces and illuminants. 

The gray-world algorithm is a simple and widely 
known passive mode transformation (see Hunt1 for a 
description). The method assumes that the average surface 
reflectance of objects in a scene corresponds to a gray 
surface; thus, the algorithm uses the average color of an 
image to set the parameters for color balancing. Buchsbaum 
offered a clear physical interpretation and mathematical 
foundation for the method.2 If the average reflectance 
function in the scene is a constant function, then the average 
of the image data is a measure of the ambient illumination. 

Color-by-correlation is a recent passive mode 
illuminant estimation algorithm that incorporates 
information about the likely distribution of image 
information under different lighting conditions.3 The 
method tests which of the possible illuminants is the most 
likely one given the image data (see also Refs. 4-9). Color-
by-correlation basically compares the image chromaticity 
gamut with the chromaticity gamut derived for each of 
several illuminants.  

Passive mode algorithms incorporate assumptions about 
the physical properties of the illuminants and objects. These 
assumptions usually take the form of a linear model for 
surfaces or illuminants and some assumptions about the 
likely content of the scene. Passive mode algorithms fail 
when the assumptions made about the image or its contents 
are incorrect. An important source of error can be traced to 
assumptions about the distribution of surface reflectances in 
the scene. For example: is the mean reflectance gray? One 
way to improve the performance of these algorithms is to 
reduce the likelihood of such errors. 

Active imaging methods (AIMs) differ from passive 
algorithms in that they emit a signal into a scene. In 
principle, AIMs can improve on passive methods because 

IS&T/SID Ninth Color Imaging Conference

27



the emitted signal can measure properties of the scene and 
thus provide a better basis for the assumptions about the 
image. AIMs are used in various types of camera 
applications, such as sonar range finders used for auto-
focusing.10 As far as we are aware, AIMs have not been 
applied to ambient illumination estimation and color 
balancing. 
 

  
Figure 1. A flowchart of the active imaging method (AIM) for 
illuminant estimation. 

Computational Methods 

Figure 1 provides an overview of the active imaging method 
we use for illuminant estimation. The method assumes that 
the camera is calibrated and the spectral power distribution 
of the camera flash is known. The major steps of the 
algorithm are outlined below: 
 
1. Image acquisition. A sequence of two images of the 

scene is acquired. The first image is acquired under 
only the ambient illuminant, and the second is acquired 
with the camera flash added to the ambient illuminant. 

2. Flash estimation. Data from the two images are 
combined to estimate an image that would be measured 
using only the flash and no ambient illumination. This 
step provides an image of the scene under a known 
illuminant.  

3. Surface estimation. Using conventional estimation 
methods, surface reflectance estimates are obtained at a 
variety of image locations from the illuminant-known 
image. 

4. Ambient illuminant classification. Finally using the 
surface reflectance estimates and the pure ambient 
image, we use conventional methods to determine the 
most likely ambient illumination. 

 
The details of these algorithm steps are described in the 

following sections. 

Image Acquisition 
The AIM illuminant estimation procedure begins with a 

small adjustment to the conventional image acquisition 
procedure: two pictures instead of one are acquired. The 
first picture is an image representing the scene under the 
ambient illuminant. The second picture is an image 
representing the scene under both the flash illuminant and 
the ambient illuminant. 

Pure Flash Image Estimation 
By proper combination of the two acquired images, we 

create an image in which the ambient illumination is 
effectively “turned off.”11,12 This pure flash image is 
computed by subtracting the irradiance at the sensor in the 
ambient image from the sensor irradiance in the ambient 
plus flash image. Scaling adjustments must be made for 
exposure time differences, aperture differences and the 
camera transduction function to convert image digital values 
to sensor irradiance before subtracting. For example, 
suppose that both images of the sequence were acquired 
using a linear camera with the same aperture setting, but 
different exposure times. To correctly estimate the pure 
flash image, each image must be scaled by its own exposure 
time prior to the subtraction. This estimated pure flash 
image is important because it is a representation of the scene 
under a known illuminant. 

Surface Reflectance Estimation 
Given an image of the scene under a known illuminant 

(the pure flash image), many methods can be used to 
estimate object surface reflectances.13-15 We used a linear 
estimation procedure based upon a linear model 
approximation of the surface reflectances. Suppose B 
represents the basis functions of a surface linear model, ef 
represents the flash spectral power distribution, diag(x) 
represents placing the vector x along the diagonal of an 
identity matrix and R represents the spectral responsivities 
of the camera sensors, then the transformation from pure 
flash image responses, rf, to surface reflectance functions, ŝ, 
is: 

ŝ = B (RT diag(ef) B)-1 rf    (1) 

 
Three caveats should be considered when using linear 

estimation. First, we do not want to include pixels whose 
values are outside of the camera compliance range. Hence, 
color pixels that have a response less than 5 (noise) or 
greater than 250 (saturation) for any sensor in any of the 
three images (pure ambient, pure flash or combination) 
should be discarded before estimating the reflectances. 
Second, the dimensionality of B should be chosen to match 
the number of independent sensors; including more or less 
dimensions can degrade the estimate. Finally, we 
recommend when building B that the example surface 
reflectance functions are normalized to unit length. This 
operation discards absolute level information. As we will 
discuss in the next section, the AIM method cannot estimate 
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the absolute level of the illuminant, therefore there is no 
need to represent scale information in the surface model. 

 

 
Figure 2. Error computation for two different test illuminants. The 
dot denotes the measured sensor response due to the ambient light. 
The vectors denote the predicted sensor response for two different 
illuminants accounting for the unknown scale factor. The error for 
each illuminant is the shortest distance from the measured sensor 
response to the illuminant line. 

 

Ambient Illuminant Classification 
Next, we use the estimated surface reflectances and the 

pure ambient image to classify the ambient illuminant. The 
classification process estimates the ambient illuminant by 
comparing the sensor values measured in the pure ambient 
image with the expected sensor values assuming each of 
many possible ambient illuminants. The ambient illuminant 
with the lowest error is chosen. 

In general, the expected sensor values under any 
ambient illuminant, ea, can be predicted from the spectral 
responsivities of the camera sensors, R, and the estimated 
surface reflectances, ŝ. We can predict the sensor response, 
řa, from the equation: 
 

 řa = RT diag(ŝ) ea    (2) 

 
The illuminant incident at any position in the image 

depends upon the scene geometry; we do not have this 
information so we can only estimate the illuminant (and 
surface) up to an unknown scale factor. Therefore, we 
compute the error between the measured responses and the 
predicted using an error measure that allows for the 
unknown illumination scale factor (Figure 2). Because the 
illumination intensity is unknown, the sensor response 
predicted for a particular illuminant will fall somewhere 
along a line through the origin. For each illuminant, we 
compute the error by measuring the distance between the 

observed pixel values and this line. We then cumulate these 
errors across image pixels and select the illuminant with the 
smallest error. 

Experimental Methods 

In this section, we describe the specific equipment, test 
images and linear models that we used to build, test and 
implement a complete AIM estimation system. 

Device Calibration 
The experimental AIM imaging device is shown in 

Figure 3a. It consists of a QImaging Retiga 1300 color 
camera, a Vivitar 283 flash and a HP Omnibook 4150 
portable computer running Matlab 6.0. The portable 
computer controls both the camera and the flash and 
performs all the image processing. 

We calibrated the imaging device using an Oriel 74000 
monochromator. The sensors have a linear transduction 
function; the spectral responsivity of each of the color 
sensors is shown in Figure 3b. Lastly, we measured the 
spectral power distribution of the flash using a SpectraScan 
PR650 (Figure 3c). 

Test Images 
We used a Gregtag MacBeth Spectralight III light booth 

to acquire the majority of our images. We collected images 
under the “A” illuminant (A) setting, the cool white 
fluorescent (CWF) setting, the daylight (D65) setting and 
the horizon (HOR) setting. For each illuminant, we acquired 
nine images of the same scene but with different colored 
backgrounds. The backgrounds of each image were changed 
to perturb the image means and image gamuts as much as 
possible. The goal was to create a set of test images in 
which it was difficult to make assumptions about the 
surfaces in the scene. 

Figure 4a shows an example image. Figure 4b and 4c 
show the sensor gamuts of all the images under the four 
illuminants as well as the image means for each scene. 
Figure 4b plots the gamut and means in the sensor RB 
plane, and Figure 4c plots these values in the rb 
chromaticity plane. 

Surface and Illuminant Models 
We built a linear model of possible surface reflectance 

functions using the patches of the Macbeth color chart. The 
first three principal components of the normalized patch 
reflectance functions were used in the model. 

Our set of common illuminants consisted of blackbody 
and fluorescent illuminants. We generated blackbody 
illuminants with temperatures from 2K to 8K. A total of one 
hundred different blackbody illuminants were generated, 
spaced evenly in mireds. For the fluorescent illuminants, we 
used three standard fluorescent illuminants: F2, F7 and 
F11.1 Overall, the algorithm had a total of 103 different 
illuminants to choose from when classifying the true 
ambient illuminant in a scene. 
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Figure 3.  The experimental imaging system.  (a) The system
includes a color camera, a flash that provides the active
illumination, and a portable computer to control the camera and
flash. (b) The measured spectral responsivities of the camera
sensors. (c) The spectral power distribution of the flash.

Figure 4.  Test images.  (a) An example test image with an orange
background under the CWF illuminant.  (b) The sensor gamuts and
image means under all four illuminants plotted in the RB sensor
plane.  (c) The same gamuts and means plotted in the rb
chromaticity plane.
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Results

An Example
Figure 5 illustrates the AIM illuminant estimation

process.  The two images at the top were acquired under
pure ambient illumination and a combination of ambient and
flash illumination.  After accounting for their exposure
times, the images were subtracted to produce the pure flash
image estimate.

A region of the pure flash image containing the brown
patch of the Macbeth color chart (circled in white) was
selected to illustrate the surface reflectance estimation.  This
region contains a number of different pixels; the estimated
reflectance functions for these pixels are plotted along with
the measured reflectance function.  The variance among the
estimates indicates the size of the measurement error and
limits of the Lambertian reflectance model.  Differences
between the estimates and the true reflectance also occur
because the estimate must fall within the linear model of the
surface reflectance functions.

The final panel shows the measured illuminant and the
illuminant chosen from among the 103 in the classification
set.  Even though the surface reflectance estimates were not
precise, they were adequate to yield a reliable and accurate
classification of the ambient illuminant.  In the complete
process, the surface reflectance estimation and illuminant
classification steps are repeated for pixels distributed across
the entire image, improving the accuracy further.

Single Scene, Multiple Illuminants
Figure 6 shows the results of processing one scene

acquired under the four ambient illuminants available in the
Gretag light booth: Illuminant A, CWF, D65 and HOR.  The
four curves show the classification error as we test with the
collection of classification choices.  Blackbody illuminant
errors are on the left side of the graph and the three
fluorescent illuminants are on the right.  The circles denote
the minimum error solution, that is, the illuminant that the
classification algorithm picked.  The method correctly
classifies these four illuminants.  The steepness of the error
curves near the local minima shows that the method makes a
sharp distinction between the different classification
choices.

Multiple Scenes, Multiple Illuminants
In the previous section, we showed that a single scene

could be classified according to illuminant type.  A more
difficult test is to evaluate whether the illuminant estimate is
robust with respect to variations in the scene composition.
Hence, we repeated the calculations of the previous section
using test images (described in the test images section) with
very different surface reflectance functions.  Again, we used
the four different ambient illuminants in the Gretag light
booth.

The results for the nine different scenes are shown in
Figure 7.  The four panels show images under illuminant A,
CWF,  D65 and HOR.  The algorithm correctly classified
the illuminants well, though the scene background andFigure 5.  An example AIM illuminant estimation.  See the text for

details.

IS&T/SID Ninth Color Imaging Conference

31



 

Figure 6. Illuminant classification errors based on the entire image for one scene under the four test illuminants. 
 

 

 

 

 

 

Figure 7. AIM illuminant estimation comparing images that differ substantially in their mean surface reflectance. Each panel is 
analogous to Figure 6 but shown for multiple surfaces acquired under a specific illuminant: (a) A, (b) CWF, (c) D65, and (d) HOR. 
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illuminant type varied across the test scenes. For the 
illuminant A scenes, the average deviation of the blackbody 
temperature was 90K. For the D65 and HOR scenes, the 
average deviation was 271K and 98K respectively. For the 
fluorescent scenes, only the orange background scene was 
misclassified; the algorithm chose F11 instead of F2. All 
other fluorescent test scenes were classified correctly. 

The graphs in Figure 7 show that the size of the 
classification error depends on both the illuminant and the 
surfaces. Further, notice that the classification error was not 
consistent across the scenes. The estimation accuracy will 
depend on the spectral sensitivity of the camera sensors, the 
surface reflectance model, and the spectral power 
distribution of the ambient light. As the illuminant varies, 
this combination of factors permits the method to estimate 
some reflectance functions more accurately than others. 
Hence, the classification error for different scenes depends 
on multiple factors. 

Spatially Varying Illuminant Classification 
The AIM illuminant estimation can be applied to 

relatively small regions of the image. The quality of the 
result depends only on the quality of the local surface 
reflectance estimate. Passive methods, such as gray-world or 
color-by-correlation, can also be applied locally to the 
image. However, the core assumptions of the methods (local 
reflectance is gray; the pixel distribution spans the 
illuminant gamut) are very unlikely to be true over a local 
image region. Hence, the AIM illuminant method may have 
an advantage for measuring spatial-variation in the 
illuminant. 

 

 
Figure 8. Spatially varying ambient illumination. The scene is a 
mixture of fluorescent and blackbody illuminants. The blocks 
denote the type of illuminant that the algorithm determined in each 
region of the image. White blocks denote blackbody, black blocks 
denote fluorescent, and the absence of a block denotes a region 
were there was not adequate light to make a determination. 

 
Figure 8 shows a scene with two illuminants: a 

fluorescent illuminant and a blackbody illuminant (under the 

desk lamp). Illuminant estimates were obtained in individual 
image blocks using AIM. The image blocks with white 
centers were classified as a blackbody illuminant and the 
blocks with black centers were classified as a fluorescent 
illuminant. The blocks with neither a black nor white center 
had indeterminate estimates because of a lack of light in 
either the pure ambient image or the pure flash image or 
both (e.g., a black surface). The AIM illuminant estimates 
are locally accurate. We have not yet determined the gray-
world or color-by-correlation estimates over these local 
regions. 

Limitations 

The AIM illuminant estimates are accurate over a range of 
imaging conditions but not under all conditions. Some of the 
limitations are inherent to the computational methods, while 
other limitations are imposed by the specific hardware 
implementation. In this section, we discuss the limitations 
that we have observed, and we describe some alternative 
implementations that might overcome these limitations. 

We have implemented the system using conventional 
camera hardware: a digital camera and a flash. By using this 
equipment, we could prototype and evaluate a system 
rapidly. The choice of a flash as an illuminator has an 
important limitation: the method can only be used to 
estimate the illuminant in those portions of the scene that 
reflect light from the flash back to the camera. Distant 
portions of the scene do not return light from the flash; they 
do not permit an estimate of the ambient illumination. 
Hence, for this implementation the imaging volume must be 
on the order of the size of a room. 

It is possible to extend the operating range of the 
method from small spaces to larger spaces by building a 
system with a more concentrated illumination source. This 
represents a design tradeoff: the illuminant estimate is 
obtained from a smaller portion of the scene, but the 
imaging volume can be increased. 

A second limitation of the current implementation 
concerns the linear model of surface reflectance functions. 
When used with a single flash and a conventional color 
camera, the surface model can only be three-dimensional. 
This is smaller than most estimates of the dimensionality of 
natural surfaces.16-18 This causes errors in the surface 
reflectance estimates that become errors in the illuminant 
classification. 

This limitation can be overcome by acquiring a third 
image using a second active illuminant. If the spectral 
power distribution of the second active illuminant differs 
from the first, one can estimate additional surface 
reflectance dimensions and improve the accuracy of the 
method. Such instrumentation might be appropriate, say, for 
a light meter that could be used in photographic 
applications, such as film making, in which precise 
illuminant control is needed. 

Finally, we note that the range of illuminants and 
surfaces we have used to demonstrate the system is modest. 
We continue to acquire new test images, but at present we 
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can only say with confidence that the method has worked 
very well on the images we have acquired in indoor 
conditions within fairly small (room size) spaces. 

Summary 

We have described a novel active imaging method for 
estimating the ambient illumination in a scene. The method 
introduces light into the scene, and the reflected light is used 
to estimate object surface reflectances and the ambient 
illuminant. Initial experiments, using a conventional camera 
and flash system, yield accurate estimates of the ambient 
illuminant across a range of test surfaces and conventional 
illuminants. The preliminary performance is comparable to 
that found using much more complex image processing 
methods.9 Beyond simplicity, the method has two additional 
advantages: it measures the scene and thereby avoids 
making strong assumptions about the image contents, and it 
provides a space-varying estimate of the illuminant. 
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