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Abstract 

The ultimate in color reproduction is a display that can 
produce arbitrary spectral content over a 300-800 nm range 
with 1 arc-minute resolution in a full spherical hologram. 
Although such displays will not be available until next year, 
we already have the means to calculate this information 
using physically-based rendering. We would therefore like 
to know: how may we represent the results of our 
calculation in a device-independent way, and how do we 
map this information onto the displays we currently own? In 
this paper, we give an example of how to calculate full 
spectral radiance at a point and convert it to a reasonably 
correct display color. We contrast this with the way 
computer graphics is usually done, and show where 
reproduction errors creep in. We then go on to explain 
reasonable short-cuts that save time and storage space 
without sacrificing accuracy, such as illuminant discounting 
and human gamut color encodings. Finally, we demonstrate 
a simple and efficient tone-mapping technique that matches 
display visibility to the original scene. 

Introduction 

Most computer graphics software works in a 24-bit RGB 
space, with 8-bits allotted to each of the three primaries in a 
power-law encoding. The advantage of this representation is 
that no tone-mapping is required to obtain a reasonable 
reproduction on most commercial CRT display monitors, 
especially if both the monitor and the software adhere to the 
sRGB standard, i.e., CCIR-709 primaries and a 2.2 gamma.1 
The disadvantage of this practice is that colors outside the 
sRGB gamut cannot be represented, particularly values that 
are either too dark or too bright, since the useful dynamic 
range is only about 90:1, less than 2 orders of magnitude. 
By contrast, human observers can readily perceive detail in 
scenes that span 4-5 orders of magnitude in luminance 
through local adaptation, and can adapt in minutes to over 9 
orders of magnitude. Furthermore, the sRGB gamut only 
covers about half the perceivable colors, missing large 
regions of blue-greens and violets, among others. Therefore, 
although 24-bit RGB does a reasonable job of representing 
what a CRT monitor can display, it does a poor job 
representing what a human observer can see. 

Display technology is evolving rapidly. Flat-screen 
LCD displays are starting to replace CRT monitors in many 
offices, and LED displays are just a few years off. 

Micromirror projection systems with their superior dynamic 
range and color gamut are already widespread, and laser 
raster projectors are on the horizon. It is an important 
question whether we will be able to take full advantage and 
adapt our color models to these new devices, or will we be 
limited as we are now to remapping sRGB to the new 
gamuts we have available -- or worse, getting the colors 
wrong? Unless we introduce new color models to our image 
sources and do it soon, we will never get out of the CRT 
color cube. 

The simplest solution to the gamut problem is to adhere 
to a floating-point color space. As long as we permit values 
greater than one and less than zero, any set of color 
primaries may be linearly transformed into any other set of 
color primaries without loss. The principal disadvantage of 
most floating-point representations is that they take up too 
much space (96-bits/pixel as opposed to 24). Although this 
may be the best representation for color computations, 
storing this information to disk or transferring it over the 
internet is a problem. Fortunately, there are representations 
based on human perception that are compact and 
sufficiently accurate to reproduce any visible color in 32-
bits/pixel or less, and we will discuss some of these in this 
paper. 

There are two principal methods for generating high 
dynamic-range source imagery: physically-based rendering 
(e.g., Ref. 2), and multiple-exposure image capture (e.g., 
Ref. 3). In this paper, we will focus on the first method, 
since it is most familiar to the author. It is our hope that in 
the future, camera manufacturers will build HDR imaging 
principles and techniques into their cameras, but for now, 
the easiest path to full gamut imagery seems to be computer 
graphics rendering.  

Computer graphics lifts the usual constraints associated 
with physical measurements, making floating-point color 
the most natural medium in which to work. If a renderer is 
physically-based, it will compute color values that 
correspond to spectral radiance at each point in the rendered 
image. These values may later be converted to displayable 
colors, and the how and wherefore of this tone-mapping 
operation is the main topic of this paper. Before we get to 
tone-mapping, however, we must go over some of the 
details of physically-based rendering, and what qualifies a 
renderer in this category. Specifically, we will detail the 
basic lighting calculation, and compare this to common 
practice in computer graphics rendering. We highlight some 
common assumptions and approximations, and describe 
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alternatives when these assumptions fail. Finally, we 
demonstrate color and tone mapping methods for converting 
the computed spectral radiance value to a displayable color 
at each pixel. 

The Spectral Rendering Equation 

∫∫ ωθλωλωω=λω iiiiioroo dRfR cos),(),;(),(    (1)
 

The spectral rendering Eq. (1) expresses outgoing spectral 
radiance Ro at a point on a surface in the direction ωo (θo,φo) 
as a convolution of the bidirectional reflectance distribution 
function (BRDF) with the incoming spectral radiance over 
the projected hemisphere. This equation is the basis of 
many physically-based rendering programs, and it already 
contains a number of assumptions: 
1. Light is reflected at the same wavelength at which it is 

received; i.e., the surface is not fluorescent. 
2. Light is reflected at the same position at which it is 

received; i.e., there is no subsurface scattering. 
3. Surface transmission is zero. 
4. There are no polarization effects. 
5. There is no diffraction. 
6. The surface does not spontaneously emit light. 
 

In general, these assumptions are often wrong. Starting 
with the first assumption, many modern materials such as 
fabrics, paints, and even detergents, contain “whitening 
agents” which are essentially phosphors added to absorb 
ultraviolet rays and re-emit them at visible wavelengths. 
The second assumption is violated by many natural and 
man-made surfaces, such as marble, skin, and vinyl. The 
third assumption works for opaque surfaces, but fails for 
transparent and thin, translucent objects. The fourth 
assumption fails for any surface with a specular (shiny) 
component, and becomes particularly troublesome when 
skylight (which is strongly polarized) or multiple reflections 
are involved. The fifth assumption fails when surface 
features are on the order of the wavelength of visible light, 
and the sixth assumption is violated for light sources. 

Each of these assumptions may be addressed and 
remedied as necessary. Since a more general rendering 
equation would require a long and tedious explanation, we 
merely describe what to add to account for the effects listed. 
To handle fluorescence, the outgoing radiance at 
wavelength λo may be computed from an integral of 
incoming radiance over all wavelengths λI, which may be 
discretized in a matrix form.4 To handle subsurface 
scattering, we can integrate over the surface as well as 
incoming directions, or use an approximation.5 To handle 
transmission, we simply integrate over the sphere instead of 
the hemisphere, and take the absolute value of the cosine for 
the projected area.2 To account for polarization, we add two 
terms for the transverse and parallel polarizations in each 
specular direction.4,6 To handle diffraction, we fold 
interactions between wavelength, polarization, amplitude 
and direction into the BRDF and the aforementioned 
extensions.7 Light sources are the simplest exception to 

handle – we simply add in the appropriate amount of 
spontaneous radiance output as a function of direction and 
wavelength. 

Participating Media 
Implicitly missing from Eq. (1) is the interaction of 

light with the atmosphere, or participating media. If the 
space between surfaces contains significant amounts of 
dust, smoke, or condensation, a photon leaving one surface 
may be scattered or absorbed along the way. An additional 
equation is therefore needed to describe this volumetric 
effect, since the rendering equation only addresses 
interactions at surfaces. 
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   (2) 

Eq. (2) gives the differential change in radiance as a 
function of distance along a path. The coefficients σa and σs 
give the absorption and scattering densities respectively at 
position s, which correspond to the probabilities that light 
will be absorbed or scattered per unit of distance traveled. 
The scattering phase function, P(θi), gives the relative 
probability that a ray will be scattered in from direction θi at 
this position. All of these functions and coefficients are also 
a function of wavelength. 

The above differential-integral equation is usually 
solved numerically by stepping through each position along 
the path, starting with the radiance leaving a surface given 
by Eq. (1). Recursive iteration from a sphere of scattered 
directions can quickly overwhelm such a calculation, 
especially if it is extended to multiple scattering events. 
Without going into details, Rushmeier et al. approached the 
problem of globally participating media using a zonal 
approach akin to radiosity that divides the scene into a finite 
set of voxels whose interactions are characterized in a form-
factor matrix [8]. More recently, a modified ray-tracing 
method called the photon map has been applied successfully 
to this problem by Wann Jensen et al. [9]. In this method, 
photons are tracked as they scatter and are stored in the 
environment for later resampling during rendering . 

Solving the Rendering Equation 
Eq. (1) is a Fredholm integral equation of the second 

kind, which comes close to the appropriate level of 
intimidation but fails to explain why it is so difficult to 
solve in general.10 Essentially, the equation defines outgoing 
radiance as an integral of incoming radiance at a surface 
point, and that incoming radiance is in turn defined by the 
same integral with different parameters evaluated at another 
surface point. Thus, the surface geometry and material 
functions comprise the boundary conditions of an infinitely 
recursive system of integral equations. In some sense, it is 
remarkable that researchers have made any progress in this 
area at all, but in fact, there are many people in computer 
graphics who believe that rendering is a solved problem. 
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For over fifteen years, three approaches have 
dominated research and practice in rendering. The first 
approach is usually referred to as the local illumination 
approximation, and is the basis for most graphics rendering 
hardware, and much of what you see in movies and games. 
In this approximation, the integral equation is converted 
into a simple sum over light sources (i.e., concentrated 
emitters) and a general ambient term. The second approach 
is called ray tracing, and as its name implies, this method 
traces additional rays to determine specular reflection and 
transmission, and may be used to account for more general 
interreflections as well.11,12 The third approach is called 
radiosity after the identical method used in radiative 
transfer, where reflectances are approximated as Lambertian 
and the surfaces are divided into patches to convert the 
integral equation into a large linear system that may be 
solved iteratively.13 Comparing these three approaches, local 
illumination is the cheapest and least accurate. Ray tracing 
has the advantage of coping well with complex geometry 
and materials, and radiosity does the best job of computing 
global interactions in simpler, diffuse environments. 

In truth, none of the methods currently in use provides 
a complete and accurate solution to the rendering equation 
for general environments, though some come closer than 
others. The first thing to recognize in computer graphics, 
and computer simulation in general, is that the key to 
getting a reasonable answer is finding the right 
approximation. The reason that local illumination is so 
widely employed when there are better techniques available 
is not simply that it’s cheaper; it provides a reasonable 
approximation to much of what we see. With a few added 
tricks, such as shadow maps, reflection maps and ambient 
lights, local illumination in the hands of an expert does a 
very credible job. However, this is not to say that the results 
are correct or accurate. Even in perceptual terms, the colors 
produced at each pixel are usually quite different from those 
one would observe in a real environment. In the 
entertainment industry, this may not be a concern, but if the 
application is prediction or virtual reenactment, better 
accuracy is necessary. 

For the remainder of this paper, we assume that 
accuracy is an important goal, particularly color accuracy. 
We therefore restrict our discussion of rendering and 
display to physically-based global illumination methods, 
such as ray-tracing and radiosity. 

Tone Mapping 

By computing an approximate solution to Eq. (1) for a 
given planar projection, we obtain a spectral rendering that 
represents each image point in physical units of radiance per 
wavelength (e.g., SI units of watts/steradian/meter2/nm). 
Whether we arrive at this result by ray-tracing, radiosity, or 
some combination, the next important task is to convert the 
spectral radiances to pixel color values for display. If we 
fail to take this step seriously, it almost doesn’t matter how 
much effort we put into the rendering calculation – the 
displayed image will look wrong. 

Converting a spectral image to a display image is 
usually accomplished in two stages. The first stage is to 
convert the spectral radiances to a tristimulus space, such as 
CIE XYZ. This is done by convolving each radiance 
spectrum with the three standard CIE observer functions. 
The second stage is to map each tristimulus value into our 
target display’s color space. This process is called tone-
mapping, and depending on our goals and requirements, we 
may take different approaches to arrive at different results. 
Here are a few possible rendering intents: 
1. Colorimetric intent: Attempt to reproduce the exact color 

on the display, ignoring viewer adaptation.1 
2. Saturation intent: Maintain color saturation as far as 

possible, allowing hue to drift. 
3. Perceptual intent: Attempt to match perception of color 

by remapping to display gamut and viewer adaptation. 
 
The rendering intents listed above have been put forth 

by the ICC profile committee, and their exact meaning is 
somewhat open to interpretation, especially for out-of-
gamut colors. Even for in-gamut colors, the perceptual 
intent, which interests us most, may be approached in 
several different ways. Here are a few possible techniques: 
A. Shrink the source (visible) gamut to fit within the 

display gamut, scaling uniformly about the neutral line. 
B. Same as A, except apply relative scaling so less 

saturated colors are affected less than more saturated 
ones. The extreme form of this is gamut-clipping. 

C. Scale colors on a curve determined by image content, 
as in a global histogram adjustment. 

D. Scale colors locally based on image spatial content, as 
in Land’s retinex theory. 

 
To any of the above, we may also add a white point 

transformation and/or contrast adjustment to compensate for 
a darker or brighter surround. In general, it is impossible to 
reproduce exactly the desired observer stimulus unless the 
source image contains no bright or saturated colors or the 
display has an unusually wide gamut and dynamic range.2 

Before we can explore any gamut-mapping techniques, 
we need to know how to get from a spectral radiance value 
to a tristimulus color such as XYZ or RGB. The calculation 
is actually straightforward, but the literature on this topic is 
vast and confusing, so we give an explicit example to make 
sure we get it right. 

Correct Color Rendering 
Looking at the simplest case, spectral reflection of a 

small light source from a diffuse surface in Eq. (1) reduces 
to the following formula for outgoing radiance: 

)(
)(

)( λ
π

λρ
=λ i

d
o ER     (3) 

                                                           
1 The ICC Colorimetric intent is actually divided into relative and 
absolute intents, but this distinction is irrelevant to our discussion. 
2 See www.hitl.washington.edu/research/vrd/ for information on 
Virtual Retinal Display technology. 
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where ρd(λ) is the diffuse reflectance as a function of 
wavelength, and Ei(λ) is the spectral irradiance computed by 
integrating radiance over the projected source. To convert 
this to an absolute XYZ color, we apply the standard CIE 
conversion, given below for SI units16: 

∫
∫
∫

λλλ=

λλλ=

λλλ=

dRzZ

dRyY

dRxX

)()(683

)()(683

)()(683

    (4) 

At this point, we may wish to convert to an opponent 
color space for gamut-mapping, or we may wait until we are 
in the device color space. If our tone-mapping is a simple 
scale factor as described in technique A above, we may 
apply it in any linear color space and the results will be the 
same. If we convert first to a nonlinear device color space, 
we need to be aware of the meaning of out-of-gamut colors 
in that space before we map them back into the legal range 
of display values. We demonstrate a consistent and 
reasonable method, then compare to what is usually done in 
computer graphics. 

BlueFlower Example 
To compute the absolute CIE color for a surface point, 

we need to know the spectra of the source and the material. 
Fig. 1 shows the source spectra for standard illuminant A 
(2856K tungsten), illuminant B (simulated sunlight), and 
illuminant D65 (6500K daylight). Figure 2 shows the 
reflected spectral radiance of the BlueFlower patch from the 
MacBeth chart under each of these illuminants. To these 
curves, we apply the CIE standard observer functions using 
Eq. (4). 
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Figure 1. Spectral power of three standard illuminants. 

 
The resulting XYZ values for the three source 

conditions is given in the first row of Table 1. Not 
surprisingly, there is a large deviation in color under 
different illuminants, especially tungsten. We can convert 
these colors to their RGB equivalents using Eq. (5), as 
given in the second row of Table 1. If we were to directly 
display the colors from the illuminant A and B conditions 
on the screen, they would likely appear incorrect because 

the viewer would be adapted to the white point of the 
monitor rather than the white point of the original scenes 
being rendered. If we assume the scene white point is the 
same color as the illuminant and the display white point is 
D65, then a white point adjustment is necessary for the 
other illuminants (A and B), as given in the third row of 
Table 1. 
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Figure 2. Spectral radiance of MacBeth BlueFlower patch under 
three standard illuminants. 

Table 1. Computed color values for BlueFlower under 
three standard illuminants. 
 

Source 
CIE (x,y) 

Illum D65 
(.3127,.3290) 

Illum B 
(.3484,.3516) 

Illum A 
(.4475,.4075) 

BlueFlower 
CIE XYZ 

0.274 
0.248 
0.456 

0.280 
0.248 
0.356 

0.302 
0.248 
0.145 

709 RGB 
(absolute) 

0.279 
0.219 
0.447 

0.349 
0.209 
0.341 

0.525 
0.179 
0.119 

709 RGB 
(adjusted) 

0.279 
0.219 
0.447 

0.285 
0.218 
0.444 

0.306 
0.215 
0.426 

 

 

















−
−

−−
=
















=

















0570.12040.00556.0
0416.08760.19692.0
4986.05374.12410.3

709C

C

Z
Y
X

B
G
R

  (5) 

 
We use a linear transform to adjust the white point 

from that of the illuminant to that of the display, which we 
assume to be D65 in this example. Eq. (5) gives the absolute 
transformation from XYZ to CCIR-709 linear RGB, and 
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this is all we need for the D65 illuminant condition. For the 
others, we apply the transformation shown in Eq. (6). 

Eq. (6) is the linear von Kries adaptation model with 
the CMCCAT2000 primary matrix,14 which does a 
reasonable job of accounting for chromatic adaptation when 
shifting from one dominant illuminant to another.15 The 
original white point primaries (Rw,Gw,Bw) are computed from 
the illuminant XYZ using the MCMCCAT matrix, and the 
destination primaries (Rw’,Gw’,Bw’) for D65 are computed 
using the same transform to be (0.9478,1.0334,1.0850). 
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The combined matrices for a white shift from standard 

illuminants B and A to D65 (whose chromaticities are given 
at the top of Table 1) and subsequent conversion from CIE 
XYZ to CCIR-709 RGB color space, are given in Eq.(7) as 
CB and CA. Matrix C709 from Eq. (5) was concatenated with 
the matrix terms in Eq. (6) to arrive at these results, which 
may be substituted for C709 in Eq. (5) to get the adjusted 
RGB colors in the third row of Table 1 from the absolute 
XYZ values in the first row. 
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Conventional CG Calculation 
The standard approach in computer graphics color 

calculations is to assume all light sources are perfectly 
white and perform calculations in RGB color space. To 
display the results, a linear scale factor may be applied to 
bring the results into some reasonable range, and any values 
outside the sRGB gamut will be clamped. 

We obtain an RGB value for the BlueFlower material 
from its published (x,y) chromaticity of (0.265,0.240) and 
reflectance of 24.3%. These published values correspond to 
viewing under standard illuminant C (simulated overcast), 
which is slightly bluer than D65. The linear RGB color for 

the flower material using the matrix C709 from Eq. (5) is 
(0.246,0.217,0.495), which differs from the D65 results in 
Table 1 by 10 ∆E* units using the CIE L*uv perceptual 
metric.16 Most of this difference is due to the incorrect scene 
illuminant assumption, since the ∆E* between illuminant C 
and D65 is also around 10. This demonstrates the inherent 
sensitivity of color calculations to source color. Using the 
color corresponding to the correct illuminant is therefore 
very important. 

The reason CG lighters usually treat sources as white is 
to avoid the whole white balancing issue. As evident from 
the third row in Table 1, careful accounting of the light 
source and chromatic adaptation is almost a no-op in the 
end. For white points close to the viewing condition of D65, 
the difference is small: a difference of just 1 ∆E* for 
illuminant B. However, tungsten is very far from daylight, 
and the ∆E* for illuminant A is more than 5, which is 
definitely visible. Clearly, if we include the source 
spectrum, we need to include chromatic adaptation in our 
tone-mapping. Otherwise, the differences will be very 
visible indeed -- a ∆E* of 22 for illuminant B and nearly 80 
for illuminant A! 

What if we include the source color, but use an RGB 
approximation instead of the full spectral rendering? Errors 
will creep in from the reduced spectral resolution, and their 
significance will depend on the source and reflectance 
spectra. Computing everything in CCIR-709 RGB for our 
BlueFlower example, the ∆E* from the correct result is 1 
for illuminant B and nearly 8 for illuminant A. These errors 
are at least as large as ignoring the source color entirely, so 
there seems to be little benefit in this approach. 

Relative Color Approximation 
An improved method that works well for scenes with a 

single dominant illuminant is to compute the absolute RGB 
color of each material under the illuminant using a spectral 
precalculation from Eqs. (3) and (4). The source itself is 
modeled as pure white (Y,Y,Y) in the scene, and sources 
with a different color are modeled relative to this illuminant 
as (Rs/Rw,Gs/Gw,Bs/Bw), where (Rw,Gw,Bw) is the RGB 
value of the dominant illuminant and (Rs,Gs,Bs) is the color 
of the other source. In our example, the RGB color of the 
BlueFlower material under the three standard illuminants 
are those given in the second row of Table 1.  

Prior to display, the von Kries chromatic adaptation in 
Eq. (5) is applied to the image pixels using the dominant 
source and display illuminants. The incremental cost of our 
approximation is therefore a single transform on top of the 
conventional CG rendering, and the error is zero by 
construction for direct reflection from a single source type. 
There may be errors associated with sources having 
different colors and multiple reflections, but these will be 
negligible in most scenes. Best of all, no software change is 
required – we need only precalculate the correct RGB 
values for our sources and surfaces, and the rest comes for 
free. 

It is even possible to save the cost of the final von Kries 
transform by incorporating it into the precalculation, 
computing adjusted rather than absolute RGB values for the 
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materials, as in Eq. (7). We would prefer to keep this 
transform separate to preserve the colorimetric nature of the 
rendered image, but as a practical matter, it is often 
necessary to record a white-balanced image, anyway. As 
long as we record the scene white point in an image format 
that preserves the full gamut and dynamic range of our 
tristimulus pixels, we insure our ability to correctly display 
the rendering in any device’s color space, now and in the 
future. 

High Dynamic Range Images 
Real scenes and physically-based renderings of real 

scenes do not generally fit within a conventional display’s 
gamut using any reasonable exposure value (i.e., scale 
factor). If we compress or remap the colors to fit an sRGB 
or similar gamut, we lose the ability to later adjust the tone-
scale or show off the image on a device with a larger gamut 
or wider dynamic range. What we need is a truly device-
independent image representation, which doesn’t take up 
too much space, and delivers superior image quality 
whatever the destination. Fortunately, such formats exist. 

Since its inception in 1985, the Radiance physically-
based renderer has employed a 32-bit/pixel RGBE (Red-
Green-Blue-Exponent) format to store its high dynamic 
range output.17 Predating Radiance, Bill Reeves of Pixar 
created a 33-bit log RGB format for the REYES rendering 
system, and this format has a public version contributed by 
Dan McCoy in 1996 to Sam Leffler’s free TIFF library 
(www.libtiff.org). While working at SGI, the author added 
to the same TIFF library a LogLuv format that captures 5 
orders of magnitude and the full visible gamut in 24 bits 
using a perceptual color encoding.18 The 32-bit version of 
this format holds up to 38 orders of magnitude, and often 
results in smaller files due to run-length encoding.19 Both 
LogLuv formats combine a logarithmic encoding of 
luminance with a linear encoding of CIE (u’,v’) 
chromaticity to cover the full visible gamut as opposed to 
the gamut of a specific device or medium. 

Of the formats mentioned, only SGI’s LogLuv TIFF 
encoding covers the full gamut and dynamic range of 
perceivable colors. The Radiance RGBE format spans a 
large dynamic range but is restricted to positive RGB 
values, so there are visible chromaticities it cannot 
represent. There is an XYZE version of the same format, 
but the associated quantization errors make it a poor choice. 
The Pixar 33-bit log format also has a restricted RGB gamut 
and only covers 3.8 orders of magnitude, which is marginal 
for human perception. Since the TIFF library is well tested 
and free, there is really no reason not to use LogLuv, and 
many rendering packages now output in this format. Even 
shareware browsers such as ACDSee are able to read and 
display LogLuv TIFF’s. 

Gamut Mapping 
In order to fit a high dynamic range image into the 

limited color space of a conventional display, we need to 
apply one of the gamut compression techniques mentioned 
at the beginning of this section.  

 

Figure 3. Radiance rendering of control tower clamped to limited 
display gamut and dynamic range. 

 

Figure 4. The same rendering displayed using a visibility-
preserving tone operator including glare effects. 

 

Figure 5. A tone operator designed to optimize print contrast. 

 
Specifically, we show how one might apply the third 

approach to display an image: 
 

IS&T/SID Ninth Color Imaging Conference

14



 

 

C. Scale colors on a curve determined by image 
content, as in a global histogram adjustment. 

 
We assume that the rendering system has calculated the 

correct color at each pixel and stored the result in a high 
dynamic-range image format. Our task is then to examine 
this image and choose an appropriate mapping to our 
display. This is a difficult process to automate, and there is 
no guarantee we will achieve a satisfactory result in all 
cases. The best we can do is codify a specific set of goals 
and requirements and optimize our tone-mapping 
accordingly. 

One possible goal of physically-based rendering is to 
assess visibility in some hypothetical environment or 
situation, or to recreate a situation that is no longer readily 
available (e.g., a plane crash). In such cases, we want to say 
that anything visible to an observer in the actual scene will 
be visible on the tone-mapped display. Conversely, if 
something is not visible on the display, we want to say that 
it would not be visible to an observer in the actual scene. 
This kind of visibility-matching operator was described in 
Ref. 20 and we show the result in Fig. 4. Figure 3 shows the 
image mapped to an sRGB gamut using technique B to 
desaturate out-of-gamut colors. As we can see, some of the 
detail in the planes outside the window was lost to 
clamping, where it is preserved in the visibility-matching 
histogram-adjustment procedure in Fig. 4. An optional 
feature of our tone operator is the ability to simulate 
disability glare, which reduces visible contrast due to the 
harsh backlighting in the tower environment. This is visible 
as a slight haze in front of the monitors in Fig. 4. 

Figure 5 demonstrates another type of tone operator. 
This is also a histogram adjustment method, but instead of 
attempting to reproduce visibility, this operator seeks to 
optimize contrast over the entire image while keeping colors 
within the printable gamut. Especially in digital photo 
printers, saturated colors may be difficult to reproduce, so it 
may be desirable to darken an image to avoid desaturating 
some regions. We see that this method produces good 
contrast over most of the image. 

Figure 6 shows the global mapping of these three 
operators from world (rendered) luminance to display value 
(fraction of maximum). Where the naive linear operator 
clamps a lot of information off the top end, the two 
histogram adjustment operators present this information at a 
reduced contrast. This compression is necessary in order to 
bring out detail in the darker regions. We can see that the 
slopes match the linear operator near black in Fig. 7, 
deviating from the linear clamping operator above a certain 
level, where compression begins. 

Figure 8 plots the contrast optimizing tone operator 
against the world luminance distribution. Peaks in the 
luminance histogram correspond to increases in contrast, 
visible in the tone-mapping as a slight increase in slope. 
Since this is a log-log luminance plot, a small change in 
slope corresponds to a large change in contrast. The dip 
between 1.5 and 2.0 corresponds to a more gradual slope in 
the tone-mapping and lower contrast. In the low end, we see 

that this operator tends to provide more contrast to 
compensate for veiling reflection typical of glossy prints. 
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Figure 6. Comparison between three tone-mapping operators. 
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Figure 7. Close-up on darker region of tone-mappings. 
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Figure 8. Good global tone operators produce greater contrast at 
peaks in the input histogram. 
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Conclusion 

The recommendations we make in this paper for accurate 
color rendering may be summarized as follows: 
1. Use a global illumination method with appropriate 

solutions for all of the phenomena being simulated. 
2. Follow accurate spectral calculations with a good 

chromatic adaptation model to avoid color casts in the 
displayed image. 

3. Substitute full spectral rendering with a relative color 
approximation for scenes with a single dominant 
illuminant. 

4. Record images in a high dynamic range format to 
preserve display options (i.e., SGI LogLuv TIFF). 

5. Base tone-mapping and gamut-mapping operators on 
specific goals, such as matching visibility or optimizing 
color or contrast. 

 
Floating-point spectral calculations and high dynamic-

range image manipulation are critical to accurate color 
rendering. The original approach of rendering directly in 
24-bit RGB was recognized as hopeless and abandoned 
decades ago, but much of the mentality behind it remains 
with us today. 

The methods outlined in this paper are not particularly 
expensive, neither in terms of implementation effort nor 
rendering cost. It’s simply a matter of applying the right 
approximation. The author is not aware of any commercial 
software package that follows more than one or two of these 
principles, and it seems like a question of priorities. 

Most of the money in rendering is spent by the 
entertainment industry, either in movies or in games. Little 
emphasis has been placed on accurate color rendering, but 
with the recent increase in mixed-reality rendering, this is 
beginning to change. Mixed-reality special effects and 
games require rendered imagery to blend seamlessly with 
film or live footage. Since reality follows physics and color 
science, rendering software will have to do likewise. Those 
of us whose livelihood depends on predictive rendering and 
accurate color stand to benefit from this shift. 
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