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Abstract 

This paper discusses about the most different illuminant 
(termed the orthogonal illuminant) compared with a 
reference illuminant. This is the first report on the 
definition of the orthogonal illuminant and on the solution 
of the optimization problem. As an application, the 
orthogonal illuminant is applied to counting metamers 
problem. 

1.Introduction 

This paper discusses about the most different illuminant 
(termed the orthogonal illuminant) compared with a 
reference illuminant based on metameric color-mismatch 
volume. 

Metameric colors (metamers) are color stimuli with 
the same tristimulus values but different spectral radiation 
power distributions. One of the most important applications 
of a set of metamers generated with respect to a given 
illuminant and observer is to the determination of the 
magnitude of the color mismatches that will occur when 
the illuminant or the observer is changes. There have been 
studies1) of the boundaries of mismatches of metamers by 
N. Ohta and G. Wyszecki, but no reports have appeared 
about which illuminant yields the largest magnitude of 
color-mismatch volume. The illuminant which yields the 
largest color-mismatch volume is termed the orthogonal 
illuminant. The color-mismatch volume corresponds to the 
degree of difference.  

This is the first report defining of the orthogonal 
illuminant and the solution to the optimization problem. 
The main subjects of this paper are the definition of the 
orthogonal illuminant and the derivation of the orthogonal 
illuminant by solving the optimization problem whose cost 
function is the volume of the color mismatch. Mismatch 
coordinates are known to form a closed solid in a color 
space. Linear programming is employed to calculate the 
volume of the solid. It is difficult to derive a solution that 
maximizes the volume of the solid by analytical methods. 
Hence, a search method for optimization called simulated 
annealing2) is employed.  

In experiments, the orthogonal illuminant is derived 
for an illuminant of the completely flat spectrum: the ideal 
white illuminant. As an application, the orthogonal 
illuminant is applied to counting metamers problem and 
the experimental result is provided. 

2.Orthogonal Illuminant Model and Its 
Application 

2.1.Orthgonal Illuminant Model 
 Two objects with different spectral reflectance 

functions ( )λρ  and ( )λρ′  give rise to metamer stimuli when 
illuminated by ( )λS  if their corresponding tristimulus 
values ZYX ,,  and ZYX ′′′ ,,  are equal as follows: 
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where 

 λ : wavelength. 

 Under the first illuminant (reference illuminant), the 
metameric match is described as follows, where 

( ) ( ) ( )( )111 ZYX ,,  is the coordinate of the metameric match for 
different values of ( )λρ , 
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where 

 ( ) ( )λρ′≠λρ . 

When the illuminant is changed from the first one 
( )( )λ1S  to the second ( )( )λ2S , the corresponding tristimulus 

values are given by, 
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Here the metamerism is broken down and spread out, 

( ) ( ) ( )( ) ( ) ( ) ( ) 




≠

′2′2′2222 ZYXZYX ,,, . 

 It is known that the mismatch coordinates form a 
closed solid in a color space. We define the illuminant 
which makes the magnitude of the volume of the solid the 
largest against a reference illuminant as the orthogonal 
illuminant. Linear programming is employed to calculate 
the volume of the solid. It is difficult to derive the solution 
maximizing the volume of the solid by analytical methods. 
Hence, a search method for optimization called simulated 
annealing is employed. 

 The closed solid can be derived using the linear 
programming method in which eq.(2) and ( ) 1≤λρ≤0  are 
the constraints, and eq.(3) is the objective function. The 
term (X(1), Y(1), Z(1)) is a metameric color which is fixed, and 
for various values of ( )λρ , (X(2), Y(2), Z(2)) assumes mismatch 
values by changing the illuminant from ( )( )λ1S  to ( )( )λ2S .  

 
 
 

 [Linear programming formulation for the problem] 

Constraints 

 ( ) .1≤λρ≤0       (4.a) 
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Objective function  
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 The volume of the closed solid corresponds to a 
degree of difference between the first illuminant and the 
second illuminant, and we optimize the second illuminant 
maximizing the volume. 

The optimized illuminant is the orthogonal illuminant. 

2.2.Application 
 As an application, the optimized solution is applied to 

counting metamers problem. For counting metamers, 
different illuminants and different spectral reflectance 
should be considered. The effects of illuminants are 
considered in the color solid spanned by a pair of 
orthogonal illuminants, and different spectral reflectance 
are considered in the parameters of ( )λρ  in eq.(2) and 
eq.(3).  

3.Solution 

We optimize the second illuminant maximizing the volume 
using simulated annealing.2 In simulated annealing, 

( )( )iS λ2 , ( )ni ,,, Λ21=  quantized in the spectrum range are n 
dimensional parameters to be optimized, where n indicates 
the number of spectrum values. In simulated annealing 
process, reconfiguration of parameters ( )( )iS λ2 , 
( )ni ,,, Λ21=  is performed and for each reconfiguration 
acceptance or nonacceptance is determined. In simulated 
annealing, the reconfiguration and determination of 
acceptance are repeated, and the final state of the 
reconfiguration is the optimized solution.  The following 
function V∆  is defined for the judgement of acceptance or 
nonacceptance of a reconfiguration. 

=∆V ( V  value after reconfiguration)      
  –( V  value before reconfiguration),    (6) 
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where V  indicates the volume of a mismatch color solid 
calculated using linear programming described previously. 

If V∆  increases, the reconfiguration is accepted. If 
V∆  decreases, the reconfiguration is accepted based on the 

probability of ( )TVpa /exp ∆−=  and rejected based on the 
probability of ( )TVpr /exp ∆−−1= , where T  indicates the 
temperature of the annealing process. The larger the value 
of T , in other words, the higher the temperature, the more 
easily the reconfiguration is accepted; the smaller the value 
of T , in other words, the lower the temperature, the more 
difficult is the acceptance of reconfiguration. These are 
simulations of the annealing process. The reconfiguration 
of parameters is performed in descending the temperature 
using V∆  and the probability distribution as a reference. 
Local minima can be avoided using a probability 
distribution, and with decreasing temperature, the global 
optimum can be attained. The T  value is reduced in 
decrements of T∆  down to 0. The reduction of T∆  is 
performed when the variation of the cost function V  is the 
noise : the equilibrium state. In the repetition of the 
reconfigurations as temperature decreases, when the 
temperature reaches 0, the reconfigured state of ( )( )iS λ2 , 
( )ni ,,, Λ21=  is the final optimized solution. We can obtain 
the solution of the orthogonal illuminant by this procedure. 

 Simulated annealing is also applied to the application 
described in section 2.2. In the application, reconfiguration 
of ( )iλρ , ( )ni ,,, Λ21=  are performed to minimize the 
distance between tristimurus coordinates of an orthogonal 
illuminant pair.  

 The counting metamers problem is formulated as 
follows: How many or what proportion of the objective-
color stimuli that belong to a given collection are 
approximately metameric with a given color stimulus of 

*** ,, nnn baL . Approximately metameric means that the 
tristimulus values of the selected object-color stimuli 
should lie in a three-dimensional interval *** ,, baL ∆∆∆  
centered on *** ,, nnn baL , the tolerances *** ,, baL ∆∆∆  
defining the closeness of metamerism demanded. 

4.Experiments 

 Experiments deriving the orthogonal illuminants were 
performed. In the experiments, an illuminant of the 
completely flat spectrum was employed as the reference 
illuminant. The metameric match was on the x, y color 
coordinate of the illuminant. In these experiments, the 
wavelength range 400nm-700nm was divided into eight 
sections. In the simulated annealing process, the cost 
function was the mismatch volume. The initial temperature 
was 1=T  and 4101=∆ /T . The reconfiguration based on 
( )( ) ( )niS i ,,,, Λ21=λ2  was performed using random 

numbers. The random numbers determined that which 
section i should be reconfigured and whether the modified 
value ( )( )iS λ∆ 2  should be positive or negative. The step 
size of the modification was ( )( ) 22 101=λ∆ /|| iS . The 
reconfiguration is performed keeping the Y  value of the 
illuminant ( )2S  equals to the Y  value of the illuminant 

( )1S (=100.0). 

 Figures 1 shows the experimental results. Figure 1(a) 
shows the reference illuminant and figure 1(b) shows its 
orthogonal illuminant. Against the completely flat 
spectrum, the pulse spectrum in the shortest wavelength 
division is dominant in the orthogonal illuminant which is 
reasonable in the mean of the orthogonal.  
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Figure 1 The reference illuminant and the orthogonal illuminant. 

 
 
By using the resultant mismatch solid, the number N 

of metamers was obtained. The solid was mapped on the 
CIE L*a*b* space, and by the distance of 70=∆ .E  the solid 
was quantized, and counted. The result was N= 710⋅81.  for 

70=∆ .E . The result is for all Y values of achromatic color. 

5.Conclusions 

 In this paper, the orthogonal illuminant has been 
discussed. First the definition of the orthogonal illuminant 
has been described, and second the solution of the 
illuminant has been described. As an application, the 
orthogonal illuminant has been applied to counting 
metamers. 

 Experiments have been performed to derive the 
orthogonal illuminant. A illuminant of the completely flat 
spectrum has been employed as the ideal reference 
illuminant. The orthogonal illuminant had a dominant 
pulse spectrum which is reasonable as the orthogonal. Also 
experimental result of counting metamers has been 
indicated. 
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 In this paper, there are not constraints on spectral 
reflectance and spectral distributions of illuminants. 
Hereafter, we will consider realistic constraints on spectral 
reflectance and spectral distributions of illuminants. 
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Appendix 

In this section, a characteristic is provided and proved to 
establish a rigid theoretical basis for the orthogonal 
illuminant. The features of the spectrum of the orthogonal 
illuminant  are analyzed.  
 
[Definition] 

 { }21 ee ,  indicates a set of coefficients of 1e , 2e . 

[Characteristic] 
 The spectrum shape of the orthogonal illuminant in 

Figure 1(b) is explained by means of an theoretical model. 
 

[Proof] 
Let assume os , ss  and ρ  as follows : 
 
( )nso ⋅2  : value of the orthogonal illuminant spectrum at 

the index position of n⋅2 . Where n⋅2  indicates the 
( n⋅2 )-th position in the wavelength range, and 3≤≤0 n . 
 
( )1+⋅2 nso  : value of the orthogonal illuminant spectrum at 

the index position of 1+⋅2 n . Where 1+⋅2 n  indicates the 
( 1+⋅2 n )-th position in the wavelength range, and 

3≤≤0 n . 
 
( )nss ⋅2  : value of an illuminant spectrum without 0 

spectrum values at the index position of n⋅2 . 
 
( )1+⋅2 nss : value of an illuminant spectrum without 0 

spectrum values at the index position of 1+⋅2 n . 
 
( )n⋅2ρ : value of a spectral reflectance at the index n⋅2 . 
( )1+⋅2ρ n : value of a spectral reflectance at the index 

1+⋅2 n . 
 
The alternate appearance of 0 spectrums in the orthogonal 
illuminant can be described as follows : 

 ( ) ( )nnso ⋅2ν=⋅2         ( )aA .1.  

( ) 0=1+⋅2 nso .      ( )bA .1.  

An illuminant spectrum without 0 spectrum values can 
be described as follows : 

 ( ) ( ) ( )0≠⋅2ν=⋅2 1 nns cs       ( )aA .2.  

 ( ) ( ) ( )0≠1+⋅2ν=1+⋅2 2 nns cs .   ( )aA ..2  

For relative spectrum power preservation between the 
two illuminants for each interval, the following relation 
should consists : 

 ( ) ( ) ( )1+⋅2ν+⋅2ν=⋅2ν 21 nnn cc ,      ( )3.A  

where, the local average of ( )nc ⋅2ν 1  and ( )1+⋅2ν 2 nc  
corresponds to the local average of ( )n⋅2ν  and 0 in the 
same wavelength interval. 

 Let assume that { }21 ρρ cc ,  satisfies eq.(5), and under 
the assumption of the following equation : 

 ( ) ( ) ( )1+⋅2ρ+⋅2ρ=⋅2ρ 21 nnn cc ,       ( )4.A  

ρ  satisfies eq.(5), approximately. Because for sufficiently 
small sampling intervals, continuous function of ( )1s  and 
the color matching functions zyx ,,  keep the relation of 
eq.(5) for both ρ  and { }21 ρρ cc , . For sufficiently small 
sampling, the relations below are consistent approximately:  

 ( )( ) ( )( )1+⋅2≅⋅2 11 nsns         ( )aA .5.   
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Using the relation of eq.(A.5), the relation of eq.(5) 
consists approximately as follows : 
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Eq. (A.6) shows that both ( )n⋅2ρ  and 
( ) ( ){ }1+⋅2ρ⋅2ρ 21 nn cc ,  are satisfied in the relation of eq. 

(A.5). On the assumption of independence of color 
matching function vectors (which can be proved but 
omitted in this paper), its coefficients ( )n⋅2ρ , ( )3≤≤1 n  are 
not correlated each other and ( ){ }0⋅2ρ ,n  is correlated only 
with ( ) ( ){ }1+⋅2ρ⋅2ρ 21 nn cc ,  in the same interval. Hence, the 
formation of eq.(A.4) is correct satisfying eq.(5) for both 
sides of eq.(A.4). 

 The ( )2X  coordinate (not normalized) of the CIE 
XYZ  space for the orthogonal illuminant is calculated as 

follows: 
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On the term ( ) ( )nnv ⋅2ρ⋅2  in eq.(A.7), the following 
relation is consistent by the expansion : 
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By applying eq.(A.8) to the right side of eq.(A.7) the 
following relation is derived : 
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The left side of eq.(A.9) is calculated on the sampling 
of n2 , and the error ε  between the calculations for each 
sampling point is as follows :  
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Based on eq.(A.9), for sufficiently small ε , the 
following relation consists : 
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Eq.(A.11) is rewritten as follows by using eq.(A.10), 
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Furthermore, eq.(A.10) is converted as follows : 

 ( ) ( ) ( ) ( )( )∑ ⋅2−1+⋅21+⋅2ρ1+⋅2=ε 22
n

cc nxnxnnv   ( )13.A  

Eq.(A.10) indicates that if ( ) ( )1+⋅2←⋅2 nxnx  then 
ε←0 . This indicates that for sufficient small sampling 

intervals, ε  is sufficiently close to 0, and the relation of 
eq.(A.12) consists.  

 For the reference illuminant used in the experiment, 
the relations of 

( ) ( )1+⋅2←⋅2 nyny  and ( ) ( )1+⋅2≅⋅2 21 nvnv cc  

are consist for sufficient small sampling intervals. Using 
these relations, the normalized relationship of eq.(A.12) is 
as follows :  
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Eq.(A.14) shows that the ( )2X  coordinate of the 
orthogonal illuminant including 0 spectrums is greater than 
the ( )2X  coordinate of the illuminant without 0 spectrum. 
The greater the ( )2X  value the larger the solid volume.  

 The same relations are ( ) ysY oρ=∑2  

consistent in the same way for , ( ) zsZ oρ=∑2 . 
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