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Abstract 

The present paper aims to investigate the influence of 
image gamuts on cross–media colour image reproduction 
by creating a set of images that have this image 
characteristic perturbed in a known way. This is done using 
the following two approaches: First, by selecting a single 
image and obtaining variations of it which have different 
colour gamuts. Second, by creating a pair of image sets 
whereby the images in the first set differ in colour gamut 
and the images of the second set are transformations of the 
first set of images so that all the images have the same 
gamut. Reproducing these images using a range of gamut 
mapping algorithms (GMAs), it can be seen whether 
variations in gamut and the difference between multi– and 
equi–gamut sets result in difference of performance. The 
results of these experiments then show that image gamuts 
have no significant effect on colour gamut mapping. 

Introduction 

Image gamuts have been extensively used in cross–media 
colour image reproduction systems as parameters of the 
gamut mapping stage and this has been widely shown to 
result in significant improvement.1-4 However, the impact 
of the image gamut as an image characteristic has not been 
studied before in isolation. To do this, one needs to create 
such conditions where the image gamut characteristic is the 
variable in which differences lie predominantly rather than 
just being one of many dissimilar characteristics in terms 
of which test images differ, as is normally the case. One 
way of doing this is by perturbing image gamuts in a 
known way and having sets of images which differ in 
image gamut and corresponding sets of images which do 
not. It is this idea, which was previously introduced as a 
general framework for investigating the influence of image 
characteristics,5 that is the basis of the experimental work 
presented in this paper.  

The aim of this paper is to provide details of what 
considerations went into obtaining these sets of images and 
to present the experiment in which they were evaluated. 
The results will provide information about how 
significantly image gamuts influence the performance of 
colour reproduction systems using the given GMAs.  

Problems of Image Gamut Description  

For GMAs that take the image gamut as a parameter, the 
image gamut boundary descriptor (IGBD) is one of the key 
elements for making good colour reproductions. However, 
IGBDs may produce different results when they are 
obtained using different processes and according to 
different rules. Three potential problems of calculating 
IGBDs, resulting in a mismatch between calculated and 
perceived image colour gamuts and influencing the 
performance of GMAs are discussed next: 

Colour Spatial Frequency 
The human visual system cannot detect fine detail in 

an image due to optical blur and resolution limitations.6 
Hence, the colours in high spatial frequency parts of 
images (e.g. frequencies higher than 60 cycles per degree 
for luminance variation) might not be suited for inclusion 
in the process of calculating representative image gamut 
boundaries. Two techniques, image sub–sampling and the 
s–CIELAB model,7 can be used to alter images and thereby 
remove high spatial frequency colours. In the image sub–
sampling method (where the extent of sub–sampling should 
be determined on the basis of the contrast sensitivity 
function), local colours are averaged by reducing image 
size while s–CIELAB uses a Gaussian filter to blur an 
image to an extent simulating the characteristics of the 
human visual system. Both these techniques reduce the 
impact of very high spatial frequency colours on the 
calculation of image gamut boundaries.  

Sample Selection 
If an image contains only a few saturated colours, 

should those colours be regarded as samples from the 
image gamut boundary? If the answer is no, what kinds of 
samples should be used? It will be assumed in this study 
that colours occurring only very infrequently in an image 
should not be regarded as the samples on which the IGBD 
is based. To avoid containing very low probability colours 
in IGBDs, two techniques – high–pass filtering and 
cumulative colour histogram clipping8 – can be used. The 
high–pass filtering method suggested here removes the 
colours whose pixel–frequency in an image is very low 
whereby a threshold is needed for this operation. 
Cumulative colour histogram clipping is a method where a 
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cumulative colour histogram is first created for each 
centre–radial sector and then colours which correspond to 
the 95% cumulated frequency are used for calculating the 
IGBD. A disadvantage of this method is that if most of the 
image colours are in one sector, some saturated colours 
whose overall probability is not very low will be removed.  

 

 

Figure 1. Image gamut boundaries when a segment have  
a) no colour or b) a low–chroma colour. 

 

Figure 2. Image gamut boundaries using a) large number of 
segments and b) small number of segments 

Smoothness of Gamut Boundary 
The segment maxima GBD method9 is a technique for 

describing gamut boundaries which first divides a gamut 
into many centre–radial segments and then finds the 
maximum radius (r) for each segment. When using this 
method for image gamut description and if a segment 
contains no colour, then the maximum r for the segment 
will be obtained by interpolating the maxima from 
neighbouring segments. However, quite different results 
will be obtained if a low–chroma colour is located in the 
segment (Figure 1). The size of the segments may also 
influence image gamut description. Normally, the larger 
the segment–size, the smoother, but also less accurate, the 
image gamut boundary (Figure 2). While a gamut 
boundary which has been smoothed does not represent the 
actual gamut boundary of an image, smoothing might be 
necessary for obtaining smooth and artefact–less colour 
reproduction when original and reproduction gamut 
boundaries are quite different in shape and especially when 
they are locally polymodal. 

To smooth the image gamut boundary, four solutions 
are proposed here – segment reduction, IGBD averaging, 
Gaussian smoothing and 2D gamut function modelling. In 
segment reduction, the number of segments is simply 
reduced. It can reduce the likelihood of this problem 
caused by a segment containing low–chroma colours. A 
smoother image gamut boundary can also be obtained by 
averaging the IGBDs obtained using both large and small 
numbers of segments. Using the Gaussian smoothing 
technique, the maximum r of a segment is replaced by a 

weighted average of the maximum radii of neighbouring 
segments and weights are derived using the Gaussian 
distribution function. This method provides a gamut 
boundary which is smooth and approximately close to the 
real image gamut. Alternatively, a 2-D gamut functions10 
which use a least-squares method for curve-fitting to 
saturated image colours can also smooth the image gamut 
boundary. Further work is necessary for evaluating the 
performance and parameters of all the methods mentioned 
above for producing optimal image gamuts. 

In this study, the CAM97s2 JCh colour space11 was 
used and image gamut boundaries were produced as a 2D 
LUT using the following steps: (a) image sub–sampling: 
blur very high spatial–frequency colours; (b) high–pass 
filtering: remove very low probability colours; (c) segment 
maxima GBD method: find gamut boundary colour for 
each of 16×16 sectors. 

The gamut smoothing process was not used in this 
study because it does not describe actual image gamuts, 
instead images where smoothing would have been 
necessary were not used. In this experiment the aim is to 
provide particular sets of test images rather than be able to 
use any image in such sets. 

Perturbing Image Gamuts 

To investigate the influence of image gamuts on gamut 
mapping, two experiments were conducted: the equi–
gamut test and the equi–image–content test: 

Equi–gamut Test 
This test aims to evaluate the performances of GMAs 

for images having the same image gamut but different 
image contents. The steps of the test are as follows. First, 
chose four images (Om1–m4) where each image is of a 
different type and has a different histogram, different 
spatial characteristics, different image gamut, etc. Second, 
use the steps mentioned in the previous section for 
obtaining image gamuts (Gm1–m4) and then average the four, 
resulting in an averaged gamut Ge. The reason for using the 
image–set average gamut is to approximately equally 
change the gamut of each of the original images. Third, 
based on the image gamuts (Gm1–m4), colours of the four 
images (Om1–m4) were mapped (both compressed and 
extended, depending on gamut boundary conditions along a 
given line) to the target gamut Ge relative to the centre of 
the colour space. The mapping resulted in a set of original 
equi–gamut images (Oe1–e4) (Figure 3). Fourth, all 
reproductions were made of the two sets of originals using 
the given GMAs. Fifth, two sets of psychophysical 
experiments were conducted whereby the experiment on 
the multi-gamut images (Om1–m4) and their reproductions 
(Rm1–m4) resulted in scores Sm1–m4 (range of the scores is SRm) 
and the experiment on equi–gamut images (Oe1–e4) and their 
reproductions (Re1–e4) resulted in scores Se1–e4 (having a 
range of SRe). 
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Figure 3. Multi–gamut images (left column) and equi–gamut
images (right column).

If the results coming from the equi–gamut set produce
smaller differences (i.e., SRe< SRm) then this will suggest
that image gamuts indeed influence the performance of
GMAs. Alternatively the difference in performance is due to
some other image characteristic.

Equi–image–content Test
This test aims to evaluate the performance of GMAs

when the image gamut changes while the image contents are
kept the same. A high chroma image Ski (Figure 3) was
used as the standard original and the CAM97s2 lightness and
chroma of the image were transformed using Equations 1 and
2 respectively and three compression ratios – 0.7, 0.85 and
1.0 – were used. This resulted in a set of 9 (3×3) original
images showing the same scene but having different colour
gamuts. Some colours moved out–of–gamut after the
compression and these colours were mapped to the gamut
boundary of the CRT towards the gamut centre (J,a,b) =
(50,0,0). The results of this mapping were regarded as the
originals for the equi–image–content test.

Psychophysical experiments were conducted whereby
the evaluation of originals and their reproductions resulted in
scores SJC (having a range of SRJC). As the main difference
between the originals was their image gamut, a similar
range (SRJC) for each original would suggest that the image
gamut has little influence on the performance of GMAs.

Lcompressed= Comp.RatioL× ( J – 50 ) + 50 (1)

Ccompressed= Comp.RatioC× C (2)

Experimental Setup

The accuracy of reproduction between the various original
images and corresponding reproductions discussed in the
previous section was evaluated by 12 observers using the
pair comparison method12 in a simultaneous binocular
viewing setup under a D50 simulator. The originals were
displayed on a calibrated CRT monitor (an Apple 21" Studio
Display), and the reproductions were obtained with a Canon
BJC–6100 bubble–jet printer on Canon HR-101S coated
paper. The CRT monitor was characterised using the GOG
model13 and the mean and maximum errors were 0.89 and
1.80 ∆E97s2 units respectively. The printer was characterised
using an inverse 103 3D LUT with tetrahedral interpolation14

and the mean and maximum errors were 2.08 and 5.81 ∆E97s2

units respectively.

Gamut Mapping Algorithms
The reproductions of the various images used here were

obtained using the following four GMAs:
(a) CARISMA:9 first compress lightness, shifts hues based

on the six primaries of the two media and maps colours
depending on the gamut shapes at corresponding hues.

(b) GCUSP:9 maps lightness in a chroma–dependent way
followed by linear compression towards the point on the
lightness axis having the lightness of the cusp.

(c) WCLIP: maps out–of–gamut colours to the colour on
the gamut boundary with the smallest colour difference
obtained using a weighted colour difference formula15

((KJ:KC:KH) = 1:2:1 was used in this study).
(d) SKNEE:16 first compresses lightness using a sigmoidal

function and then compresses towards the cusp using a
non-linear knee function. The image independent
version for normal tonal image was used in the study.

Note, that the choice of GMAs (which were all image
independent) was guided by two principles. Firstly, to chose
GMAs which could perform well and secondly, to choose
such a set of GMAs where the individual members are
significantly different from each other. Hence there is a range
of lightness mappings – linear, chroma–dependent,
sigmoidal and clipping – as well as a range of chroma
compressions – clipping, knee and linear – and a range of
compression directions. This latter criterion is important for
the purposes of this study, which is not the evaluation of
GMAs but of the image gamut image characteristic.

Can Accuracy Score Ranges Be Compared?
As the present study intends to compare the ranges of

scores from different experiments and as this is not a
comparison normally done with the data obtained from pair
comparison experiments, it is necessary to understand
whether this comparison is valid.
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The relative quality (i.e. in terms of accuracy here) of 
any two stimuli can be represented by a Z–score obtainable 
from raw observer responses in the pair comparison 
experiment. The unit of the relative quality scale is the unit 
of the Z–score scale, which is an interval scale (i.e., a scale 
that has equal intervals). Let us, for example have a pair of 
stimuli on an interval scale separated by three units and a 
second pair on another interval scale also separated by 
three units. The differences between the pairs will be 
perceptually equal given that both scales have the same 
units and that both scales represent the same stimulus 
quality. However, as there is no meaningful zero point on 
an interval scale, absolute quality cannot be shown on 
them. The zero point on a particular Z–score scale 
represents the mean quality of stimuli in a given 
experiment only. Different experiments normally have 
different mean stimuli (i.e. zero–points) on an absolute 
quality scale (Figure 4) and their Z–scores therefore cannot 
be compared directly. However, all the individual 
experiments that will be carried out here will have the 
same units and will represent the same perceptual quality 
(accuracy of match). The differences (ranges) of Z–scores 
between two sets of experiments can hence be compared in 
terms of ratio (e.g. one can say that the range of one 
experiment is twice that of another) and they represent 
difference of perceptual quality. 
 

 
Figure 4. Comparison of Z–scores on an absolute quality scale. 

Results 

Equi-gamut Experiment 
The performances of GMAs in the equi-gamut 

experiment in terms of Z-scores are shown in Table 1. In 
the table, each row represents the result of an independent 
pair-comparison experiment. The 95% confidence interval 
is ± 0.4 on the Z scale. The range of Z-scores (SR) is the 
difference between maximum and minimum Z-scores.  

The assessment of the impact of making each image 
have the same gamut will be done in terms of looking at 
the relationship between image gamut volumes (IGVs) and 
accuracy score ranges. Even though the following analysis 
is based on IGVs, its conclusion extend to image gamuts as 
such as the images that had the IGVs of the average gamut 
also had gamut shapes that matched the gamut shape of the 
average. Hence claiming that the conclusions of this 
analysis only pertain to image gamuts is unjustified as the 
equi–gamut test images also agreed with each other in 
terms of all their other image gamut characteristics.  

The image gamut volumes of the originals in this 
experiment were calculated by summing up sub-tetrahedral 
volumes of the image’s three-dimensional gamut 
boundaries and the gamut volume of the original Ski image 
was 739,532 cubic CAM97s2 Jab units. The IGVs dealt 
with here are normalised to it are also shown in Table 1 for 
further data analysis. 

Table 1. GMAs performances in equi-gamut 
experiment. 

Accuracy (z-scores) 

Images vs. GMAs 

CARISMA GCUSP SKNEE WCLIP 

Stdev. SR IGV 

CG -0.38 -0.46 -0.60 1.43 0.96 2.02 0.72 

Mus -0.28 0.51 -0.46 0.22 0.44 0.96 0.35 

Ski -1.18 -0.26 -0.14 1.57 1.15 2.75 1.00 

Multi-

gamut set 

Str -0.83 -0.58 0.58 0.83 0.83 1.66 0.33 

CG -1.19 -1.44 1.08 1.55 1.53 2.99 0.49 

Mus -0.59 0.04 0.20 0.35 0.41 0.94 0.56 

Ski -1.78 -0.24 0.94 1.08 1.32 2.85 0.58 

Equi-

gamut set 

Str -0.81 -0.27 0.33 0.75 0.69 1.57 0.53 

Overall -0.88 -0.34 0.24 0.97 0.92 1.97 0.57 
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Figure 5. Accuracy range (SRm & SRe) vs. normalised image 
gamut volume (IGV). 

 
Figure 5 illustrates the correlation between the 

accuracy range and the image volume. In the multi-gamut 
set, the correlation was strong (R2 = 0.83). However, the 
correlation was very low (R2 = 0.10) in equi-gamut set. 
This suggests that there is no significant relationship 
between SR and IGV. 

Accuracy rankings of the four GMAs for the four 
multi-gamut images are shown in Figure 6. As can be seen, 
in the original set (left figure), it is significant that the 
rankings were image dependent. However, in the equi-
gamut set, the agreement between the four equi-gamut 
images was much stronger. This suggests that GMA 
performance order is correlated with the image gamut 
characteristic. 
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Figure 6: Image vs. GMA rankings (left: multi-gamut sets, right: 
equi-gamut sets). 

 
The correlation between combined and individual 

image accuracy scores for the equi-gamut set was much 
higher and had a much lower standard deviation (mean = 
0.96, stdev. = 0.03) than in the multi-gamut set (mean = 
0.78, stdev. = 0.23). This suggests that GMA performance 
is image dependent but that performance becomes similar 
when the original images have similar image gamuts. 

Equi-image-content Experiment 
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Figure 7. Accuracy range (SRJC) vs. gamut compressing ratio 
(left: hypothetical results for IGV effect, right: actual results). 

 
In the equi-image-content experiment, the averaged 

accuracy rankings of the four GMAs from the best to the 
worst again were WCLIP, SKNEE, GCUSP and 
CARISMA. If the SRJC is correlated to the compression 
ratio, the (Jcomp.ratio, Ccomp.ratio, SRJC) three-dimensional diagram 
is expected to be similar to Figure 7-left. The actual result 
(Figure 7-right), however, was quite different to what 
would be expected if there were a correlation between IGV 
and SR. No trend can be found between SRJC and the 
compressing ratio. This means that neither lightness nor 
chroma ranges are correlated to the accuracy range. There 
is virtually no correlation (R2 = 0.01) between the accuracy 
range (SRJC) and the image gamut volume (IGV) and this 
backs up the idea that image gamut volume is not a factor 
influencing the performance of GMAs.  

Correlation (CorrJC) between averaged image accuracy 
scores and individual image accuracy scores were 
calculated and then plotted in (Jcomp.ratio, Ccomp.ratio, CorrJC) 
three-dimensional space. The mean and standard deviation 
of the CorrJC values were 0.97 and 0.04 respectively. The 
high correlation suggests that the order of GMA 
performance is unrelated with image gamut. 

Discussion 
Two experiments were carried out for evaluating how 

significantly image gamut influences the performance of 
GMAs. The results of the two experiments are summarised 
as follows: 
• Accuracy range is not correlated with image gamut.  
• Accuracy ranking order changes with gamut change in 

an image dependent way and it hence depends upon 
characteristics other than image gamut. 

• Variation of performance between algorithms for 
given test images is not due to their image gamuts 
 
The possible reasons why no image gamut effect can 

be observed are as follows: 
1. There is no effect 

Image gamut only represents extreme colour 
information about an image. Other colour related 
information such as probability, spatial frequency and 
local contrast are not included and it could be those, 
rather than the image gamut, that affect how images 
are to be reproduced.  

2. Properties of experimental setup do not give rise to 
effect  
(a) GMAs: all the chosen GMAs were reported to 

perform well and recommended by various papers 
so that their performances did not differ much in 
this study. However, there are significant 
differences between their scores (e.g. see Ski 
image, Table 1). 

(b) Media: The difference between the two media 
used in this might not have been large enough for 
GMAs to show their differences. It might have 
been due to this that WCLIP, which made the 
smallest colour shifts, was judged to be superior 
to the other GMAs. However, accuracy ranges 
(SR) of the results had a range from 0.94 to 3.61. 
This indicates that the gamut difference of the 
two media and the differences between GMAs 
were sufficient. 

(c) Gamut boundary description: the way gamut 
boundaries are calculated affect the results of 
gamut mapping. However, this gives the same 
errors for all the GMAs and thus can have only 
little impact on the results of the study. 

(d) Characterisation: characterisation errors have 
been reported in pervious section. The errors were 
equal for all the GMAs and were not large enough 
to affect the results. If characterisation errors had 
been larger than differences between GMAs then 
the reproductions obtained using various GMAs 
would have been judged to be not significantly 
different. 

3. Inappropriate choice of images 
The results for the multi-gamut set of images in the 
equi-gamut experiment were image dependent. As 
both multi-gamut and equi–gamut images show an 
accuracy range effect which is not removed by 
removing their gamut differences, it seems that the 
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effect was not due to their image gamuts. Furthermore, 
it is sufficient to show that there is no image gamut 
effect for the present set of images to show that there 
is no such effect for all images. 
 
While the findings of this study, which suggest that 

image gamuts are not the reason for differences in GMA 
performances for different images, might seem to 
contradict earlier work, which has shown that using image 
gamuts as a parameter for gamut mapping results in more 
accurate reproductions,1,4 this disagreement is only 
apparent. What the earlier papers have shown is merely 
that for a given GMA compression ratios that are 
determined on the basis of image gamuts rather than the 
original medium gamut give more accurate results. The 
principal claim of this study, on the other hand, is that the 
differences between how different GMAs perform for 
different images are not due to the image gamuts of these.  

In summary, the combined conclusions of previous 
work and this paper are that if image gamuts are used to 
determine compression ratios, a GMA’s performance 
improves but that it is not the image gamut characteristic 
that makes GMAs perform differently for different images. 
What this means is that knowing an image’s gamut is not 
sufficient for determining how best to reproduce it but that 
this knowledge can help to improve the performance of a 
given gamut compression algorithm used for reproducing 
it. 

Conclusions 

Two methods for evaluating the importance of image 
gamuts on colour image reproduction were described in 
this paper. The first results in two sets of originals which 
are based on the same set of images and where the images 
in one set differ in gamut and the images in the other set do 
not. The second method perturbs the colour gamut of a 
single image by various degrees in terms of lightness and 
chroma. Reproductions of all these original images are 
then made using four different GMAs and their accuracy is 
then evaluated using a psychophysical technique. The 
ranges of accuracy score ranges obtained in this way for 
the different original image sets then indicate the 
importance of the image gamut image characteristic. The 
overall results of this study show that the image gamut 
characteristic has no significant effect on the performance 
of GMAs. Since the results were image dependent, other 
image characteristics (e.g., colour histogram, local colour 
contrast) have to be evaluated next. 
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