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Abstract 

A fundamental problem in digital photography is the 
estimation of scene colorimetry from raw DSC image data. 
Currently, a standard is under development in this area 
(ISO 17321-2).1 In the development of this standard, few 
subjective experiments have been carried out until now 
relating to the estimation of scene colorimetry from non-
colorimetric raw data, where no assumptions are made 
concerning the spectral radiance correlation statistics of the 
scene. Furthermore, there is not much information 
available concerning whether it is appropriate to use some 
assumption about spectral radiance correlation statistics 
when the statistics of the actual natural scene are unknown. 

This paper presents the first part of a study involving 
psychophysical tests to answer the following questions that 
are essential for the specification of a scene analysis color 
space, and for the specification of methods for 
transforming raw DSC data into scene colorimetric data. 
1. What is the most appropriate error metric to be used 

for the determination of transformations from raw 
DSC data to scene colorimetry estimates, when no 
assumptions are made concerning the scene spectral 
radiance correlation statistics? The crucial point is to 
find the error metric that corresponds best with human 
perception. 

2. How does this new error metric compare to existing 
criteria, and how do the existing criteria compare to 
each other when used to determine transformations 
based on specified spectral radiance correlation 
statistics assumptions? 

3. Given that optimal error metrics are used to determine 
transformations, how do several spectral radiance 
correlation statistics assumptions compare to each 
other and to the maximum ignorance case when 
applied to natural scenes where the actual statistics are 
unknown? 
 
Several of the transformation methods specified in ISO 

17321, and other methods that are extensions of the 17321 
methods were applied to raw data from two DSCs with 
different spectral sensitivity characteristics. These DSCs 
were used to capture images of a variety of natural scenes, 
and the resulting images were processed using the different 
characterization transforms based on different error 

metrics. Critical visual evaluation of the final images by 
expert observers was used to eliminate the obviously poor 
characterizations. Psychophysical experiments were 
conducted to differentiate the performance of the 
remaining candidates. 

Introduction 

An emerging paradigm in digital photography is the 
separation of the color reproduction process into scene 
analysis and color rendering. This paradigm offers 
increased flexibility and utility, because rendering 
algorithms can be generic to a variety of digital cameras, 
and even to film scene capture. Furthermore, the 
conceptual understanding of pictorial color image 
processing is also improved by explicit identification of the 
steps required to obtain a good photograph. From a 
practical point of view, an image captured with a DSC is 
first transformed into a scene-referred representation, 
which to a large extent is independent of the capturing 
device/system. The scene-referred representation can be 
seen as an interface between scene analysis and color 
rendering. 

Over the last decade, CIE based colorimetry has been 
successfully employed to introduce device independent 
components into digital color imaging workflows. Some of 
these components can be successfully extended to digital 
photography. However, as digital color imaging expands 
into a broad range of applications, a number of areas 
requiring further investigation become apparent. With 
pictorial imaging of natural scenes, specific areas require 
further study. Those areas include the modeling of the 
perceived appearance of natural scenes, and maintaining 
preferred reproduction appearance on a variety of output 
media. The subject of this paper is a comparison of 
different approaches to perform a colorimetric scene 
analysis under the constraint of capturing devices that do 
not fulfill the Luther condition. 

Background 

Reasons Why Typical Digital Cameras Are Not 
Colorimetric 

If one takes an engineering approach in comparing the 
human visual system (HVS) to a DSC, it becomes apparent 
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that there is a significant design constraint difference. The 
HVS uses a lens that is not corrected for chromatic 
aberration. When designing a three-channel sampled image 
capture system that uses such a lens, a good scheme is to 
have two finely sampled and relatively broad color 
channels close to the wavelength of optimum focus, and a 
third sparsely sampled channel further away from the 
wavelength of best focus. Such a scheme allows the best 
capturing of scene detail using the simple lens, while 
maintaining reasonable sensitivity. With achromatic lenses, 
as are used in DSCs, signal to noise considerations 
dominate and relatively narrow, equally spaced and 
independent spectral sensitivity curves are best. 

To illustrate this situation it is possible to calculate the 
ISO speed of two hypothetical digital cameras. The first 
uses narrow and independent (but realistic) RGB spectral 
sensitivities (see figure 2), and the second uses HVS cone 
sensitivities. The RGB sensitivities will result in an ISO 
primary noise speed2 approximately 5 times that resulting 
from the cone sensitivities. 

Decades of experience in color photography and 
television have shown that acceptable color reproduction 
for typical three-dimensional scenes can be achieved using 
non-colorimetric RGB sensitivity curves. Minor color 
errors can be traded off for large speed gains. Because of 
this situation, it is unlikely that digital photography camera 
manufacturers will sacrifice speed to achieve the slight 
improvements in color analysis provided by colorimetric 
capture. However, if a good error metric for non-
colorimetric capture can be found, it is likely that 
perceptual color analysis can be improved with little or no 
speed tradeoff. 

Classes of Scene Analysis 
If one assumes non-colorimetric capture, it is desirable 

to classify “scenes” into three general types for analysis: 

Class A analysis - known and fixed colorant behavior and 
illumination 

An example of Class A “scene” analysis is the 
scanning of an image on a known photographic material. 
With Class A analysis it is generally possible to 
characterize DSCs to produce “scene” colorimetry, as long 
as there are at least as many camera channels as colorants, 
and the spectral sensitivities of the color channels of the 
camera are well suited to analyzing the amounts of each 
colorant present. Class A analysis is typically supported 
using targets designed according to ISO 126413. 

Because of colorant behavior at different 
concentrations, colorant interactions, surface reflections, 
and illumination and capture optical and geometric 
considerations, it is sometimes desirable with Class A 
analysis to use a DSC characterization employing a 3D 
CLUT. 

Class B analysis - statistically expected colorant behavior 
and limited and fixed illumination behavior 

This is a limited generalization of the Class A 
approach. The assumption is made that all the spectral 
radiance distributions present in the scene can be 
decomposed into x basis functions. Frequently this 
decomposition is divided into two parts: first assuming a 
known illumination spectral power distribution (SPD), and 
second assuming the scene spectral reflectance 
distributions can be decomposed into x basis functions. 
Separation of the illumination SPD allows the same basis 
functions to be used for all sources, assuming the spectral 
reflectance distributions present in scenes of interest can be 
decomposed into the x basis functions. 

Class A and B analyses are equivalent when the x basis 
functions completely describe the scene, and the DSC has 
at least x color channels which are capable of effectively 
determining the amounts of each basis function present. In 
practice, further statistical assumptions are typically made 
about the different basis functions to allow a DSC with less 
than x color channels to estimate the amounts of the x basis 
functions. Also, the number of basis functions used may be 
limited so that they only represent the scene spectral 
radiance or reflectance distributions (referred to as the 
scene spectral correlation statistics) to a limited degree of 
accuracy. Consequently, color errors in Class B analysis 
generally arise from two sources: the camera does not have 
sufficient color channel capability to accurately analyze 
the x basis functions, and/or the x basis functions do not 
have the capability to represent every spectral distribution 
present in the scene. 

Typically when Class B analysis is employed, six to 
eight basis functions are used to represent all possible 
scenes. It is important to note that some spectral 
distributions will not be reproducible using these basis 
functions. The six to eight basis functions typically chosen 
tend to be smooth, because smooth spectral distributions 
are most common in nature. When these basis functions are 
used, the results of the color analysis cannot go outside the 
gamut of colors that can be represented by the basis 
functions. For example, spectral colors in a scene will 
never be mapped into spectral colors in the analysis. The 
analysis contains a bias that is represented by the basis 
functions. 

Class C analysis - unknown and variable colorant 
behavior and unknown and variable illumination 
behavior 

This is the most general case, and is sometimes 
referred to as the “maximum ignorance” case.4-7 There is 
disagreement in the color science community about 
whether it is desirable to assume maximum ignorance for 
scenes. Measurements of surface reflectance distributions 
consistently support decomposition into at most a dozen 
basis functions, yet this approach limits the analysis gamut. 
Scenes are comprised of more than surface reflectances, 
the behavior of surface reflectances in scenes is different 
from that of patches due to specular reflection components 
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and three-dimensional illumination and capture geometry 
effects. Furthermore colors can be found in some scenes 
which do not arise from reflectance distributions. There are 
also questions about the perceptual effects of different 
types of errors when using Class C analysis. 

In the debate about the relative merits of Class B and 
Class C analysis of natural scenes, the fundamental 
question is: Which analysis method estimates the HVS 
perception of scene colors most reliably? This question 
goes beyond CIE colorimetry. There are known differences 
between cone responses calculated using CIE color 
matching functions and those in the literature, but there is 
also overwhelming evidence that CIE color matching 
works from decades of experience in a number of 
industries. However, virtually all this experience is based 
on the matching of two-dimensional patches of spectrally 
smooth colorants using a controlled illumination geometry. 
What happens when some stimuli are not spectrally 
smooth, and a group of stimuli are taken together in the 
context of an image? One goal of this study is to determine 
whether Class B or Class C analysis is most appropriate for 
natural scenes, through subjective evaluation of images of 
natural scenes produced using each analysis method. 

Reasons Why Conventional Error Metrics May Not 
Predict the Objectionability of Color Errors for 
Pictorial Scenes 

If one abandons the goal of achieving perfect 
colorimetric scene analysis, the question arises how to 
analyze scenes to produce color errors with minimal 
objectionability. There may be several answers to this 
question, but a first approach is to base the color 
characterization on minimizing one of the ∆E metrics that 
take advantage of perceptually uniform color spaces. This 
approach has been shown to work well when applied to the 
capture of flat art using Class A analysis, and Class B 
analysis where the errors introduced by the limited number 
of basis functions, and the corresponding analyses of these 
basis functions by the DSC, are insignificant. 

Another goal of this study is to determine whether ∆E 
minimization is appropriate for Class C analysis, and if 
not, what is appropriate. 

Experimental Design 

The question to be answered comes down to the selection 
of a preferred method or methods for DSC characterization 
for pictorial natural scene analysis. The candidate methods 
differ based on the error criterion minimized to determine 
the best transformation. The error metrics evaluated are 
listed in table 1. 

RGB Color Space Error Minimization 
In table 1, two items are worthy of comment. The first 

regards error minimization in RGB color spaces, and the 
associated nomenclature to distinguish these color spaces. 
The use of the ITU, PC and RIMM designations refers to 
the source of the RGB primaries on which the color spaces 

are based. ITU means that the color space for error 
minimization is based on an equi-energy transformation of 
the ITU-R BT.709/38 primary chromaticities with a CIE 
illuminant D65 white point. PC means that the color space 
for error minimization is based on monochromatic 
primaries with wavelengths of 450, 540, and 620 nm. and 
an equi-energy white point. RIMM means that the color 
space for error minimization is based on an equi-energy 
transformation of the proposed RIMM RGB primary 
chromaticities9 and CIE illuminant D50 white point. 

Table 1. Error Minimization Criteria for DSC Scene 
Analysis Characterization Transformations 

Class B analysis, Macbeth Color Checker spectral 
reflectance correlation statistics, illumination dependent 
transformations. 

CIE XYZ error minimization 
 (or any other linear transform thereof) 
CIE L*u*v* ∆E minimization 
CIE L*a*b* ∆E minimization 
CIE ∆E94 minimization 
ITU double gamma error minimization 

Class C analysis, maximum ignorance, illumination 
independent 

CIE XYZ ∆E minimization 
CIE L*u*v* ∆E minimization 
CIE L*a*b* ∆E minimization 
CIE ∆E94 minimization 

Class C analysis, maximum ignorance, illumination SPD 
weighted 

ITU linear error minimization 
ITU double gamma error minimization 
PC linear error minimization 
PC double gamma error minimization 
RIMM linear error minimization 
RIMM double gamma error minimization 
 
 
The ITU and RIMM primaries were not used directly 

to construct a color space because they are not relative to 
an equi-energy white point. By convention, the color 
matching functions used for Class C characterizations 
assume an equi-energy white point. This matter will be 
discussed in more detail in the next section. Here it is 
sufficient to note that the ITU and RIMM space primaries 
were transformed from those of ITU-R BT.709-3 and 
RIMM using the method outlined in Annex B of ISO 
17321 WD4.1 

The importance of the PC wavelength primaries has 
been noted by Brill, et.al.10 The specific wavelength values 
used in this study were obtained by determining the 
maxima of curves obtained by differencing logarithmic 
cone signals as specified by Hubel, et.al11 and rounding to 
the nearest 10 nm. (see table 3). The PC primaries are 
already based on an equi-energy white point, so no 
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transformation of the type used for the ITU and RIMM 
primaries was necessary. 

Table 2. XYZ To RGB Conversion Matrices for 
Determining Color Matching Functions Based on 
Various Primaries and an Equi-Energy White Point 

CIE XYZ to ITU RGB Conversion Matrix 
3.08034 -1.53711 -0.54323 
-0.92145 1.87593 0.04552 
0.05314 -0.20418 1.15104 

 
CIE XYZ to PC RGB Conversion Matrix 

2.00177 -0.55776 -0.44401 
-0.79985 1.66278 0.13707 
0.00894 -0.01895 1.01001 

 
CIE XYZ to RIMM RGB Conversion Matrix 

1.29772 -0.25557 -0.04215 
-0.52499 1.50808 0.01691 
0.00000 0.00000 1.00000 

 

Table 3. Maxima of Curves Generated by Differencing 
Logarithmic Cone Signals 

Based on cone response functions determined by Smith & 
Pokorny12 
 Rmax = 620 nm. 
 Gmax = 538 nm. 
 Bmax = 445 nm. 

Based on cone response functions determined by Stiles & 
Estevez13 
 Rmax = 615 nm. 
 Gmax = 536 nm. 
 Bmax = 447 nm. 
 
In table 1, the designations “linear” and “double gamma” 
indicate whether the color space is linear with respect to 
radiance, or if the ISO RGB OECF specified in ISO 17321 
WD4 was applied to make the color space more 
perceptually uniform. In the latter case, the choice of the 
nonlinear function used is somewhat arbitrary. The ISO 
RGB OECF was derived from the sRGB nonlinear 
encoding function specified in IEC 61966-2-1,14 and is used 
in ISO 17321 to maximize compatibility with sRGB. It 
may be that a different nonlinear function would result in 
improved performance for error minimization. However, 
the number of variables that have to be dealt with in this 
study is difficult to manage. The first goal is to determine 
if a departure from linearity is beneficial. The sRGB 
nonlinear encoding has been shown to be reasonably 
perceptually uniform.15 After the field of candidates has 
been narrowed, further investigations could be conducted 

to determine if the ISO RGB OECF is optimal for this 
application. 

Difficulties with Non-Equi-Energy White Points and 
Class C Analysis 

The second noteworthy item with respect to table 1 is 
the subdivision of the error minimization criteria for Class 
C analysis into illumination independent and illumination 
SPD weighted criteria. This subdivision is necessary 
because of the structure of CIE colorimetry and the 
associated error metrics. With these metrics, colors outside 
the spectral locus do not have clear meaning. 
Unfortunately, with Class C analysis, the test colors 
effectively are spectral colors, so it is not possible to 
accommodate white point changes without pushing some 
of the test color outside the spectral locus. 

This limitation of CIE colorimetry with respect to 
imaging is worthy of further study. For example, say that a 
deep yellow object is photographed in a scene where the 
viewers adapted white point has the chromaticity of CIE 
illuminant D65. If a reproduction is produced where the 
viewers adapted white point has the chromaticity of CIE 
illuminant A, it is possible that the chromatic adaptation 
transform used to go from D65 to A will push the deep 
yellow outside the spectral locus. How should this color be 
represented? 

When spectral colors are the test colors, any change in 
the adapted white will push some colors outside the 
spectral locus because all the test colors start out on the 
border. This means that for the CIE ∆E error criteria to be 
used for minimization, the adapted white has to be 
assumed to be equi-energy, and only one transformation 
can be determined per camera per error criterion. This 
approach will at least result in all the aim values for the 
colors being well defined. The colorimetry estimates 
produced by the camera may still result in colors outside 
the spectral locus, because the cameras are not 
colorimetric. This situation is particularly difficult when 
negative CIE XYZ values are produced. 

Several methods were implemented to deal with 
negative XYZ values for the DSC estimated colorimetry. 
The first was to extend the functions for converting CIE 
XYZ values to CIE L*u*v* and L*a*b* values into the 
negative region. The second was to clip all negative XYZ 
values to zero. The third was to constrain the DSC 
characterization transformation determined to not produce 
any negative XYZ values for the spectral colors. It turned 
out that the characterization transformations produced 
using these methods were not too different when the 
Macbeth Color Checker patches were used for Class B 
analysis. It was found that none of the ∆E criteria produced 
viable characterization transformations for Class C 
analysis. 

Because of these complications, a spectral weighting 
method is specified for Class C analysis characterizations 
in ISO 17321 WD4. This method is not a chromatic 
adaptation transform, but a weighting of each spectral 
color based on the amount of illumination spectral power 
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at that wavelength. This weighting reduces the influence of 
spectral colors that are present in smaller quantities in the 
illumination source. In the extreme, if no power is present 
at a particular wavelength for a particular illumination 
source, no attempt is made to minimize analysis error at 
that wavelength. 

Even though the spectral weighting method is different 
from a chromatic adaptation transform, it can still produce 
aim colors outside the spectral locus because of the re-
normalization of the spectral responses required to 
determine white point preserving characterization 
transforms as specified in ISO 17321 WD4. However, with 
the RGB color space candidates, negative values are well 
defined and do not present a problem. The spectral 
weighting values are used as opposed to performing a 
chromatic adaptation transform because the validity of 
applying a chromatic adaptation transform to spectral 
colors is uncertain, and because it seems more 
advantageous to make full use of the illumination SPD as 
opposed to only its chromaticity. In any case, the purpose 
of the psychophysical experiments described below is to 
determine the validity of whatever method is used. 
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Figure 1: Camera P spectral sensitivities 
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Figure 2: Camera R spectral sensitivities 

 

Experimental Procedure 

The DSC characterization methods listed in table 1 were 
evaluated by capturing a number of natural scenes using 
two DSCs with substantially different spectral sensitivity 

curves. These cameras are at the extremes of a broad range 
of RGB sensitivities as found in current DSCs (see figures 
1 and 2). Non-RGB DSCs (such as CMYG) were not 
considered because with non-RGB cameras an unfortunate 
tradeoff exists between ISO speed and color saturation.16 
With non-RGB cameras (and to some extent even with 
RGB cameras with broad sensitivities), the question of how 
to analyze colors is strongly impacted by the speed 
tradeoff. With these cameras, optimal color reproduction 
may be sacrificed to increase speed. 

After capture, the necessary steps were applied to the 
captured images in order to obtain scene colorimetry 
estimates using the characterization methods mentioned 
above. Samples for subjective evaluation were then 
produced and evaluated. 

Image Processing 
The image processing steps were as follows. The first 

two steps were not necessary with camera R because this 
camera outputs linear 12-bit dark-current subtracted sensor 
data directly. 
 
1. Linearize raw image data to 12-bits using an inverse 

OECF LUT calculated from a focal plane OECF 
determined according to ISO 14541.17 

2. Subtract dark current based on the average linearized 
12-bit digital code value for the optical black CCD 
pixels. 

3. Subtract a DC camera veiling flare value equal to 3% 
of the mean focal plane digital code value for each 
channel. 

4. Apply channel multipliers appropriate for the camera 
spectral sensitivities and scene illumination spectral 
power distribution. 

5. Clip the channels so the maximum digital code value 
for each channel is the same as the maximum value for 
the channel with the smallest channel multiplier. 

6. Demosaic the CFA image data using bilinear 
interpolation. 

7. Apply the 3x3 color matrix determined for the 
specified characterization method. 

8. Manually scale and clip the digital code values for 
each image to produce a satisfactory overall image 
lightness level. 

9. Apply a LUT to convert to sRGB with the CRT black 
point luminance taken to be 1% of the white point 
luminance as specified in PIMA 7667 WD1. 

Experimental Setup 

For the initial subjective experiments, the images were 
viewed on a CRT display set up in an e-sRGB viewing 
environment as specified in PIMA 7667 WD1. The 
measured values for the viewing environment and display 
are listed in table 4. Figure 3 is a plot of the measured 
display L* compared to the ideal e-sRGB display L* 
values. 
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Table 4. Measured display characteristics 

Cosine-corrected ambient illuminance level measured in 
the plane of the display faceplate - 61 lux. 

Display luminance measured from the observer position 
with the display turned off - 1.06 cd/m2 

Display luminance and chromaticity as a function of input 
digital value: 

Digital Value Luminance(Y) x y 
0 1.25 0.3212 0.3492 

12 1.46 0.3325 0.3518 
25 2.01 0.3368 0.3508 
38 2.83 0.3358 0.3481 
51 4.41 0.3346 0.3464 
64 6.64 0.3330 0.3444 
76 8.98 0.3294 0.3439 
89 12.6 0.3243 0.3405 
102 16.2 0.3214 0.3403 
115 20.5 0.3208 0.3355 
128 24.6 0.3188 0.3352 
140 30.8 0.3182 0.3333 
153 39.1 0.3172 0.3325 
166 47 0.3168 0.3331 
179 56.3 0.3160 0.3320 
191 65.2 0.3147 0.3310 
204 74.2 0.3140 0.3305 
217 81.1 0.3128 0.3282 
230 93.7 0.3136 0.3287 
243 111 0.3147 0.3265 
255 123 0.3138 0.3271 

50 100 150 200 250
Digital Value

20

40

60

80

100

L*

Figure 3. Measured and ideal L* as a function of digital value 
 
A Matlab interface was constructed for conducting the 

experiments. This interface presents pairs of images to the 
subject, who is then forced to choose one image. The 
instructions given to the observer were as follows: Which 
of the two displayed images has a higher color accuracy 
(the colors are closer to the colors in a real scene)? The 
analysis of the paired comparison data was done in the 
same way as previous experiments in the ISO TC42 
committee.18-21 These previous experiments served as the 
basis for development of ISO 12232. 

Table 5. Class C Analysis Error Metric Subjective 
Results 

Camera P Scene z-scores 

Scene ITUlin ITUd
g 

PClin PCdg RIM
Mlin 

RIM
Mdg 

Mt. 
Moran 

-1.84 1.6 -0.75 1.64 -1.86 1.21 

Carousel 
& 
Flowers 

-0.26 0.28 0.28 -0.56 0.69 -0.43 

Chris & 
Cotton 
Candy 

0.72 0.18 -0.54 -0.72 0.36 0.00 

Camera R Scene z-scores 

Scene ITUlin ITUd
g 

PClin PCdg RIM
Mlin 

RIM
Mdg 

Roses 0.42 0.64 1.66 1.35 0.37 -4.44 
Grapes -0.76 -1.16 1.79 1.44 -1.61 0.3 
Meat -2.19 -2.36 2.64 2.35 0.08 -0.52 
Citrus 
Aisle 

-1.52 -1.6 -0.61 1.73 0.43 1.57 

Straw-
berries 

-5.53 -3.41 0.65 3.24 4.64 2.74 

Outdoor 
scene 

-0.13 -0.72 0.00 -0.29 1.27 -0.13 

Combined Results 

Metric ITUlin ITUd
g 

PClin PCdg RIM
Mlin 

RIM
Mdg 

Mean 
z-score 

-1.23 -0.73 0.57 1.13 0.49 0.03 

Max 
z-score 

0.72 1.6 2.64 3.24 4.64 2.74 

Min 
z-score 

-5.53 -3.41 -0.75 -0.72 -1.86 -4.44 

Overall 
Rank 

6 5 2 1 3 4 

 

Experiment 2 - Comparison of different error metrics for 
Class B analysis based on Macbeth Color Checker 
correlation statistics 

The results obtained so far in the subjective 
experiments involving the error metrics for Class B 
analysis based on Macbeth Color Checker patches are 
presented in table 6. 

Results 

The following characterization methods were eliminated as 
candidates from the subjective experiments related to Class 
C analysis because of their obviously poor performance: 
 
1. CIE XYZ error minimization fails if the illumination is 

very different from equi-energy. 
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2. CIE L*a*b* and zero-clipped L*a*b* ∆E 
minimization fails if the illumination is very different 
from equi-energy. 

3. CIE L*a*b* ∆E minimization, with the 
characterization matrix constrained to only produce 
positive XYZ values, fails in general. 

4. CIE L*u*v* ∆E and CIE ∆E94 minimization fails in 
general. 
 
In all of the above cases, a characterization method 

was not considered to have failed unless it was relatively 
indisputable that the results produced were unacceptable. 

Experiment 1 - Comparison of different error metrics for 
Class C analysis 

The results obtained so far in the subjective 
experiments involving the remaining error metrics for 
Class C analysis are presented in table 5. 

Table 6. Class B Analysis Error Metric Subjective 
Results 
Camera P Scene z-scores 
Scene XYZ 

error 
ITUdg 
error 

L*a*b* 
∆E 

L*u*v* 
∆E 

∆E94 

Mt. 
Moran 

-1.84 1.6 -0.75 1.64 -1.86 

Carousel 
& 
Flowers 

0.73 0.28 0.28 -0.56 0.69 

Chris & 
Cotton 
Candy 

0.9 -1.71 0.36 0.63 -0.18 

Camera R Scene z-scores 
Scene XYZ 

error 
ITUdg 
error 

L*a*b* 
∆E 

L*u*v* 
∆E 

∆E94 

Roses 0.57 1.32 -1.23 0.23 -0.89 
Grapes -1.03 -0.15 0.28 0.75 0.15 
Meat -0.28 -0.17 0.73 -0.56 0.28 
Citrus 
Aisle 

-1.16 -1.74 0.72 1.44 0.74 

Straw-
berries 

-2.21 -3.41 2.28 1.87 1.47 

Outdoor 
scene 

-0.11 1.17 -0.42 -0.2 -0.44 

Combined Results 
Metric XYZ 

error 
ITUdg 
error 

L*a*b* 
∆E 

L*u*v* 
∆E 

∆E94 

Mean 
z-score 

-0.49 -0.31 0.25 0.58 0.00 

Max 
z-score 

0.9 1.6 2.28 1.87 1.47 

Min 
z-score 

-2.21 -3.41 -1.23 -0.56 -1.86 

Overall 
Rank 

5 4 2 1 3 

Experiment 3 - Comparison of Class B and Class C 
analysis using the same error metric 

The results obtained so far in the subjective 
experiments comparing Class B and Class C analysis with 
both using the ITU based error metrics are presented in 
table 7. 

Table 7. Class B and Class C analysis comparison using 
ITU based error metrics 

Camera P Scene z-scores 

Scene Class B 
ITUlin 

Class B 
ITUdg 

Class C 
ITUlin 

Class C 
ITUdg 

Mt. 
Moran 

-2.49 -0.28 0.61 2.16 

Carousel 
& 
Flowers 

-0.14 -0.3 0.29 0.15 

Chris & 
Cotton 
Candy 

1.01 0.44 0.52 -1.97 

Camera R Scene z-scores 

Scene Class B 
ITUlin 

Class B 
ITUdg 

Class C 
ITUlin 

Class C 
ITUdg 

Roses 0.42 0.64 1.66 1.35 
Grapes 0.00 0.13 0.00 -0.13 
Meat 1.68 0.44 -0.95 -1.17 
Citrus 
Aisle 

-0.02 0.15 0.00 -0.13 

Straw-
berries 

2.3 0.34 -2 -0.64 

Outdoor 
scene 

0.3 0.44 -0.3 -0.44 

Combined Results 

Metric Class B 
ITUlin 

Class B 
ITUdg 

Class C 
ITUlin 

Class C 
ITUdg 

Mean 
z-score 

0.34 0.22 -0.02 -0.09 

Max 
z-score 

2.3 0.64 1.66 2.16 

Min 
z-score 

-2.49 -0.3 -2 -1.97 

 
The z-score results presented in tables 5, 6 and 7 are 

based on 9 subjects for all scenes except the “Chris & 
Cotton Candy” scene, which had 7 subjects. The 95% 
confidence limits for 9 test persons is 0.65, and for 7 test 
persons is 0.74. 

Initial Conclusions 

Transformations based on the CIE XYZ error and all three 
CIE ∆E criteria tested were found not to be acceptable for 
Class C analysis. A new error metric is needed for 
determining Class C characterization transformations. The 
proposed new RGB based metrics seem to perform 
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reasonably well, with the PC double gamma criterion 
scoring highest. Unfortunately, this error metric has not yet 
been tested for use in Class B analysis. 

Of the Class B analysis error criteria tested, L*u*v* 
∆E minimization scored highest, closely followed by 
L*a*b* ∆E minimization. The z-score differences for this 
experiment were not as large as with the Class C analysis 
experiment. Nevertheless, it looks probable that CIE XYZ 
error minimization produces poorer transformations than 
CIE L*u*v* and L*a*b* ∆E minimization. This is 
significant in view of the widespread use of XYZ error 
minimization. ITU double gamma error minimization also 
did not perform as well as the L*u*v* and L*a*b* ∆E 
minimizations, but in experiment 1 it performed poorly 
compared to the PC double gamma error minimization for 
Class C analysis so no conclusions can be drawn regarding 
the use of RGB error minimization for Class B analysis. 

The z-score differences between Class B and Class C 
analysis were well below the level of statistical 
significance for the combined results, but significant 
differences were observable for some specific scenes. This 
is consistent with the idea that the performance of Class B 
analysis depends on how accurately the spectral radiance 
correlation statistics assumptions match the actual scene 
spectral radiance correlation statistics. If the match is good, 
one would expect Class B analysis to outperform Class C 
analysis. The opposite would be expected if the statistical 
assumptions were not a good match to the scene. 
Unfortunately, the design of the experiment reported here 
is not optimal because of the choice of the ITU based RGB 
error minimization criteria. 

In all cases, the results obtained were strongly scene 
dependent. In choosing the best error minimization criteria 
it is necessary to evaluate a wide range of scenes, and to 
recognize that no single criterion will give the best results 
for all scenes. 

Continued Investigations 

Experiment 1 as outlined here will be continued. More 
observers will be added to the CRT display based 
experiments, and a comparable set of experiments may be 
conducted using print samples. After extensive exposure to 
the samples, the authors have the impression that it is 
easier to differentiate between print samples than CRT 
display samples, so it may be possible to evaluate smaller 
differences and/or use smaller numbers of observers. There 
is also the question of whether the results of the 
experiments will be the same for print samples as for CRT 
display samples. 

Experiments 2 and 3 will not be continued as is. Initial 
results indicate that the ITU primaries are the worst of the 
three candidate sets on which to base error minimization. 
Experiments 2 and 3 will therefore be continued with the 
PC primary based error minimization substituted. 

The authors hope to also continue this work with three 
new experiments as follows: 

Experiment 4 - Comparison of different Class B 
analysis spectral correlation statistics assumptions using 
the error metric preferred for the Macbeth Color Checker 
statistics. Candidate statistics include those of the patches 
used for the CIE Color Rendering Index,22 and those of the 
SOCS database.23 

Experiment 5 - Comparison of the best Class B 
analysis method to the best Class C analysis method. 

Experiment 6 - Investigation of the effects of more 
sophisticated color rendering algorithms applied to scene-
referred images. The question to be answered with this 
experiment is whether the additional color rendering step 
affects the choice of analysis method. 
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