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Abstract 

In the evaluation and optimal design of digital camera 
spectral sensitivity (SS), it is useful to have a metric of 
goodness that agrees closely with the perceived color 
accuracy of human visual system. In this paper, Vora et 
al’s µ-factor based on the orthonormal color matching 
function space and a universal measure of goodness (UMG) 
based on CIE L*a*b* space with noise consideration were 
introduced to evaluate and optimize the camera spectral 
sensitivities. General physical constraints on spectral 
sensitivities were discussed in the paper and three feasible 
approaches to the optimal design of camera spectral 
sensitivities were proposed, compared and verified with 
simulated experiments. 

Introduction 

Recent years applications of digital cameras and high-
resolution color scanners are widely spreading in the home 
and office environments. The principle of digital camera is 
usually a CCD or CMOS sensor array with a set of filters 
before it to mimic human visual system. Human visual 
responses to color stimuli have been determined by 
psychophysical experiments and are officially 
recommended as color matching functions by CIE, which 
characterizes spectral distributions of object colors by 
tristimulus values since the human eye has three types of 
cones with different spectral sensitivities. Most imaging 
systems are therefore set up with three channels and the 
device sensitivities are initially designed to approximate 
human visual system. 

There are two folders in optimizing spectral 
sensitivities. One is the measure; the other is how to 
implement the optimization in real world. Theoretically, 
the spectral sensitivities for color imaging devices should 
satisfy the Luther condition, that is, the spectral 
sensitivities need be a nonsingular transformation of color 
matching functions. In practice, it is not always possible to 
make filters that satisfy the Luther condition due to the 
physical limitations of fabricating process. Furthermore, 
recording noise will degrade the color accuracy even when 
spectral sensitivities fulfill the Luther condition. A measure 
of goodness or quality factor for evaluating and designing 
spectral sensitivities of color imaging devices under real 
condition is therefore desirable. 

Vora and Trussell introduced µ-factor, which describe 
the difference between the orthonormal subspaces of color 
matching functions and the spectral sensitivity space. This 
measure can be related to a mean-squared error metric in 
CIEXYZ space. Recently, Wolski et al7 proposed the use of 
local linearization of CIELAB space to reduce the 
computational complexity with preserving the desirable 
property of perceptual uniformity. Sharma and Trussell6 
presented a new figure of merit for color scanners, which is 
also based on an error metric in linearized CIELAB space 
but incorporates a model for measurement noise. This 
measure has high degree of perceptual relevance and also 
accounts for noise performance of different filters. 

The higher the quality factor for the imaging device, 
the more accurate color reproduction is expected. One 
approach to improve the color is to use an increased 
number of color channels. As the number of color channels 
is increased, additional information about the object color 
is obtained, but cost and fabrication difficulty is likely to 
increase. Four-channel system is suggested to be a good 
tradeoff.10 This paper demonstrates a method to compute 
the optimal transmittance of a fourth filter by maximizing 
the total quality factor of the system. 

In this paper, the introduction of quality factors 
including µ-factor and UMG is followed by discussion of 
the physical constraints for practical spectral sensitivities. 
Finally, we present several feasible approaches to the 
optimal design of camera spectral sensitivities. 

In our paper, all spectral distributions are sampled at 
10nm intervals from 400nm to 700nm and represented as 
N-element column vectors (N=31). 

µ-Factor of A Set of Spectral Sensitivities 

Let M denote the matrix of K scanning spectral sensitivities 
(including detector sensitivity and the transmittance of 
filter and the camera optical path), ],,,[ 21 KmmmM ⋅⋅⋅= . Let 

],,[ zyxA =  denote the human visual space (color matching 
functions) to be approximated. When multiple illuminants 
are involved, we may define M and A as: 
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where nLLL ,...,, 21  are the diagonal matrices of the power 
spectrum of the illuminants involved. 

An orthonormal basis for A is defined by U = 
[u1,u2,…,uα]. The number of orthonormal vectors, α, is the 
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rank of A. Similarly, an orthonormal basis for M is defined 
by ],,,[ β21 ⋅⋅⋅= oooO . Also notice that β is the rank of M. 
The orthonormal basis U and O need not represent 
realizable spectral sensitivities. One can prove that 

TTT OOMMMM =−1)(  and TTT UUAAAA =−1)( .8 
The purpose is to approximate A by a linear 

combination of M, that is, to minimize the merit function 

2
F
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where Q is the coefficient matrix to be optimized. This is a 
least-squares problem. 
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is obtained with pseudo-inverse operation. And the residue 
min∆  is given by 
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is the normalized measure of goodness for a set of spectral 
sensitivities M against color matching functions A. The 
higher )(MAµ , the closer M and A in some sense. Since 
quality factor )(MAµ  can be applied to any number of 
taking illuminants and viewing illuminants among 

nLLL ,...,, 21 , for convenience, we may name it as M-factor. 
When only single illuminant is present and the orthonormal 
subspace U of A is used, we have 
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which is the original definition of µ-factor for a set of SS 
by Vora et al.4 

Universal Measure of Goodness (UMG) 

It is known that the color of an object is specified by its 
CIE XYZ tristimulus values: 

rArLArt T
vv

T ==)(      (6) 

where )(rt  is the 3×1 vector of CIE XYZ tristimulus values, 
A is the N×3 matrix of CIE XYZ color matching functions, 
Lv is the N×N diagonal matrix with samples of the 
illuminant spectrum along the diagonal  and ALA vv = . 

The process of capturing object color with a K-channel 
camera can be expressed as: 

ε+=ε+= rGrLMrt T
c

T
c )(     (7) 

where )(rtc  is a K×1 vector of camera measurements, M is 
the N×K matrix of camera total spectral sensitivity, Lc is 
the N×N diagonal matrix with samples of the taking 
illuminant spectrum along the diagonal, MLG c= , and ε is 
the K×1 measurement noise vector for the K channels. 

The CIE XYZ tristimulus values may be estimated as 
linear transformations of the scanner measurements: 

)()(ˆ rBtrt c=      (8) 

where the transformation B is determined by minimizing 
some type of color error, such as mean-squared color 
difference, maximal color difference etc. 

For the case of single illuminant involved, the mean-
squared color error may be defined as the merit function 
by: 
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where F is the transformation from CIE XYZ to L*a*b*, and 
)(tJF  is the Jacobian matrix of the transformation F. By 

using this locally linear approximation and assuming the 
recording noise is zero mean and independent of the object 
spectra, one can derive  

),()(),,(min GAABGA vvv τ−α=∆                 (10) 

where )(),(0 vv AGA α≤τ≤  and define the figure of merit 
for color imaging devices6 
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A simple correction can be made to the equation: 
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so that the average color difference of an ensemble of 
spectra varies linearly versus quality factor as shown in 
Figure 1. A very linear relationship is expected when the 
camera UMG is rather high (greater than 0.8). 

Since the taking (recording) and viewing illuminant 
may be different, we may define a quality factor for any 
taking-viewing illuminant pair. If the illuminant pair can 
be chosen from a set of illuminants },,,{ nLLL ⋅⋅⋅21 , a quality 
factor matrix may be defined as: 
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where ijq  is the quality factor with taking illuminant iL  
and viewing illuminant jL . 
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Figure 1. UMG versus CIE L*a*b* color difference 

The so-called universal measure of goodness (UMG) 
for the illuminant set may be defined as the average of 
elements of one column, one row, diagonal, or all 
elements: 
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depending on different types of problems involved. The 
value indicates the performance of sensitivities under 
single or multiple viewing and recording illuminants. 
Particularly, if the viewing illuminant and taking 
illuminant are the same as the CIE equi-energy illuminant 
and noise is omitted, the related UMG may be regarded as 
initial merit indicator for a given SS set.  

Physical Constraints on Spectral Sensitivities 

The optimal design of spectral sensitivities is usually to 
search a set of filters by maximizing some pre-defined 
measure of goodness while satisfying given physical 
constraints emerging from practical fabrication process. 
The measure of goodness such as the µ-factor defined by 
Vora et al4 or the figure of merit by Sharma6 or the 
aforementioned UMG can be used as criteria. The 
constraints usually imposed on camera spectral sensitivities 
are: 

(1) Non-Negativity and Boundedness:  
The transmittance of spectral sensitivity at each 

wavelength is non-negative; the transmittance at each 
wavelength cannot exceed one or some other constant. 
Different boundedness constraint may be exerted according 
to real world. 

1)(0 ),,( ≤λ≤ iBGRm     (15) 

 (2) Smoothness:  
The second derivative of the physical sensitivity can 

be used as a measure of curvature and therefore as a 
measure of smoothness of the sensitivity. 

max11 )()(2)( ∆≤λ+λ−λ +− iii mmm      (16) 

 (3) Single Peak (Optional, Preferred):  
The transmittance of the filter has one global peak, 

and without multiple local peaks. There is more chance to 
fabricate a single-peaked filter than a multi-peaked filter. 

Other constraints such as the range of the first 
derivative of the spectral sensitivities, symmetry etc. may 
also be included depending on specific problems.  

Optimization of Spectral Sensitivities 

Since each spectral sensitivity has 31 variables (assume 
visible range defined on 400nm-700nm with an interval of 
10nm), optimization problem with near 100 variables for a 
three-channel camera is very difficult to be implemented in 
reality. It still can be done theoretically, but it’s hard to 
judge if the obtained optimum is really optimal since the 
optimization is much likely to be trapped in local valleys. 
Some simplification is necessary in practice.  

1. An Optimal Subset of a Discrete Set of Filters 
A simple formulation of the optimization problem is to 

determine the “best” set of K filters from a set of existing 
filters. Suppose the set S is the set of existing filters from 
which the best subset M0 of K filters is to be chosen. UMG 
may be maximized with respect to subsets of S, of size K, 
by exhaustive searching K filters at a time. If N is the size 
of set S, such a search will involve )!(!/! KNKNCK

N −=  
times of evaluations of the measure of goodness. For 
instance, Vora11 selected optimal three-filter subset from 
the Kodak Wratten Filter Set, in light of µ-factor. The 
optimal set of the filters (23A, 48A and 52) has µ-factor of 
0.912. 

Another example is that we choose the best three 
hypothetical spectral sensitivities12 from the complete com-
binations of cubic spline functions with varied peak 
wavelength and width. With exhaust searching, one can 
obtain the three hypothetical spectral sensitivities (R: peak 
(590nm), width w=60nm; G: peak (550nm), width 
w=60nm; and B: peak (450nm), width w=40nm), which 
contribute a UMG of 0.990. It is the highest among the 
discrete spectral sensitivity sets with cubic spline shape. 
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One can calculate the color difference of each sample in 
the Vrhel object color ensemble9 between the measured 
reflectance spectra and the predicted one with this hypo-
thetical optimal spectral sensitivity set. Under daylight 
D65, the overall average CIE L*a*b* color difference is 
0.35. Based on criteria of either quality factor or average 
color difference, it’s an optimal spectral sensitivity set. 
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(b) 

Figure 2. (a) An optimal set of spectral sensitivities by computing 
every possible combination; (b) Histogram of color difference of 
each sample of the ensemble 

2. Parameterization of Filter Characteristics 
One way of incorporating a manageable dynamic 

range and smoothness for filters is by modeling each filter 
in terms of smooth, nonnegative functions with a few 
parameters. As alternative way of modeling SS other than 
cubic spline functions, we can model the filters as single 
Gaussian or as the sum of two Gaussians. Other functions, 
such as sinusoidal functions can also be used. It is feasible 
that each filter has no more than 5 or 7 parameters (degree 
of freedom), resulting in tractable formulations of the 
optimization problem and in physically realizable filters. 

The functions were chosen for ease of implementation and 
efficiency of the optimization routine. For instance, 
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(c) 

Figure 3. (a) Optimization result of parametrization; (b) 
Histogram of optimal peak wavelength; (c) Histogram of optimal 
half width   
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The resulting “optimal” filters will be sums of Gaussians 
and, hence, easy to be fabricated.  

Once again it is likely that the merit function has many 
local maximum, which implies that a particular solution is 
a function of the starting point and not necessary the really 
optimal set of filters. To minimize this effect, thousands of 
trials are attempted with different initial points used. The 
resulting sensitivity set is the one with maximal quality 
factor among those trials. Figure 3 is results of opti-
mization of parameterization of filter characteristics. Each 
sensitivity has two parameters (peak position, half width), 
totally six for three sensitivities. It can be seen that the 
range of optimal peak position and width spreads widely 
but clusters on a few points, as shown in Figure 3(b, c). 

3. Only One Channel Needs Optimization 
There are cases when two or three spectral sensitivities 

are given and only the last is free to search for an optimal 
one. In this case, one has 31 variables totally (still too 
many), however the problem is much easier. The above 
two approaches may still be applied, but a direct 
optimization towards the 31 variables could be an 
interesting trial in practice, while a local optimal result is 
still likely to be obtained. In the following example, given 
three sensitivities with UMG of 0.827, a fourth channel is 
designed so that the total quality factor is improved. We 
assume the fourth SS satisfy the general three constraints 
with a smoothness tolerance of 0.025 (this number can be 
adjusted to make a tradeoff between smoothness and 
freedom). The unique peak position of the fourth SS slides 
from 400nm to 700nm by 10nm, totally 31 possible 
positions (since we don’t know which wavelength it should 
locate at). Final UMG of the set consisting of four SS can 
be as high as 0.959. The optimal peak position of the 
fourth spectral sensitivity locates at 610nm (Figure 4).  

Discussions and Conclusions 

It is hard to tell which kind of spectral sensitivity is easy to 
be fabricated in practice, the one with defined shape or the 
one with arbitrary shape but satisfaction of the three 
common constraints. Generally, optimization of the 
spectral sensitivity with predefined shape yields smooth 
curve and high quality factor but may omit those beyond 
this shape, which could be optimal set as well. Global 
optimization without shape limitation is likely trapped in 
local minima and produce intractable curve. Optimization 
though computing combination of discrete set is tedious, 
but produces feasible solution fastest from the available 
filters. As a next stage, we will incorporate more 
constraints from industrial viewpoints and carry out full 
trials by actually fabricating the optimal sensitivities. 
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Figure 4.  Assume three sensitivities are given, for instance, 
cubic spline functions peak at 450nm, 550nm and 650nm with 
width parameter w of 60nm, 50nm, 40nm. A fourth sensitivity is 
optimized according to the physical constraints described above 
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