
Colour Difference Metrics and Image 
Sharpness 

Samira Bouzit and Lindsay MacDonald 
Colour & Imaging Institute, University of Derby, United Kingdom 

 
 

Abstract 

We describe experiments to assess differences in the 
perceived sharpness of images, in which a Gaussian filter 
of variable width was convolved with a set of test images. 
Differences between the original and filtered images were 
computed pixel by pixel using three colour metrics: (a) 
mean square error (MSE) computed in RGB values; (b) 
CIELAB colour difference; and (c) s-CIELAB spatial 
colour difference. A psychophysical experiment was 
performed in which observers assessed the sharpness of the 
filtered images on a numerical category scale. The 
modulation transfer function (MTF) for the display was 
measured and the square root integral (SQRI) was 
evaluated as a predictor of perceived image sharpness. The 
results showed good agreement between the mean observer 
judgements and the prediction of both the colour difference 
metrics and the image quality metric across the full range 
of widths of the Gaussian filter.  

Introduction 

Sharpness is known to be one of the important factors 
relating to the perceived quality of reproduced images. The 
sharpness of an image is dependent upon the image 
formation and capture process (optics and sensor), the 
digital encoding and intermediate image processing 
(including resizing and compression) and the reproduction 
process (display or printer). It is also influenced by the 
visual acuity and state of adaptation of the observer. When 
an image is sharp, more detail can be discerned – sharp 
edges permit the observer to discriminate features more 
clearly, and sharp details permit the observer to recognise 
object surface characteristics more accurately.  

Interest in image sharpness has grown because of its 
importance in cross-media reproduction. MacDonald1 
recently proposed a framework based on the human visual 
contrast sensitivity function (CSF) and the Modulation 
Transfer Function (MTF) of the input and output devices to 
determine an optimum correction to be made to the 
sharpness of an image. Such a system would support the 
semi-automated sharpness enhancement of images from 
any source device to any destination device. 

A different approach was taken by Bech et al.,2 who 
developed the Rapid Perception Image Description 
(RaPID) methodology for determining the overall 

perceived image quality of an imaging system. This 
permits engineers to describe and quantify the perceptual 
factors that substantially contribute to image quality, and 
then to develop perceptual models based on those factors. 
The RaPID model was successfully used by Nijenhuis et 
al.3 where sharpness was the first perceptual attribute 
tested. The results showed linear relationships between 
perceived detail rendering, modulation depth and contour 
rendering. With so many variables affecting perceived 
image sharpness, it was concluded that future imaging 
systems would benefit from more optimised designs. 

In conjunction with the growth in digital imaging 
technology, many techniques have been developed to 
improve the appearance of sharpness of digital images. 
One of the most widely used is Unsharp Masking (USM),4 
which offers great potential for improving image quality. A 
family of linear filters for image sharpening without 
altering image colour content was described by Mintzer.5 
For medical images such as X-rays, Ogoda et al.6 made a 
significant improvement to standard unsharp masking by 
selectively controlling the degree of enhancement for each 
spatial frequency band. Deng7 used the Logarithmic Image 
Processing (LIP) model, with a non-linear mapping 
function to enhance both contrast and sharpness. The 
comparison of different image enhancement algorithms is 
difficult, because a given method may work well in one 
application but completely fail in another. 

The study described in this paper was part of a 
programme of research to investigate the perceived 
sharpness of colour images on a television display after 
processing with filters of various types. In order to design 
the optimum image sharpening filter, we need to 
understand how perceived image sharpness varies with 
different filter parameters. Ideally, one would perform a 
psychophysical experiment with human observers to assess 
the perceived image quality for a large set of images for 
every possible combination of filter parameters. 
Unfortunately the time required to perform such an 
extensive programme of experiments makes this approach 
unrealistic. Instead one must supplement and reinforce the 
subjective (psychophysical) assessment with objective 
(computational) methods for estimating image quality. 

Quality metrics fulfil this need by encapsulating our 
understanding of human visual processing.9 By making 
suitable measurements of device and image characteristics 
and viewing conditions, and computing metrics based on 
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these measurements, we aim eventually to be able to 
predict the visibility of sharpness. As a first step we 
examined the correlation between colour difference metrics 
and observations of image sharpness. In the present study 
four metrics were tested: 
• Mean square error (MSE) computed pixel by pixel in 

RGB values; 
• CIE 1976 (L*a*b*) colour difference formula ∆E*ab

10; 
• s-CIELAB spatial colour difference metric11; 
• Square root integral (SQRI) image quality metric12, 13. 

 
The s-CIELAB metric is particularly interesting 

because it makes an attempt to model the response of the 
human visual system to different spatial frequencies, and 
one would therefore expect it to produce a better prediction 
of visual judgements than the other metrics. The algorithm 
comprises three stages: 
(1) The image is converted into a device-independent 

representation consisting of one luminance and two 
chrominance components; 

(2) Each component image is convolved with a spatial 
filter tuned to the corresponding spatial sensitivity of 
the human eye; 

(3) The filtered image is transformed via CIE-XYZ into 
CIELAB co-ordinates, from which the colour 
difference is calculated. 
 
The SQRI metric, which was developed by Barten12 for 

evaluation of image quality, can be applied to images on 
CRT displays. The human visual response is taken into 
account by making use of the modulation threshold 
function of the eye. 

Experimental Approach 

Experimental Setup 
In the experiment we used a standard Bang & Olufsen 

Beocentre AV5 television (29-inch diagonal, 4:3 aspect 
ratio) to display a still image generated in PAL format 
from a video card in the PC host computer.  

The colour characterisation of the television employed 
the gain-offset-gamma (GOG) display model developed by 
Berns,14 so that the red, green and blue digital pixel values 
needed to produce any desired colour could be determined. 
This model was used to process the test images. The peak 
white luminance was measured using a Minolta CS-1000 
telespectroradiometer as 108.7 cd/m2 and the lowest black-
level was less than 1 cd/m2 in the dark environment of the 
experimental room with black-out blinds over the windows 
and lights off. The television white point was 6500K. 

Spatial Characterisation of the Display 
The viewing environment provided to the observer was 

as shown below: 

Display width
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Viewing angle
w 

 

The BeoCenter AV5 television had dimensions 47×37 
cm (4:3 aspect ratio) corresponding to a display area of 
720×576 pixels. At the fixed viewing distance of 180 cm, 
the dimensions of a pixel on the screen were 0.64×0.65 
mm. 

The angular subtense of one pixel from the observer’s 
viewing position was calculated as: 

deg032.0
180

1800

1180 =
π

×=
π

×=
l

d
wpixel  

which corresponds to 15 cycles/degree. 
The angular subtense of the display from the 
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horizontal directions as: 
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The modulation transfer function (MTF) of an imaging 
system or device describes the its ability to reproduce 
spatial frequencies. In this study, the modulation transfer 
function of the television display was determined by using 
a still digital camera.  

Firstly, the monochrome MTFs of the display-camera 
system were evaluated for both horizontal and vertical 
display orientations by using black-and-white bar patterns. 
For each individual spatial frequency the modulation was 
calculated using eqaution (1). The MTFs were determined 
by the ratio of the output to the input modulation.15  

 
minmax

min

VV

V
+
−= maxV

   Modulation       (1) 

Secondly, the MTF of the camera alone was 
determined by using the Noise Power Analysis technique.16 
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Finally, the MTF of the television for each orientation was 
determined: 

 CameraSystemTelevision MTFMTFMTF /=     (2) 

Figure 1 illustrates the MTF curves for both display 
orientations as a function of spatial frequency. The curves 
do not show significant differences; by giving greater low 
frequency responses and poorer high frequency responses, 
with the vertical response being relatively higher. 
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Figure 1. MTFs of the television using bar patterns target for 
vertical orientation (top) and horizontal orientation (bottom) 

Test Images 
A set of four test images was selected from the ISO 

12640 (SCID) set,17 denoted Bicycle, Flowers, Woman and 
Bottles. The first scene contains fine details of a bicycle 
wheel, sine patterns and different shapes with high chroma 
colours. The second is a flower in transparent glass vase 
producing sharp contrast against both a white dish and a 
dark defocused background. The third is a young woman 
with clear skin tones and fine details in the hair against a 
neutral grey background. The fourth is an arrangement of 
silver objects and glassware with predominantly high-key 
tones and many specular highlights. The images were 
converted from CMYK to RGB format at 8 bits/pixel, and 
scaled to 720×576 pixels in size (full screen for television 
display). 

 

 

Figure 2. Two-dimensional Gaussian filter of 0.5-pixel width. 

 

Image Processing 
Blurred versions of each original image were 

generated by convolution with a low-pass Gaussian filter, 
as shown in Figure 2. The filter width was varied to 
produce different degrees of blur in the image. Eleven 
filtered versions were computed for each test image, with 
the standard deviation (width) of the spatial filter ranging 
from 0.1 to 1.0 pixels in steps of 0.1 for the first ten and 
1.5 pixels for the last. Thus there were 12 versions of each 
image (the original plus 11 filtered images), making a total 
of 48 test images for the four scenes. 

Because the sharpness of an image depends much 
more on the luminance than the chrominance content,18 and 
for reasons of computational efficiency, we wished to 
investigate the effects of processing only the image 
luminance component. Various colour spaces that separate 
luminance from chrominance could be used for this 
purpose, such as CIE-L*a*b*, CIE-L*u*v*, YIQ and HSV, but 
for this study we chose the YCbCr colour space 
transformation defined by NTSC19: 

 

BGRC

BGRC

BGRY

r

b

081.0418.05.0

5.0331.0168.0

114.0587.0299.0

−−=
+−−=

++=
  (3) 

where Y is the luma component, and Cb, Cr are blue and red 
chrominance components respectively. Following 
television convention, we use the term ‘luma’ for Y rather 
than the usual ‘luminance’ to avoid confusion with CIE 
luminance. Figure 3 shows the image processing procedure 
used in this study. The original colour image was 
converted into YCbCr colour space. Only the luma 
component was filtered, then recombined with the 
chrominance components. The filtered image was 
transformed to CIE-XYZ co-ordinates and then converted to 
CIELAB using the standard formulae. Finally, the three 
colour difference metrics defined above were computed on 
a pixel-by-pixel basis and their frequency distributions 
examined. 

Procedure 
The images were evaluated using the category 

judgement technique by 10 observers from the Colour & 
Imaging Institute, 5 female and 5 male, with ages ranging 
from 22 to 49. All had normal colour vision and normal or 
corrected-to-normal visual acuity. The images were 
displayed on the television in a darkened room. The 
viewing distance from the observer’s eye position to the 
centre of the screen was 180 cm. Observers were asked to 
read the instructions, then allowed to adapt to the viewing 
conditions for 5 minutes. In order to help them to establish 
an internal judgement scale, they were trained by 
displaying a series of images different from those in the 
real experiment. Observers were asked to make their 
judgements using an eleven-point numerical category scale 
ranging from 0 (the lowest degree of perceived sharpness) 
to 10 (the highest degree of perceived sharpness), by 
answering the following question:  
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“Please assess the degree to which you consider that the 
sharpness of the image is optimum.” 
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Figure 3: Flow chart of the image processing procedure. 

 

 

Figure 4. Perceived sharpness (95% confidence interval) versus 
Gaussian filter width for: (a) Bicycle (b) Flowers (c) Woman (d) 
Bottles 

 
This technique has previously been used successfully 

for assessment of other perceptual attributes of images on a 
television display.20 The observers were allowed as long as 
they wished to make the judgement of each image. The 

sequence of 48 test images was presented in random order 
separately for each observer. 

Results 

Observer Estimation 
As is well known, low-pass Gaussian filtering reduces 

the high frequency components in an image, and thus 
results in blurring of the image (and thus a reduction in 
fine detail associated with noise). In our processing, after 
filtering the luma component, most of the fine texture had 
been filtered away, and the gradients of edge boundaries 
were reduced. The overall balance of light and dark tones 
was unaffected, because their low spatial frequencies were 
well within the pass-band of the filter. 

The observers’ raw numerical judgements were 
transformed into a subjective sharpness scale, according to 
Thurstone’s ‘Law of Categorical Judgement’.21 The 
decisions were converted to an interval scale where the 
95% confidence interval for N observations was calculated 
as: 

 
N

CL
)21(

96.1%95 ±=      (4) 

Since the number of observations was N=10 in this 
experiment, the confidence interval around each scale 
value was 0.438. Hence if the mean scale values were 
within 0.438 of each other, there was no significant 
difference between the sharpness judgements for the test 
images. Figure 4 shows the mean perceived sharpness, in 
terms of z-score calculated from Equation (4), as a function 
of Gaussian filter width. The four graphs show similar 
tendencies: for low filter width there was high perceived 
sharpness, but for larger filter widths, noticeably above 0.5 
pixels, the perceived sharpness became insignificant. 

Colour Difference Metrics 
The mean square error (MSE) was calculated as a 

point-by-point vector between the original and filtered 
images: 

 )()()( ijijijij BGRMSE ∆+∆+∆=     (5) 

where ∆R, ∆G and ∆B represent the differences in the 
R,G,B channels respectively. 

The standard CIELAB colour difference formula was 
used to calculate ∆E*ab pixel by pixel between the original 
and the filtered images. The s-CIELAB metric was 
computed using the method described by Zhang & 
Wandell.11  

Figure 5 shows the relationship between the mean 
colour difference (metrics) and mean perceived sharpness 
(observers) for all the images, computed across the full 
range of Gaussian filter widths. The results, using the best 
fitting line by linear regression, indicate a strong 
correlation between the predictions of the metrics and the 
sharpness perceived by the observers. The average errors 
for the RMS, ∆E*ab and s-CIELAB metrics were 0.024, 
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1.67 and 0.557 respectively, which are of the order of 
average perceptibility tolerances for complex images. 
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Figure 5. Observer z-score versus colour difference for three 
metrics 

 

Image Quality Metric 
The square root integral (SQRI) image quality metric 

proposed by Barten11,12 was calculated as: 

 
u

du

um

uM
SQRI

U

t
∫=
max

0
)(

)(

2ln

1
    (6) 

where u is the angular spatial frequency at the eye of the 
observer in cycles/degree, umax is highest frequency to be 
displayed. M(u) is the MTF of the display as shown in 

Figure 1, mt(u) is the modulation threshold function of the 
eye calculated using Barten’s model.12 In the SQRI metric, 
the non-linear behaviour of the eye has been taken into 
account by using the square root of the ratio of M(u) and 
mt(u) in the integrand. 

SQRI expresses the image quality in just noticeable 
differences, due to the normalising factor of 1/ln2. This 
factor was included on the basis12 that the value of the 
metric increases by 1 when the square root of the ratio of 
the MTFs increases by 1 in a spatial frequency octave (i.e. 
doubling of frequency. SQRI values were related to the 
subjective image sharpness data for each individual 
image.13  

In Figure 6, the subjective quality of the set of four 
display images is plotted as a function of the calculated 
SQRI. The subjective image sharpness appears to be highly 
correlated with the calculated SQRI value. The coefficient 
R2 for the correlation between subjective image sharpness 
and calculated SQRI value was 83.79%, 91.28%, 91.71%, 
91.28% for the Bicycle, Flowers, Woman and Bottles 
images respectively. 
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Figure 6. Subjective image sharpness as a function of calculated 
SQRI values: (a) Bicycle (b) Flowers (c) Woman (d) Bottles 

 

Conclusion 

The results of this study showed that the mean observer 
judgement of perceived image blur was well correlated 
with the mean values of various colour difference metrics 
and that it was dependent on the scene content. The results 
show a good correlation with the perceived sharpness at 
different standard deviation. The perceived overall image 
sharpness shows a high correlation with the calculated 
SQRI values. 
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