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Abstract 

The effective classification of image contents allows us to 
adopt those strategies that can best satisfy the increasing 
demand for quality, speed and ease of use in imaging 
applications. We present here the results of our 
experimentation using Cart trees for the classification of 
images indexed by low-level pictorial features, such as 
color, texture, and shape. Our study addressed the high-
level problem of distinguishing photographs, graphics and 
texts for an application in the context of cross-media color 
reproduction. The results obtained to date are very good in 
terms of accuracy, and also demonstrate the strength of the 
approach in providing information that can be used to 
reduce the dimensions of the feature space. 

Introduction 

Content-based image classification has emerged as an 
important area in multimedia computing due to the rapid 
development of digital imaging, storage, and networking 
technologies.1 The effective classification of image 
contents allows us to adopt those strategies that can meet 
the increasing demand for quality, speed and ease of use in 
imaging applications. We report here on our experience in 
the use of Cart trees for the classification of images 
indexed by low-level perceptual features such as color, 
texture, and shape, addressed to the high-level problem of 
distinguishing among photographs, graphics and texts. 

The tree approach to classification provides a clear 
characterization of the conditions that determine when a 
case belongs to a certain class. We took this approach 
because we believe that, in problems such as ours in which 
the data structure presents a high level of complexity (large 
dimensions, mixture of data types and non-homogeneity), a 
good understanding of the predictive structure of the data is 
as important a criterion for good classification as accuracy. 

Cart Classifiers 

Cart classifiers are tree classifiers structured according to 
the Cart approach. The basic reference for this is the text 

by Breiman et al.,2 which has had a seminal influence both 
in bringing tree methodology to the attention of the 
scientific community, and in stimulating the development 
of new strategies and algorithms. More concise 
descriptions can be found in [3,4], while an evaluation of 
the procedure’s performance on several databases, together 
with a comparison with different approaches, can be found 
in [5]. Many references to the great variety of applications 
in which Cart classifiers are currently used are given in [6]. 

Generally speaking, Cart classifiers are trees 
constructed by recursively partitioning the predictor space, 
each split being formed by conditions related to the 
predictor values. The process is binary: the predictor space 
and each subset of it, are split exactly in two. In tree 
terminology the subsets are called nodes: the predictor 
space is the root node, terminal subsets are terminal nodes, 
and so on. The construction process is based on training 
sets of cases whose class j∈{1, …,J} is known. In our 
problem the predictors are the features indexing the images 
(the features used are listed in the following section), and 
the training sets are composed of images whose semantic 
class is known. Once a tree has been constructed, a class is 
assigned to each of the terminal nodes , and it is this that 
makes the tree a classifier: when a new case is processed 
by the tree, its predicted class is the class associated with 
to the terminal node into which the case finally moves on 
the basis of its predictor values.  

The class assigned to each terminal node t is the one 
that minimizes the estimated expected misclassification 
cost within the node, which is given by 

( ) ( ) ( ),||min tjpjictr
j

i ∑=     (1) 

 where c(i|j) is the cost of misclassifying a class j case as a 
class i case, and p(j|t) is the estimated probability of the 
class j in node t.  

The performance of a tree is evaluated in terms of its 
overall misclassification probability, or misclassification 
cost, which, if T denotes the tree, is estimated by 
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where p(t) is the estimated probability of a case being 
assigned to node t. 

The critical problems of the splitting process are 
essentially two: how to identify candidate splits, and how 
to define the goodness of the splits. Candidate splits are 
generated by a set of admissible questions regarding the 
values of the predictors. These questions differ according 
to the nature of the predictors themselves. In the case of a 
category predictor, for example, all splits that assign the 
values of the predictor to two different groups are 
considered candidates. At each step of the process, all the 
predictors are searched one by one, and the best split, in 
the sense defined below, is found for each predictor. These 
best splits are then compared, and the best is again 
selected. 

The idea central to the goodness of splits is that of 
selecting the splits so that the data in the descendant nodes 
are purer than the data in the original ones. To do so, 
different functions of impurity of the nodes, i(t), are 
introduced, and the decrease in value of the chosen 
function produced by a split is taken as a measure of the 
goodness of the split itself. For a node t and its descendant 
nodes tl and tr, this is  

( ) ( ) ( ) ( ),, rrll t iptiptitsi −−=∆    (3) 

where pl  and pr are the proportion of the cases of t falling in 
tl and tr respectively, according to the split s. 

The most commonly used function of node impurity is 
the Gini diversity index  

( ) ( ) ( ) ( ),|1|| 2∑∑ −==
≠ jji

tjptjptipti   (4) 

which can be interpreted in terms of variances of Bernoulli 
variables. If, for each class j, we consider the random 
variable Yj , which is 1(success) if a case of t belongs to 
class j and 0 (failure) otherwise, it can be modeled as a 
Bernoulli variable with probability of success p(j|t), and in 
this case the quantity 

( )tjp
j

|1 2∑−      (5) 

is the sum of the variances of such variables. 
The goodness of a split can also be evaluated by the 

reduction in deviance7 produced by the split. For a node t, 
the deviance is defined as  

( ) ( )tjpntD
j

tj |log2∑−= ,   (6) 

where ntj is the frequency of class j cases in node t. The 
underlying idea is that ntj cases of the training set  belonging 
to a node t constitute a random sample from the 
multinomial distribution specified by p(j|t). D(t) is 
proportional to the entropy function of the variable class 
within the node. Generally speaking the deviance is a 

function which quantifies the discrepancy of a fit from the 
data.8 

Since the process goes on until some stopping rule is 
satisfied, the trees can be very big and overfit the data. One 
of the major innovations of Cart methodology is the 
possibility of performing a pruning process based on the 
idea of finding a trade-off between the complexity and the 
accuracy of the trees. For a tree T, the pruning process 
generates a sequence {Tl}l∈{1,…,L} of subtrees decreasing in 
size, each of which is the best, in its size range, according 
to a cost-complexity measure defined as 

( ) ( ) || TTRTR α+=α ,    (7) 

where |T| is the number of terminal nodes, and α(> 0) is a 
unit cost of complexity per terminal node. The subtrees are 
evaluated in terms of their overall misclassification 
probability, or misclassification cost, on the basis of test 
sets, or by means of cross-validation and the best subtree is 
then selected. Choosing the tree to be used for 
classification in this way reduces the strong dependence of 
the classification itself on the training data, and provides a 
more parsimonious classifier. 

A very useful feature of Cart methodology, which 
helps to identify masking effects among the predictors and 
makes it easy to deal with missing data, are surrogate 
splits. Broadly speaking, a surrogate split is the split that 
most accurately matches the action of another split. If s is 
the split of a node t, and sm is any split of the same node 
based on the m-th predictor, the surrogate split of s, 
indicated as sm

*, is defined as 

( ( ) ),,maxarg*
m

s
m ssps

m

=     (8) 

where p(s,sm) is the estimated probability that sm predicts s 
correctly. This is given by  

( ) ( ) ( )mrrmllm sspsspssp ,,, += ,       (9) 

where pll(s, sm) is the estimated probability that both s and sm 

assign a case of t to the left descendant node tl and prr(s, sm) 
is the probability that both s and sm send a case of t to the 
right descendant node tr. 

Not all surrogate splits are useful; their goodness can 
be evaluated by the association function 
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which measures the relative reduction in error obtained by 
using sm

* to predict the split s as compared with the 
( )rl pp ,max   rule prediction. If λ is negative, sm

* is of no 
help in predicting s and is therefore disregarded. The splits 
which are good surrogates of the best splits in terms of the 
association function, are predictors which could be used 
advantageously in the classification problem studied, even 
though they may not appear in the tree structure.  

The overall importance of the m-th predictor in the 
whole classification problem is measured by the function 
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where ∆I(s,t)=I(t)- I(tl)- I(tr), with I(t)=i(t)p(t).
When the problem is missing data, surrogate splits are

useful both when values are missing in the training set
cases, and in the new cases to be classified. In the latter
situation, if a case is missing a value of a predictor used to
derive an optimal split s, it can still proceed along the tree
according to the surrogate split of s that, measured by
function λ, best matches s.

To conclude, a further advantage of trees classifiers is
their robustness with regard to outliers, which are usually
isolated in small nodes.

Image Description Using Pictorial
Features

The features we used to index the images constitute a general
purpose library of low-level pictorial features which can be
calculated on the global image and/or on sub-images
obtained by dividing the original image in different ways.

These features are:
• the color histogram in the hue-saturation-value color

space (HSV) quantized in 64 colors;
• the Color Coherence Vectors (CCV) in the HSV color

space quantized in 64 colors9;
• the spatial-chromatic histogram and the histogram of

the transitions of the color regions identified by the
process of quantization in 11 colors (red, orange,
yellow, green, blue, purple, pink, brown, black, gray
and white)10,11;

• the moments of inertia, i.e. the  mean, variance,
skewness and kurtosis, of the distribution of the colors
in terms of hue, saturation and luminance12;

• the percentage of "colored" and of "not-colored" pixels
of the image;

• the statistical information on image edges extracted by
Canny's algorithm: i) the percentages of low, medium,
and high contrast edge pixels in the image; ii) the
parametric thresholds on the gradient strength
corresponding to medium and high contrast edges; iii)
the number of connected regions identified by closed
high contrast contours; iv) the percentage of medium
contrast edge pixels connected to high contrast edges; v)
the histogram of edge directions extracted by Canny's
edge detector13;

• the mean and variance of the absolute values of the
coefficients of the sub-images of the first three levels of
the multi-resolution Daubechies wavelet transform of
the luminance image14;

• the estimate of texture features based on the
Neighborhood GrayTone Difference Matrix (NGTDM),
i.e. coarseness, contrast, busyness, complexity, and
strength15,16;

• the spatial composition of the color regions identified
by a process of quantization in 11 colors:      

i) fragmentation (the number of color regions); ii)
distribution of the color regions with respect to the
center of the image; iii) distribution of the color regions
with respect to the x axis, and with respect to the y
axis10;

• a skin region detector trained on a large amount of
labeled skin data, e.g.17.

Figure 1. Skin regions detection

The total number of features is rather high, since the
histograms used have large dimensions. However the widely
differing natures of the indices limit the risk of having
different images correspond to very close points in the
feature space. Moreover, while all the features must be
computed for the images in the training sets, only the
features actually used by the classifier need to be computed
for images in the test sets, and for new images processed by
the classifier.

Results

The problem we addressed is that of distinguishing among
photographs, graphics and texts.18 The training set used to
date consists of about 4000 photographs, 7000 graphic
works, and 1500 texts. The images differ in size (ranging
from 150x150 pixels to 1500x1500 pixels), resolution, and
tonal depth. The photograph class contains photographs of
indoor and outdoor scenes, landscapes, people, animals, and
objects. The graphics class contains clipart, business
graphics, and photo-realistic graphics. The text class
contains digitalized handwritten texts, as well as scanned or
computer generated texts in colour and in black and white, in
various fonts.

Our analysis was always based on the assumptions of
equal prior probability for each class and equal costs of
misclassification among classes. Of course, the
misclassification of photographs might, for example, be
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more costly than the misclassification of texts or graphics,
depending upon the application concerned. To measure the
impurity of the nodes we used the Gini index. To estimate
the overall probability of misclassification of the trees
derived from the pruning process, we used both cross-
validation and test sets. Since, when the costs of the
different misclassifications are considered equal, the overall
probability of misclassification of a tree is equivalent to the
overall cost of misclassification, we refer here only to the
misclassification probability.

We first performed a straightforward 3-class
classification.19 The results were very good in the
classification of photographs and texts, and not quite as good
for graphics: averaging the different trials, which were
performed by changing the test sets and the subdivisions of
the training set required by the cross-validation, the estimate
of the overall probability of misclassification obtained was
about 5% for photographs, 10% for graphics, and 7% for
texts. It is interesting to note that there was always one
terminal node that incorporated almost 85% of the
photographs of the training set, and another that incorporated
about 85% of the texts of the training set. This means that
most of the photographs and the texts can be characterized
by the paths reaching those nodes. Even more interesting is
the fact these paths involve no more than 1% of the all
features. The graphic images were, instead, spread out
among several terminal nodes.

Looking in detail at the misclassified images, we found
that many of the photographs misclassified as graphics were
photographs of objects on a large and uniformly colored
background, typical of business graphics such as pies,
histograms. The photographs misclassified as texts included,
among others, photographs of playing cards. Most of the
graphics misclassified as photographs were illustrations. The
texts misclassified as graphics were those with only a few
colored words in large font. For further verification we
processed the photographs of a large database (about 26000):
this gave the same level of misclassification, and confirmed
the typology of the photographs misclassified.

We decided to experiment the strategy of performing a
hierarchical 2-class classification as well. More specifically,
we first classified a new image as either text, or
photograph/graphics; then, if the image was not classified as
text, it was subsequently classified in the photograph class
or in the graphic class (of course, we could have followed a
different order, the choice depending, once again, on the
application involved). This strategy also gave very good
results. On the average, the estimate of the overall
probability of misclassification of the 2-class tree classifiers
constructed for the first step of classification was about 5%
for the text class, and 3% for the joint class of photographs
and graphics. The estimate of the overall probability of
misclassification of the 2-class tree classifiers constructed for
the second step was about 5% for the photograph class and
7% for the graphic class. As before, we found most of the
texts of the training set in a single node, and the
photographs in another, both of which can be reached with
paths involving very few features. When we processed the

same 26000 photograph database, we obtained a level of
misclassification of 0.6% in the first step (i.e. 0.6% of the
photographs were misclassified as texts), and of 5% in the
second step.

We must now decide which of the two approaches is to
be preferred in practice. In the  hierarchical approach the
classifier used in the second step is constructed to handle a
more specialized task, and this seems to be an advantage. On
the other hand, there is the disadvantage that an image
misclassified in the first step, is excluded from subsequent
comparison. This drawback can be limited by taking into
account the estimate of the probability of misclassification
attached to each terminal node of the classifier. For some of
the terminal nodes with few images, this estimate is in fact
quite high (in some cases even more than 20%), and it is
obvious that conclusions drawn from these nodes are much
less reliable. We are considering also admitting to the second
step of the classification process those images which would
at present be excluded if, in the first step, they fell into a
node with an estimate of probability of misclassification
larger than a given threshold. It might be advantageous to
consider the estimate of the misclassification probability
associated with each terminal node in direct 3-class
classification too, even if the classifier performs on the
whole very well.

Figure 2. Some misclassified photographs

Future Work

We are currently constructing a very large database of
graphics and texts in order to reach the same level of
confidence in our classification model and results as those
obtained for photographs. To reduce misclassification of
photographs we plan to index sub-images, in particular the
central part of the images. To increase the stability of the
trees we plan to use bagging, or some other P&C
(perturbing and combining) method.20 These methods
generate multiple versions of the predictors by perturbing
the training sets, and then combine these multiple versions
into a more stable single predictor. Finally we intend to
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deal with the fact that the classifier can not reject images 
that do not belong to any of the predefined classes. 
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